Domestic well reliability: evaluating supply interruptions from groundwater overdraft, estimating costs and managing economic externalities

Fiabilité des puits domestiques: évaluation des interruptions d’approvisionnement à partir de la surexploitation des eaux souterraines, de l’estimation des coûts et de la gestion des externalités économiques

Confiabilidad de pozos domésticos: evaluación de interrupciones en el suministro por sobreexplotación de aguas subterráneas, estimación de costos y gestión de externalidades económicas

国内井的可靠性:评价地下水超采造成的供应中断、估算成本和外部管理经济性

Confiabilidade do poço doméstico: avaliação das interrupções a partir da redução das reservas de águas subterrânea, estimativa de custos e gerenciamento de externalidades econômicas

Abstract

The effects of groundwater depletion may impose costs on many people that rely upon the resource. Such costs are not borne entirely by the high-volume pumpers that largely create the problematic conditions. Ideally, sustainable groundwater management should include addressing economic externalities and social equity, although information quantifying these concerns is often unavailable. This work estimates impacts to domestic water well owners from groundwater overdraft caused mostly by pumping deeper agricultural wells. A study is presented for Tulare County in the southern Central Valley of California, USA, where many interruptions in domestic well supplies occurred during a recent drought. The case has unusually well-documented conditions and data available for analysis. A method is developed to model supply interruptions and estimate costs for maintaining domestic water well supplies that are impacted by declining groundwater levels. The analysis is performed in the context of planning for sustainable groundwater management and suggestions for managing the economic externality are made. This work may provide a basis for evaluating the economic impacts on well owners from over-pumping in basins outside the study area where less data may be available.

Résumé

Les effets de l’épuisement des eaux souterraines peuvent imposer des coûts à de nombreuses personnes qui dépendent de la ressource. Ces coûts ne sont pas entièrement supportés par les personnes qui prélèvent de large volume d’eau, largement responsable des conditions problématiques qui en résultent. Idéalement, la gestion durable des eaux souterraines devrait inclure l’examen des externalités économiques et de l’équité sociale, bien que les informations quantifiant ces préoccupations soient souvent indisponibles. Ce travail évalue les impacts pour les propriétaires de puits d’eau domestiques de la surexploitation des eaux souterraines, causée principalement par les pompages de puits plus profonds à des fins agricoles. Une étude est présentée pour le comté de Tulare dans le Sud de la vallée centrale de Californie, États-Unis d’Amérique, où de nombreuses interruptions dans l’alimentation en eau en provenance de puits domestiques ont eu lieu au cours d’une sécheresse récente. Cette situation a des conditions et des données exceptionnellement bien documentées disponibles pour l’analyse. Une méthode est élaborée pour modéliser les interruptions d’approvisionnement et estimer les coûts des approvisionnements de puits d’eau domestiques qui sont touchés par la diminution des niveaux d’eaux souterraines. L’analyse est effectuée dans le cadre de la planification de la gestion durable des eaux souterraines et des suggestions pour la gestion de l’externalité économique sont faites. Ce travail peut servir de base pour évaluer les impacts économiques d’une surexploitation sur les propriétaires de puits domestiques, dans les bassins situés à l’extérieur de la zone d’étude où moins de données peuvent être disponibles.

