Modeling δ18O as an early indicator of regime shift arising from salinity stress in coastal vegetation

Modélisation du δ18O comme indicateur précoce d’un changement de régime de la végétation côtière résultant du stress salin

Modelado de δ18O como un indicador temprano del cambio de régimen que surge del estrés de salinidad en la vegetación costera

将δ18O模拟为沿海植被盐度胁迫引起转移的早期指标

Modelagem de δ18O como um indicador precoce de mudança de regime devido ao estresse na salinidade na vegetação costeira

Abstract

In many important coastal habitats, a combination of increasing soil salinization due to sea level rise, reduced precipitation and storm surges may induce regime shift from salinity-intolerant glycophytic vegetation to salinity-tolerant halophytic species. Early detection of regime shift due to salinity stress in vegetation may facilitate conservation efforts. It has been shown that the 18O value of water in the xylem of trees can be used as a surrogate for salinity in the rooting zone of plants. Coupling measured δ18O values in the tree xylem with simulated δ18O values in trees and salinity in the vadose zone can be used to investigate competitive responses of glycophytic versus halophytic trees. MANTRA-O18 simulations suggest that the impacts of salinization on diminishing the resilience of salinity-intolerant trees can be detected up to 25 years before the glycophytic trees are threatened with regime shift to halophytic species. This early detection provides critical lead time and valuable information and insights useful for planning adaptation strategy to mitigate against the adverse impacts of sea level rise and climate change.

Résumé

Dans beaucoup d’habitats côtiers, une combinaison de l’augmentation de la salinité des sols du fait d’une augmentation du niveau marin, de la diminution des pluies et des ondes de tempêtes peut entrainer un changement de régime d’une végétation glycophytique intolérante à la salinité à des espèces halophytiques tolérantes à la salinité. Une détection précoce du changement de régime du fait de la salinité sur la végétation permet de faciliter les efforts de conservation. Il a été montré que la valeur de 18O de l’eau dans les xylèmes des arbres peut être utilisé comme un substitut à la salinité dans la zone racinaire des plantes. Coupler des valeurs mesurées de δ18O dans les xylèmes des arbres avec des valeurs simulées de δ18O des arbres et la salinité de la zone vadose peut être utilisé pour étudier les réponses compétitives entre les arbres glycophytiques et halophytiques. Les simulations de MANTRA-O18 laissent penser que les impacts de la salinisation sur la diminution de la résilience des arbres intolérants à la salinité peuvent être détectés jusqu’à 25 ans avant que les arbres glycophytiques risquent un changement de régime vers des espèces halophytiques. Cette détection précoce fournit un délai important et donne des informations précieuses et des perspectives intéressantes pour planifier les stratégies d’adaptation pour lutter contre les impacts négatifs de la montée du niveau marin et du changement climatique.

Resumen

En muchos hábitats costeros importantes, una combinación del aumento de la salinización del suelo debido al aumento del nivel del mar, la reducción de las precipitaciones y las mareas de tormenta pueden inducir el cambio de régimen de la vegetación glicofítica intolerante a la salinidad a las especies halófitas tolerantes a la salinidad. La detección temprana del cambio de régimen debido al estrés por salinidad en la vegetación puede facilitar los esfuerzos de conservación. Se ha demostrado que el valor de 18O del agua en el xilema de los árboles se puede usar como un sustituto de la salinidad en la zona de enraizamiento de las plantas. El acoplamiento de las mediciones de los valores de δ18O en el xilema del árbol con los valores de δ18O simulados en los árboles y la salinidad en la zona vadosa se puede usar para investigar las respuestas competitivas de los árboles halófitos con todo el detalle de los glicofíticos. Las simulaciones de MANTRA-O18 sugieren que los impactos de la salinización en la disminución de la resistencia de los árboles intolerantes a la salinidad se pueden detectar hasta 25 años antes de que los árboles glicofíticos se vean amenazados con un cambio de régimen a especies halófitas. Esta detección temprana proporciona un tiempo de control crítico e información valiosa y útil para planificar una estrategia de adaptación con el fin de mitigar los impactos adversos del aumento del nivel del mar y el cambio climático.

摘要

在许多重要的沿海栖息地中,由于海平面上升,降水减少和风暴潮导致的土壤盐渍化增加,可能导致从不耐盐度的植物群落到盐度耐受的盐生植物。由于植被中的盐度胁迫而早期发现的政权转移可能有助于保护工作。已经表明,树木的木质部中的水的18O值可以用作植物生根区中盐度的替代物。将树木质部中测量的δ18O值与树木中的模拟δ18O值和渗流区中的盐度耦合,可用于研究盐生植物对盐生植物的竞争反应。 MANTRA-O18模拟表明盐渍化对减少不耐盐树木的恢复力的影响可以在糖化树受到盐胁迫的物种转变之前长达25年被发现。这种早期检测提供了关键的提前期和有价值的信息和见解,有助于规划适应战略,以减轻海平面上升和气候变化的不利影响。

Resumo

Em muitos habitats costeiros importantes, uma combinação do aumento da salinização dos solos devido à elevação do nível do mar, a redução da precipitação e das tempestades podem induzir na mudança de regime de uma vegetação glicofítica, intolerante à salinidade, para espécies halofíticas tolerantes à salinidade. Uma detecção antecipada da mudança de regime devida a um estresse na salinidade da vegetação pode facilitar os esforços de conservação. Assim, tem sido reconhecido que o valor de 18O da água no xilema das árvores pode ser usado como um substituto da salinidade na zona de enraizamento das plantas. A associação dos valores medidos de δ18O no xilema de árvores com os valores simulados de δ18O na árvore e a salinidade na zona vadosa pode ser usada para investigar respostas da competitividade entre as árvores glicofíticas e halofíticas. As simulações MANTRA-O18 sugerem que os impactos da salinização na diminuição da resiliência das árvores intolerante à salinidade podem ser detectados até 25 anos antes que as árvores glicofíticas estejam ameaçadas com mudança de regime para espécies halofíticas. Esta detecção antecipada fornece tempo de ciclo crítico, informações valiosas e percepções úteis para o planejamento de estratégia de adaptação para mitigar os impactos adversos da elevação do nível do mar e da mudança climática.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Abadie LM (2018) Sea level damage risk with probabilistic weighting of IPCC scenarios: an application to major coastal cities. J Clean Prod 175:582–598. https://doi.org/10.1016/j.jclepro.2017.11.069

    Article  Google Scholar 

  2. Abadie LM, Galarraga I, Sainz de Murieta E (2017) Understanding risks in the light of uncertainty: low-probability, high-impact coastal events in cities. Environ Res Lett 12:014017. https://doi.org/10.1088/1748e9326/aa5254

    Article  Google Scholar 

  3. Abdoulhalik A, Ahmed AA (2018) Transient investigation of saltwater upconing in laboratory-scale coastal aquifer. Estuar Coast Shelf Sci 214:149–160. https://doi.org/10.1016/j.ecss.2018.09.024

    Article  Google Scholar 

  4. Adar E, Nativ R (2003) Isotopes as tracers in a contaminated fractured chalk aquitard. J Contam Hydrol 65:19–39. https://doi.org/10.1016/S0022-1694(98)00275-3

    Article  Google Scholar 

  5. Ataie-Ashtiani B, Volker RE, Lockington DA (1999) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216:17–31. https://doi.org/10.1016/S0169-7722(02)00237-1

    Article  Google Scholar 

  6. Austin MJ, Masselink G, McCall RT, Poate TG (2013) Groundwater dynamics in coastal gravel barriers backed by freshwater lagoons and the potential for saline intrusion: two cases from the UK. J Mar Syst 123-124:19–32. https://doi.org/10.1016/j.jmarsys.2013.04.004

    Article  Google Scholar 

  7. Baldwin AH, Mendelssohn IA (1998) Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change. Aquat Bot 61:255–268. https://doi.org/10.1016/S0304-3770(98)00073-4

    Article  Google Scholar 

  8. Chang HK, Aravena R, Gastmans D, Hirata R, Manzano M, Vives L, Rodrigues L, Aggarwal PK, Araguás L (2013) Role of isotopes in the development of a general hydrogeological conceptual model of the Guarani aquifer system (GAS). STI/PUB/1580 Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies: Proceedings of the International Symposium held in Monaco, vol 2, 27 March–1 April 2011, IAEA, Vienna, pp 281–290