Resumen

Los efectos del agotamiento de las aguas subterráneas pueden imponer costos a muchas personas que dependen del recurso. Estos costos no son asumidos en su totalidad por quienes bombean altos volúmenes que crean en gran medida las condiciones problemáticas. Idealmente, la gestión sostenible de las aguas subterráneas debería incluir el abordaje de las externalidades económicas y la equidad social, aunque la información que cuantifica estas preocupaciones a menudo no está disponible. Este trabajo estima los impactos a los propietarios de pozos de agua domésticos por sobreexplotación de aguas subterráneas causados principalmente por el bombeo de pozos agrícolas más profundos. Se presenta un estudio para el condado de Tulare en el sur del Valle Central de California, EEUU, donde se produjeron muchas interrupciones en los suministros de pozos domésticos durante una reciente sequía. El caso tiene disponibles condiciones y datos inusualmente bien documentados para su análisis. Se desarrolla un método para modelar las interrupciones en el suministro y estimar los costos de los suministros de pozos de agua domésticos que se ven afectados por la profundización de los niveles de agua subterránea. El análisis se realiza en el contexto de la planificación para la gestión sostenible de las aguas subterráneas y se hacen sugerencias para gestionar la externalidad económica. Este trabajo puede proporcionar una base para evaluar los impactos económicos en los propietarios de los pozos por el exceso de bombeo en las cuencas fuera del área de estudio, donde puede haber menos datos disponibles.

摘要

地下水枯竭的影响可能会使许多依赖该资源的人付出代价。这些成本并不完全是由大容量的抽水机承担的,这在很大程度上造成了问题。理想的情况是,地下水可持续管理应包括解决经济外部性和社会公平问题,尽管往往无法提供量化这些关切的信息。这项工作估计地下水透支对家庭水井所有者的影响主要是由于抽更深的农业水井造成的。一项针对美国加州中南部山谷的图拉雷县的研究报告指出,在最近的一次干旱中,国内油井供应出现了许多中断。这起案件有不同寻常的详细记录和可供分析的数据。发展了一种方法来模拟受地下水位下降影响的生活水井供应中断并估算其费用。在地下水可持续管理规划的背景下进行了分析,并提出了治理经济外部性的建议。这项工作可以为评估研究区域以外的流域过度抽水对油井所有者造成的经济影响提供依据,因为在研究区域以外的地区,可获得的数据可能较少。

Resumo

Os efeitos da depleção das águas subterrâneas podem impor custos a muitas pessoas que dependem do recurso. Tais custos não são suportados inteiramente pelas bombas de alto volume que criam em grande parte as condições problemáticas. Idealmente, o manejo sustentável das águas subterrâneas deve incluir a abordagem das externalidades econômicas e da equidade social, embora a informação que quantifica essas preocupações esteja muitas vezes indisponível. Este trabalho estima os impactos para os proprietários de poços domésticos do esgotamento de reservas de água subterrânea causado principalmente pelo bombeamento de poços agrícolas mais profundos. Um estudo é apresentado para o Condado de Tulare, no sul do Vale Central da Califórnia, EUA, onde ocorreram muitas interrupções no abastecimento de poços domésticos durante uma recente seca. O caso tem condições e dados incomumente bem documentados disponíveis para análise. Um método é desenvolvido para modelar as interrupções de fornecimento e estimar os custos para os suprimentos domésticos de poços que são impactados pelo declínio dos níveis das águas subterrâneas. A análise é realizada no contexto do planejamento para o manejo sustentável das águas subterrâneas e são feitas sugestões para o gerenciamento da externalidade econômica. Este trabalho pode fornecer uma base para avaliar os impactos econômicos em proprietários de poços de bombeamento excessivo em bacias fora da área de estudo, onde menos dados podem estar disponíveis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Ayotte JD, Nolan BT, Gronberg JA (2016) Predicting arsenic in drinking water wells of the Central Valley, California. Environ Sci Technol 50:7555–7563. https://doi.org/10.1021/acs.est.6b01914

    Article  Google Scholar 

  2. Balazs C, Ray I (2014) The drinking water disparities framework: on the origins and persistence of inequities in exposure. Am J Public Health 104(4):603–611. https://doi.org/10.2105/AJPH.2013.301664

    Article  Google Scholar 

  3. Balazs C, Morello-Frosch R, Hubbard A, Ray I (2011) Social disparities in nitrate-contaminated drinking water in California’s San Joaquin Valley. Environ Health Perspect (119) 9:1272–1278