  9. Chang Y, Hu BX, Xu Z, Li X, Tong J, Chen L, Zhang H, Miao J, Liu H, Ma Z (2018) Numerical simulation of seawater intrusion to coastal aquifers and brine water/freshwater interaction in south coast of Laizhou Bay, China. J Contam Hydrol 215:1–10. https://doi.org/10.1016/j.jconhyd.2018.06.002

    Article  Google Scholar 

  10. Corneo PE, Kertesz MA, Bakhshandeh S, Tahaei H, Barbour MM, Dijkstra FA (2018) Studying root water uptake of wheat genotypes in different soils using water δ18O stable isotopes. Agric Ecosyst Environ 264:119–129. https://doi.org/10.1016/j.agee.2018.05.007

    Article  Google Scholar 

  11. Cruz JV, Andrade C (2017) Groundwater salinization in Graciosa and Pico islands (Azores archipelago, Portugal): processes and impacts. J Hydrol Reg Stud 12:69–87. https://doi.org/10.1016/j.ejrh.2017.04.003

    Article  Google Scholar 

  12. Dasgupta S, Laplante B, Meisner C, Wheeler D, Jianping Y (2007) The impact of sea level rise on developing countries: a comparative analysis. Policy research working paper WPS4136, World Bank, Washington, DC

  13. Dausman AM, Langevin CD (2005) Movement of the saltwater interface in the Surficial Aquifer System in response to hydrologic stresses and water-management practices, Broward County, Florida. US Geol Surv Sci Invest Rep 2004–5256

  14. Doyle TW, Girod GF (1997) The frequency and intensity of Atlantic hurricanes and their influence on the structure of South Florida mangrove communities. In: Diaz HF, Pulwarty RS (eds) Hurricane, climate and socioeconomic impact. Springer, Berlin, pp 109–120

    Google Scholar 

  15. Durand JL, Bariac T, Ghesquiere M, Biron P, Richard P, Humphreys M, Zwierzykovski Z (2007) Ranking of the depth of water extraction by individual grass plants, using natural O-18 isotope abundance. Environ Exp Bot 60(1):137–144. https://doi.org/10.1016/j.envexpbot.2006.09.004

    Article  Google Scholar 

  16. Ehleringer JR, Barnette JE, Jameel Y, Tipple BJ, Bowen GJ (2016) Urban water: a new frontier in isotope hydrology. Isot Environ Health Stud 52:477–486. https://doi.org/10.1080/10256016.2016.1171217

    Article  Google Scholar 

  17. Elliot T, Bonotto DM (2017) Hydrogeochemical and isotopic indicators of vulnerability and sustainability in the GAS aquifer São Paulo state, Brazil. J Hydrol Reg Stud 14:130–149. https://doi.org/10.1016/j.ejrh.2017.10.006

    Article  Google Scholar 

  18. Elliot T, Bonotto DM, Andrews JN (2014) Dissolved uranium, radium and radon evolution in the Continental Intercalaire aquifer, Algeria and Tunisia. J Environ Radioact 137:150–162. https://doi.org/10.1016/j.jenvrad.2014.07.003.

    Article  Google Scholar 

  19. El-Raey M (2010) Impacts and implications of climate change for the coastal zones of Egypt. In: Michel D, Pandya A (eds) Coastal zones and climatic change, pragmatic steps for global security. The Stimpson Center, Washington, DC, pp 31–50

    Google Scholar 

  20. Elsayed SM, Oumeraci H (2018) Modelling and mitigation of storm-induced saltwater intrusion: improvement of the resilience of coastal aquifers against marine floods by subsurface drainage. Environ Model Softw 100:252–277. https://doi.org/10.1016/j.envsoft.2017.11.030

    Article  Google Scholar 

  21. Ford A (1999) Modelling the environment: an introduction to system dynamics modelling of environmental systems. Island, Washington, DC

    Google Scholar 

  22. Foster A, Hirata R, Vidal A, Schmidt G, Garduño H (2009) The Guarani Aquifer Initiative: towards realistic groundwater management in a transboundary context. Sustainable Groundwater Management Series, GW-MATE/World Bank, Washington, DC