    Article  Google Scholar 

  4. Balazs C, Morello-Frosch R, Hubbard A, Ray I (2012) Environmental justice implications of arsenic contamination in California’s San Joaquin Valley: a cross-sectional, cluster-design examining exposure and compliance in community drinking water systems. Environ Health 11:84. https://doi.org/10.1186/1476-069X-11-84

    Article  Google Scholar 

  5. Barlow PM, Leakey SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376

  6. Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18(2):247–260. https://doi.org/10.1007/s10040-009-0514-3

  7. Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York

    Google Scholar 

  8. Bentley LR (1997) Influence of the regularization weighting matrix on parameter estimates. Adv Water Resour (20) 4:231–247

    Article  Google Scholar 

  9. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water (40) 4:340–345

    Article  Google Scholar 

  10. CADWR (2014a) Public update for drought response: groundwater basins with potential water shortages, gaps in groundwater monitoring, monitoring of land subsidence, and agricultural land fallowing. California Department of Water Resources. http://wwwwatercagov/waterconditions/docs/DWR_PublicUpdateforDroughtResponse_GroundwaterBasinspdf Accessed 5 July 2017

  11. CADWR (2014b) California water plan update 2013. California Department of Water Resources California Department of Water Resources. https://wwwwatercagov/Programs/California-Water-Plan/Water-Plan-Updates. Accessed 9 April 2018

  12. CADWR (2015) California’s most significant droughts: comparing historical and recent conditions. California Department of Water Resources. https://water.ca.gov/LegacyFiles/waterconditions/docs/California_Signficant_Droughts_2015_small.pdf. Accessed 17 January 2018

  13. CADWR (2017a) Groundwater information center interactive map application. California Department of Water Resources. https://giswatercagov/app/gicima/. Accessed 5 July 2017

  14. CADWR (2017b) Well completion report map application. California Department of Water Resources. https://dwrmapsarcgiscom/apps/webappviewer/indexhtml?id=181078580a214c0986e2da28f8623b37. Accessed 28 November 2017

  15. CADWR (2018a) Sustainable groundwater management website. California Department of Water Resources. https://www.water.ca.gov/Programs/Groundwater-Management/SGMA-Groundwater-Management/. Accessed 9 April 2018

  16. CADWR (2018b) California Data Exchange Center: chronological reconstructed Sacramento and San Joaquin Valley water year hydrologic classification indices. California Department of Water Resources. California Department of Water Resources. http://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST. Accessed 30 December 2018

  17. Cooley RL, Vecchia AV (1987) Calculation of nonlinear confidence and prediction intervals for ground-water flow models. Water Resour Bull 23(4):581–599

    Article  Google Scholar 

  18. County of Tulare (2017) Drought effects status updates. http://tularecountycagov/emergencies/indexcfm/drought/drought-effects-status-updates/. Accessed 5 July 2017

  19. Döll P, Schmied HM, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. https://doi.org/10.1002/2014WR015595

    Article  Google Scholar 

  20. Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  21. Electricity Local (2018) Local electricity rates and statistics: Tulare electricity rates. https://wwwelectricitylocalcom/states/california/tulare/. Accessed 10 January 2018

  22. Erickson ML, Barnes RJ (2005) Well characteristics influencing arsenic concentrations in ground water. Water Res 39(16):4029–4039. https://doi.org/10.1016/j.watres.2005.07.026

    Article  Google Scholar 

  23. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. https://doi.org/10.1029/2010GL046442

    Article  Google Scholar 

  24. Farr TG, Jones C, Liu Z (2015) Progress report: subsidence in the Central Valley, California. California Department of Water Resources. http://water.ca.gov/groundwater/docs/NASA_REPORT.pdf. Accessed 5 July 2017

  25. Faunt CC (ed) (2009) Groundwater availability of the Central Valley aquifer, California. US Geol Surv Prof Pap 1766

  26. Feinstein L, Phurisamban R, Ford A, Tyler C, Crawford A (2017) Drought and equity in California, Pacific Institute, Oakland, CA. http://pacinstorg/publication/drought-equity-california/. Accessed 28 September 2017