  23. Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24(1):225–262. https://doi.org/10.1146/annurev.earth.24.1.225

    Article  Google Scholar 

  24. Grimmeisen F, Lehmann MF, Liesch T, Goeppert N, Klinger J, Zopfi J, Goldscheider N (2017) Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system. Sci Total Environ 583:202–213. https://doi.org/10.1016/j.scitotenv.2017.01.054

    Article  Google Scholar 

  25. Horn DP (2006) Measurements and modelling of beach groundwater flow in the swash-zone: a review. Cont Shelf Res 26:622–652. https://doi.org/10.1016/j.csr.2006.02.001

    Article  Google Scholar 

  26. Howard KW (2007) Urban groundwater, meeting the challenge. IAH selected papers on hydrogeology 8. CRC, Boca Raton, FL

    Book  Google Scholar 

  27. Hull J (2012) Options, futures, and other derivatives, 8th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  28. Hunt A, Watkiss P (2010) Climate change impacts and adaptation in cities: a review of the literature. Clim Chang 104:13e49. https://doi.org/10.1007/s10584-010-9975-6

    Google Scholar 

  29. Hussain MS, Javadi AA (2016) Assessing impacts of sea level rise on seawater intrusion in a coastal aquifer with sloped shoreline boundary. J Hydro Environ Res 11:29–41. https://doi.org/10.1016/j.jher.2016.01.003

    Article  Google Scholar 

  30. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  31. IPCC (2014a) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability, part a—global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–32

    Google Scholar 

  32. IPCC (2014b) Climate change 2014: impacts, adaptation, and vulnerability, part a—global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  33. Jiang J, DeAngelis DL, Teh SY, Krauss KW, Wang HQ, Li HD, Smith TJ III, Koh HL (2016) Defining the next generation modeling of coastal ecotone dynamics in response to global change. Ecol Model 326:168–176. https://doi.org/10.1016/j.ecolmodel.2015.04.013

    Article  Google Scholar 

  34. Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M, Rasmussen DJ, Strauss BH, Tebaldi C (2014) Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. Earth Future 2:383–406. https://doi.org/10.1002/2014EF000239

    Article  Google Scholar 

  35. Kourakos G, Mantoglou A (2011) Simulation and multi-objective management of coastal aquifers in semi-arid regions. Water Resour Manag 25:1063–1074. https://doi.org/10.1007/s11269-010-9677-x

    Article  Google Scholar 

  36. Krauss KW, From AS, Doyle TW, Doyle TJ, Barry MJ (2011) Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. J Coast Conserv 15:629–638

    Article  Google Scholar 

  37. Kundzewicz ZW, Doll P (2009) Will groundwater ease freshwater stress under climate change? Hydrol Sci J 54:665–675. https://doi.org/10.1623/hysj.54.4.665

    Article  Google Scholar 

  38. Langevin CD, Thorne DT Jr, Dausman AM, Sukop MC, Guo W (2007) SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport. USgeological survey Techniques and Methods, book 6, chap A22. USGS, Reston, VA, pp 1–39

  39. Lecuyer C, Bodergat AM, Martineau F, Fourel F, Gurbuz K, Nazik A (2012) Water sources, mixing and evaporation in the Akyatan Lagoon, Turkey. Estuar Coast Shelf Sci 115:200–209. https://doi.org/10.1016/j.ecss.2012.09.002

    Article  Google Scholar 

  40. Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10:143–152. https://doi.org/10.1007/s10040-001-0177-1

    Article  Google Scholar 

  41. Li S, Levin NE, Chesson LA (2015) Continental scale variation in 17O-excess of meteoric waters in the United States. Geochim Cosmochim Acta 164:110–126. https://doi.org/10.1016/j.gca.2015.04.047

    Article  Google Scholar 

  42. Liberatore A (2013) Climate change, security and peace: the role of the European Union. Rev Eur Stud 5(3):83–94. https://doi.org/10.5539/res.v5n3p83

    Article  Google Scholar 

  43. Lin GH, Sternberg L da SL (1994) Utilization of surface water by red mangrove (Rhizophora mangle L.): an isotopic study. Bull Mar Sci 54:94–102

  44. Marion P, Najib K, Rosier C (2014) Numerical simulations for a seawater intrusion problem in a free aquifer. Appl Numer Math 75:48–60. https://doi.org/10.1016/j.apnum.2012.11.003

    Article  Google Scholar 

  45. Martinez JL, Raiber M, Cox ME (2015) Assessment of groundwater–surface water interaction using long-term hydrochemical data and isotope hydrology: headwaters of the Condamine River, Southeast Queensland, Australia. Sci Total Environ 536:499–516. https://doi.org/10.1016/j.scitotenv.2015.07.031

    Article  Google Scholar 

  46. Maurya P, Kumari R, Mukherjee S (2019) Hydrochemistry in integration with stable isotopes (δ18O and δD) to assess seawater intrusion in coastal aquifers of Kachchh district, Gujarat, India. J Geochem Explor 196:42–56. https://doi.org/10.1016/j.gexplo.2018.09.013

    Article  Google Scholar 

  47. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. https://doi.org/10.1126/science.1185782

    Article  Google Scholar 

  48. Oude Essink GHP (2001) Salt water intrusion in a three-dimensional groundwater system in the Netherlands: a numerical study. Transp Porous Media 43:137–158. https://doi.org/10.1023/A:1010625913251

    Article  Google Scholar 

  49. Oude Essink GHP, van Baaren ES, de Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46:W00F04. https://doi.org/10.1029/2009WR00871

    Article  Google Scholar 

  50. Oz I, Shalev E, Yechieli Y, Gavrieli I, Gvirtzman H (2014) Flow dynamics and salt transport in a coastal aquifer driven by a stratified saltwater body: lab experiment and numerical modeling. J Hydrol 511:665–674. https://doi.org/10.1016/j.jhydrol.2014.02.020

    Article  Google Scholar 

  51. Quevauviller P, Barceló D, Beniston M, Djordjevic S, Harding RJ, Iglesias A, Ludwig R, Navarra A, Ortega AN, Mark O, Roson R, Sempere D, Stoffe M, van Lanen HAJ, Werner M (2012) Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change. Sci Total Environ 440:167–177. https://doi.org/10.1016/j.scitotenv.2012.07.055

    Article  Google Scholar 

  52. Robinson G, Ahmed AA, Hamill GA (2016) Experimental saltwater intrusion in coastal aquifers using automated image analysis: applications to homogeneous aquifers. J Hydrol 538:304–313. https://doi.org/10.1016/j.jhydrol.2016.04.017

    Article  Google Scholar 

  53. Ross MS, O’Brien JJ, Sternberg L da SL (1994) Sea-level rise and the reduction in pine forests in the Florida Keys. Ecol Appl 4:144–156. https://doi.org/10.2307/1942124

  54. Ross MS, Meeder JF, Sah JP, Ruiz PL, Telesnicki GJ (2000) The southeast saline Everglades revisited: 50 years of coastal vegetation change. J Veg Sci 11:101–112. https://doi.org/10.2307/3236781

    Article  Google Scholar 

  55. Ross MS, O’Brien JJ, Ford RG, Zhang K, Morkill A (2009) Disturbance and the rising tide: the challenge of biodiversity management for low island ecosystems. Front Ecol Environ 9:471–478. https://doi.org/10.1890/070221

    Article  Google Scholar 

  56. Saha S, Bradley K, Ross MS, Hughes P, Wilmers T, Ruiz PL, Bergh C (2011a) Hurricane effects on subtropical pine rocklands of the Florida Keys. Clim Chang 107:169–184. https://doi.org/10.1007/s10584-011-0081-1

    Article  Google Scholar 

  57. Saha AK, Saha S, Sadle J, Jiang J, Ross MS, Price RM, Sternberg L da SL, Wendelberger KS (2011b) Sea level rise and South Florida coastal forests. Clim Chang 107:81–108. https://doi.org/10.1007/s10584-011-0082-0

  58. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59. https://doi.org/10.1038/nature08227

    Article  Google Scholar 

  59. Scholander PF (1968) How mangroves desalinate seawater. Physiol Plant 21:251–261. https://doi.org/10.1111/j.1399-3054.1968.tb07248.x

    Article  Google Scholar 

  60. Scholander PF, Hammel HT, Hemmingsen E, Garey W (1962) Salt balance in mangroves. Plant Physiol 37:722. https://doi.org/10.1104/pp.37.6.722