  27. Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc B 358(1440):1957–1972. https://doi.org/10.1098/rstb.2003.1380

    Article  Google Scholar 

  28. Gailey RM (2017) Inactive supply wells as conduits for flow and contaminant migration: conditions of occurrence and suggestions for management. Hydrogeol J 25(7):2163–2183. https://doi.org/10.1007/s10040-017-1588-y

    Article  Google Scholar 

  29. Gailey RM (2018) Using geographic distribution of well-screen depths and hydrogeologic conditions to identify areas of concern for contaminant migration through inactive supply wells. Hydrogeol J. https://doi.org/10.1007/s10040-018-1734-1

  30. Gailey RM, Arnold BJ, Kwon AJ, Medellín-Azuara J, Lund JR (2016) The effect of declining groundwater levels on supply well operations, Appendix A of economic analysis of the 2016 California drought on agriculture. Report for the California Department of Food and Agriculture, Center for Watershed Sciences, University of California Davis. https://watershed.ucdavis.edu/droughtimpacts. Accessed 26 September 2017

  31. Glennon RJ (2002) Water follies: groundwater pumping and the fate of America’s fresh waters. Island, Washington, DC

    Google Scholar 

  32. Griffin RC (2006) Water resources economics, the analysis of scarcity, policies, and projects. MIT Press, Cambridge, MA

    Google Scholar 

  33. Hanak E, Lund J, Arnold B, Escriva-Bou A, Gray B, Green S, Harter H, Howitt R, MacEwan D, Medellín-Azuara MP, Seavey N (2017) Water stress and a changing San Joaquin Valley. Public Policy Institute of California, March 2017. http://www.ppic.org/main/publication.asp?i=1224. Accessed 5 July 2017

  34. Hill MC, Tiedeman CR (2007) Effective groundwater model calibration. Wiley, Hoboken, NJ

    Google Scholar 

  35. Helweg OJ, Scott VH, Scalmanini JC (1983) Improving pump and well efficiency. American Water Works Association, Denver, CO

    Google Scholar 

  36. Houben GJ, Treskatis C (2007) Water well rehabilitation and reconstruction. McGraw Hill, New York

    Google Scholar 

  37. Jenkins CT (1969) Electric-analog and digital-computer model analysis of stream depletion by wells. Ground Water 6(6):27–34

    Article  Google Scholar 

  38. Johnson TD, Belitz K (2015) Identifying the location and population served by domestic wells in California. J Hydrol 3(2015):31–86. https://doi.org/10.1016/j.ejrh.2014.09.002

    Google Scholar 

  39. Johnson TD, Belitz K (2017) Domestic well locations and population served in the contiguous U.S.: 1990. Sci Total Environ 607–608(2017):658–668. https://doi.org/10.1016/j.scitotenv.2017.07.018

    Article  Google Scholar 

  40. Konikow LF (2013) Groundwater depletion in the United States (1900–2008). US Geol Surv Sci Invest Rep 2013-5079

  41. Lund J, Medellín-Azuara J, Durand J, Stone K (2018) Lessons from California’s 2012–2016 drought. J Water Resour Plan Manag 144(10):04018067. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984

    Article  Google Scholar 

  42. Mansuy N (1999) Water well rehabilitation, a practical guide to understanding well problems and solutions. Lewis, New York

    Google Scholar 

  43. Moran T, Choy J, Sanchez C (2014) The hidden costs of groundwater overdraft, understanding California’s groundwater. Stanford Water in the West. http://waterintheweststanfordedu/groundwater/overdraft/. Accessed 5 July 2017

  44. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, Cambridge, MA

    Google Scholar 

  45. Perrone D, Jasechko S (2017) Dry groundwater wells in the western United States. Environ Res Lett 12(10):104002. https://doi.org/10.1088/1748-9326/aa8ac0