    Article  Google Scholar 

  61. Sternberg L da SL, Swart PK (1987) Utilization of freshwater and ocean water by coastal plants of southern Florida. Ecology 68:1898–1905. https://doi.org/10.2307/1939881

  62. Sternberg L da SL, Ish-Shalom-Gordon N, Ross M, O’Brien J (1991) Water relations of coastal plant communities near the ocean/freshwater boundary. Oecologia 88:305–310. https://doi.org/10.1007/BF00317571

  63. Sternberg L da SL, Teh SY, Ewe SML, Miralles-Wilhelm F, DeAngelis DL (2007) Competition between hardwood hammocks and mangroves. Ecosystems 10:648–660. https://doi.org/10.1007/s10021-007-9050-y

  64. Steyer GD, Cretini KF, Piazza S, Sharp LA, Snedden GA, Sapkota S (2010) Hurricane influences on vegetation community change in coastal Louisiana, US Geol Surv Open File Rep 2010-1105, USGS, Reston, VA, 21 pp

  65. Sušnik J, Vamvakeridou-Lyroudia LS, Savić DA, Kapelan Z (2012) Integrated system dynamics modelling for water scarcity assessment: case study of the Kariouan region. Sci Total Environ 440:290–306. https://doi.org/10.1016/j.scitotenv.2012.050.085

    Article  Google Scholar 

  66. Sušnik J, Vamvakeridou-Lyroudia LS, Savić DA, Kapelan Z (2013) Integrated modelling of the water-agricultural system in the Rosetta region, Nile Delta, Egypt, using system dynamics. J Water Clim Chang 4:209–231. https://doi.org/10.2166/wcc.2013.069

    Article  Google Scholar 

  67. Sušnik J, Vamvakeridou-Lyroudia LS, Baumert N, Kloos J, Renaud FG, Jeunesse IL, Mabrouk B, Savić DA, Kapelan Z, Ludwig R, Fischer G, Roson R, Zografos C (2015) Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile Delta, Egypt. Sci Total Environ 503-504:279–288. https://doi.org/10.1016/j.scitotenv.2014.06.111

    Article  Google Scholar 

  68. Swain ED, Krohn D, Langtimm CA (2015) Numerical computation of hurricane effects on historic coastal hydrology in southern Florida. Ecol Process 4:4. https://doi.org/10.1186/s13717-014-0028-3

    Article  Google Scholar 

  69. Teh SY, DeAngelis D, Sternberg L da SL, Miralles-Wilhelm FR, Smith TJ, Koh HL (2008) A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades. Ecol Model 213:245–256. https://doi.org/10.1016/j.ecolmodel.2007.12.007

  70. Teh SY, Koh HL, DeAngelis DL, Turtora M (2013) Interaction between salinity intrusion and vegetation succession: a modeling approach. Theor Appl Mech Lett 3:032001. https://doi.org/10.1063/2.1303201

    Article  Google Scholar 

  71. Teh SY, DeAngelis DL, Turtora M, Jiang J, Pearlstine L, Smith TJ, Koh HL (2015) Application of a coupled vegetation competition and groundwater simulation model to study effects of sea level rise and storm surges on coastal vegetation. J Mar Sci Eng 3:1149–1177. https://doi.org/10.3390/jmse3041149

    Article  Google Scholar 

  72. Teh SY, DeAngelis DL, Voss CI, Sternberg L da SL, Koh HL (2018) MANTRA-O18: an extended version of SUTRA modified to simulate salt and δ18O transport amid water uptake by plants. E3S Web Conf 54:00039. https://doi.org/10.1051/e3sconf/20185400039

  73. Terry JP, Falkland AC (2010) Responses of atoll freshwater lenses to storm-surge overwash in the northern Cook Islands. Hydrogeol J 18:749–759. https://doi.org/10.1007/s10040-009-0544-x

    Article  Google Scholar 

  74. Tipple BJ, Jameel Y, Chau TH, Mancuso CJ, Bowen GJ, Dufour A, Chesson LA, Ehleringer JR (2017) Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay area’s water system and adjustments during a major drought. Water Res 119:212–224. https://doi.org/10.1016/j.watres.2017.04.022

    Article  Google Scholar 

  75. Vendramini PF, Sternberg L da SL (2007) A faster plant stem-water extraction method. Rapid Commun Mass Spectrom 21:164–168. https://doi.org/10.1002/rcm.2826

  76. Voss CI, Provost AM (2010) SUTRA, a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport (Version of September 22, 2010). US Geol Surv Water Resour Invest Rep 02-4231, 291 pp

  77. Watkiss P, Hunt A, Blyth W (2013) Real options analysis: decision support methods for adaptation. MEDIATION Project, Briefing note 4, Funded by the EC’s 7FWP, EC, Brussels

  78. Watkiss P, Hunt A, Blyth W, Dyszynski J (2015) The use of new economic decision support tools for adaptation assessment: a review of methods and applications, towards guidance on applicability. Clim Chang 132:401e416. https://doi.org/10.1007/s10584-014-1250-9

    Article  Google Scholar 

  79. Watson TA, Werner AD, Simmons CT (2010) Transience of seawater intrusion in response to sea level rise. Water Resour Res 46:W12533. https://doi.org/10.1029/2010WR00956

    Article  Google Scholar 

  80. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. https://doi.org/10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

  81. Xiao H, Wang D, Medeiros SC, Bilskie MV, Hagen SC, Hal CR (2019) Exploration of the effects of storm surge on the extent of saltwater intrusion into the surficial aquifer in coastal East-Central Florida (USA). Sci Total Environ 648:1002–1017. https://doi.org/10.1016/j.scitotenv.2018.08.199

    Article  Google Scholar 

  82. Yang J, Zhang H, Yu X, Graf T, Michael HA (2018) Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation. Adv Water Resour 111:423–434. https://doi.org/10.1016/j.advwatres.2017.11.017

    Article  Google Scholar 

  83. Yechieli Y, Shalev E, Wollman S, Kiro Y, Kafri U (2010) Response of the Mediterranean and Dead Sea coastal aquifers to sea level variations. Water Resour Res 46:W12550. https://doi.org/10.1029/2009WR00870

    Article  Google Scholar 

  84. Zhai L, Jiang J, DeAngelis DL, Sternberg L da SL (2016) Prediction of plant vulnerability to salinity increase in a coastal ecosystem by stable isotopic composition (δ18O) of plant stem water: a model study. Ecosystems 19:32–49. https://doi.org/10.1007/s10021-015-9916-3

  85. Zhai L, Krauss KW, Liu X, Duberstein JA, Conner WH, DeAngelis DL, Sternberg L da SL (2018) Growth stress response to sea level rise in species with contrasting functional traits: a case study in tidal freshwater forested wetlands. Environ Exp Bot 155:378–386. https://doi.org/10.1016/j.envexpbot.2018.07.023

Download references

Acknowledgements

The authors would like to acknowledge and show appreciation to Camille Stagg of the US Geological Survey and two anonymous reviewers for their suggestions to improve the clarity of the paper. KHL would like to acknowledge the conducive environment provided by the Jeffrey Sachs Centre on Sustainable Development and the Jeffrey Cheah Institute on Southeast Asia, of Sunway University Malaysia, to conduct research on sustainable development. Use of trade or product names does not imply endorsement by the US government.

Funding

Financial support by FRGS Grant 203/PMATHS/6711569 (“Sea Level Rise Impact on Coastal Groundwater and Vegetation”) and the L’Oreal-UNESCO Women in Science Fellowship 2017 to SYT is gratefully acknowledged. SYT was supported in part by the USGS’s Across Trophic Level System Simulation program. DLD was supported by the USGS’s Greater Everglades Priority Ecosystem Science Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Su Yean Teh.

Electronic supplementary material

ESM 1

(PDF 985 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teh, S.Y., Koh, H.L., DeAngelis, D.L. et al. Modeling δ18O as an early indicator of regime shift arising from salinity stress in coastal vegetation. Hydrogeol J 27, 1257–1276 (2019). https://doi.org/10.1007/s10040-019-01930-3

Download citation

Keywords

  • Sea level rise
  • Storm surge
  • MANTRA-O18
  • Numerical modeling
  • Stable isotopes