    Article  Google Scholar 

  46. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour, and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  Google Scholar 

  47. Smith R, Knight R, Chen J, Reeves JA, Zebker HA, Farr T, Liu Z (2017) Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour Res 53:2133–2148. https://doi.org/10.1002/2016WR019861

    Article  Google Scholar 

  48. Smith R, Knight R, Fendorf S (2018) Overpumping leads to California groundwater arsenic threat. Nat Commun 9:2089. https://doi.org/10.1038/s41467-018-04475-3

  49. Smith SA, Comeskey AE (2010) Sustainable wells: maintenance, problem prevention, and rehabilitation. CRC, Boca Raton, FL

    Google Scholar 

  50. Sneed M, Brandt J, Solt M (2013) Land subsidence along the Delta-Mendota canal in the northern part of the San Joaquin Valley, California 2003–10. US Geol Surv Sci Invest Rep 2013-5142

  51. Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43. https://doi.org/10.1016/S0022-1694(00)00263-8

    Article  Google Scholar 

  52. State of California (2017) Household Water Supply shortage reporting system. https://mydrywatersupply.water.ca.gov/report/publicpage. Accessed 5 July 2017

  53. Stevenson GG (1991) Common property economics: a general theory and land use applications. Cambridge University Press, Cambridge, MA

    Google Scholar 

  54. Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civil Eng 10:277–280

    Google Scholar 

  55. Tulare County Agricultural Commissioner (1998) Tulare County crop and livestock report, 1997. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  56. Tulare County Agricultural Commissioner (1999) Tulare County crop and livestock report, 1998. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  57. Tulare County Agricultural Commissioner (2000) Tulare County crop and livestock report, 1999. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  58. Tulare County Agricultural Commissioner (2001) Tulare County crop and livestock report, 2000. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  59. Tulare County Agricultural Commissioner (2002) Tulare County crop and livestock report, 2001. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  60. Tulare County Agricultural Commissioner (2003) Tulare County crop and livestock report, 2002. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  61. Tulare County Agricultural Commissioner (2004) Tulare County crop and livestock report, 2003. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  62. Tulare County Agricultural Commissioner (2005) Tulare County crop and livestock report, 2004. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  63. Tulare County Agricultural Commissioner (2006) Tulare County crop and livestock report, 2005. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  64. Tulare County Agricultural Commissioner (2007) Tulare County crop and livestock report, 2006. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  65. Tulare County Agricultural Commissioner (2008) Tulare County crop and livestock report, 2007. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  66. Tulare County Agricultural Commissioner (2009) Tulare County crop and livestock report, 2008. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  67. Tulare County Agricultural Commissioner (2010) Tulare County crop and livestock report, 2009. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  68. Tulare County Agricultural Commissioner (2011) Tulare County crop and livestock report, 2010. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  69. Tulare County Agricultural Commissioner (2012) Tulare County crop and livestock report, 2011. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  70. Tulare County Agricultural Commissioner (2013) Tulare County crop and livestock report, 2012. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  71. Tulare County Agricultural Commissioner (2014) Tulare County crop and livestock report, 2013. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  72. Tulare County Agricultural Commissioner (2015) Tulare County crop and livestock report, 2014. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  73. Tulare County Agricultural Commissioner (2016) Tulare County crop and livestock report, 2015. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  74. Tulare County Agricultural Commissioner (2017) Tulare County crop and livestock report, 2016. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018

  75. UNESCO (2012) Managing water under uncertainty and risk, United Nations world water development report 4, vol 1. United Nations Educational, Scientific and Cultural Organization, Paris. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/. Accessed 5 July 2017

  76. USGS (2017) Drought impacts website. United States Geological Survey. https://ca.water.usgs.gov/data/drought/drought-impact.html. Accessed 5 July 2017

  77. van Beek CGEM (2012) Cause and prevention of clogging of wells abstracting groundwater from unconsolidated aquifers. IWA, London

    Google Scholar 

  78. Vecchia AV, Cooley RL (1987) Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model. Water Resour Res 23(7):1237–1250

    Article  Google Scholar 

  79. Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06. https://doi.org/10.1029/2011WR010562

    Article  Google Scholar 

  80. Young RA, Loomis JB (2014) Determining the economic value of water, concepts and methods, 2nd edn. RFF, New York

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the California Department of Water Resources for sharing an early version of the dataset regarding the geographic distribution of water supply well constructions, the Tulare County Office of Emergency Services for sharing information on the geographic distribution of domestic water supply outages, and the Tulare County Health and Human Services Agency, Environmental Health Services Division, for sharing information well construction and destruction permitting. Thomas Harter and two anonymous reviewers are also appreciatively acknowledged for editorial and technical comments that improved this manuscript.

Funding

This work was supported by the UC Office of the President’s Multi-Campus Research Programs and Initiatives (MR-15-328473) through UC Water, the University of California Water Security and Sustainability Research Initiative. Additional support was provided by the California Department of Food and Agriculture (UC Agreement 16-0125), S.D. Bechtel Jr. Foundation and US Environmental Protection Agency (Assistance Agreement 83586701) through the UC Davis Center for Watershed Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert M. Gailey.

Appendix

Appendix

Following Gailey et al. (2016), information on calculating pump operations costs may be found in Helweg et al. (1983) as well as other references. The cost for operating a pump is calculated as:

$$ \mathrm{OC}=P\ T\ c $$
(9)

where:

OC:

is operating cost for the well pump ($)

P :

is pump power (kW)

T :

is total operation time (h)

c :

is cost per kilowatt hour ($/kWh)

Pump energy is calculated as:

$$ P=\left(0.746\ Q\ H\right)/\left(\mathrm{3,956}\ E\right) $$
(10)

where:

Q :

is pumping rate (gal/min)

H :

is total dynamic head (ft)

E :

is combined efficiency of the pump bowls and motor (%)

0.746:

is a conversion factor from horse power to kW

3956:

is a conversion factor from flow in gal/min and total dynamic head in feet to horse power

H is further defined as:

$$ H=\mathrm{DTW}+Q/\mathrm{SC} $$
(11)

where:

DTW:

is depth to groundwater under nonpumping conditions (ft)

SC:

is the specific capacity of the pumped well (gal/min/ft)

Discharge pressure is assumed to equal zero and not contribute to total dynamic head.

Total operation time is calculated as:

$$ T=V/\left(60\ Q\right) $$
(12)

where:

T :

is total operation time (h)

V :

is total volume required (gal)

60:

is a conversion factor from minutes to hours

Substituting Eqs. (10)–(12) into Eq. (9) yields:

$$ \mathrm{OC}=3.14\ \mathrm{x}\ {10}^{-6}\ \left(\mathrm{DTW}+Q/\mathrm{SC}\right)\ \left(V\ c\right)/E $$
(13)

Information requirements for DTW, Q and SC are addressed in section ‘Methods of analysis and data sources’. V is taken as the volume of water required for a family of four people during 1 year (approximately 400,000 gal/year) based on data for the study area region (CADWR 2014b). A location-specific value for c ($0.16 per kWh) is used (Electricity Local 2018). The value for E (0.63) is consistent with the first author’s experience (Gailey et al. 2016). Variations in the value for E resulting from pumping rate fluctuations with groundwater depth are not considered.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gailey, R.M., Lund, J.R. & Medellín-Azuara, J. Domestic well reliability: evaluating supply interruptions from groundwater overdraft, estimating costs and managing economic externalities. Hydrogeol J 27, 1159–1182 (2019). https://doi.org/10.1007/s10040-019-01929-w

Download citation

Keywords

  • Water supply
  • Over-abstraction
  • Economic externalities
  • Geographic information systems
  • USA