Abstract
The effects of groundwater depletion may impose costs on many people that rely upon the resource. Such costs are not borne entirely by the high-volume pumpers that largely create the problematic conditions. Ideally, sustainable groundwater management should include addressing economic externalities and social equity, although information quantifying these concerns is often unavailable. This work estimates impacts to domestic water well owners from groundwater overdraft caused mostly by pumping deeper agricultural wells. A study is presented for Tulare County in the southern Central Valley of California, USA, where many interruptions in domestic well supplies occurred during a recent drought. The case has unusually well-documented conditions and data available for analysis. A method is developed to model supply interruptions and estimate costs for maintaining domestic water well supplies that are impacted by declining groundwater levels. The analysis is performed in the context of planning for sustainable groundwater management and suggestions for managing the economic externality are made. This work may provide a basis for evaluating the economic impacts on well owners from over-pumping in basins outside the study area where less data may be available.
Résumé
Les effets de l’épuisement des eaux souterraines peuvent imposer des coûts à de nombreuses personnes qui dépendent de la ressource. Ces coûts ne sont pas entièrement supportés par les personnes qui prélèvent de large volume d’eau, largement responsable des conditions problématiques qui en résultent. Idéalement, la gestion durable des eaux souterraines devrait inclure l’examen des externalités économiques et de l’équité sociale, bien que les informations quantifiant ces préoccupations soient souvent indisponibles. Ce travail évalue les impacts pour les propriétaires de puits d’eau domestiques de la surexploitation des eaux souterraines, causée principalement par les pompages de puits plus profonds à des fins agricoles. Une étude est présentée pour le comté de Tulare dans le Sud de la vallée centrale de Californie, États-Unis d’Amérique, où de nombreuses interruptions dans l’alimentation en eau en provenance de puits domestiques ont eu lieu au cours d’une sécheresse récente. Cette situation a des conditions et des données exceptionnellement bien documentées disponibles pour l’analyse. Une méthode est élaborée pour modéliser les interruptions d’approvisionnement et estimer les coûts des approvisionnements de puits d’eau domestiques qui sont touchés par la diminution des niveaux d’eaux souterraines. L’analyse est effectuée dans le cadre de la planification de la gestion durable des eaux souterraines et des suggestions pour la gestion de l’externalité économique sont faites. Ce travail peut servir de base pour évaluer les impacts économiques d’une surexploitation sur les propriétaires de puits domestiques, dans les bassins situés à l’extérieur de la zone d’étude où moins de données peuvent être disponibles.
Resumen
Los efectos del agotamiento de las aguas subterráneas pueden imponer costos a muchas personas que dependen del recurso. Estos costos no son asumidos en su totalidad por quienes bombean altos volúmenes que crean en gran medida las condiciones problemáticas. Idealmente, la gestión sostenible de las aguas subterráneas debería incluir el abordaje de las externalidades económicas y la equidad social, aunque la información que cuantifica estas preocupaciones a menudo no está disponible. Este trabajo estima los impactos a los propietarios de pozos de agua domésticos por sobreexplotación de aguas subterráneas causados principalmente por el bombeo de pozos agrícolas más profundos. Se presenta un estudio para el condado de Tulare en el sur del Valle Central de California, EEUU, donde se produjeron muchas interrupciones en los suministros de pozos domésticos durante una reciente sequía. El caso tiene disponibles condiciones y datos inusualmente bien documentados para su análisis. Se desarrolla un método para modelar las interrupciones en el suministro y estimar los costos de los suministros de pozos de agua domésticos que se ven afectados por la profundización de los niveles de agua subterránea. El análisis se realiza en el contexto de la planificación para la gestión sostenible de las aguas subterráneas y se hacen sugerencias para gestionar la externalidad económica. Este trabajo puede proporcionar una base para evaluar los impactos económicos en los propietarios de los pozos por el exceso de bombeo en las cuencas fuera del área de estudio, donde puede haber menos datos disponibles.
摘要
地下水枯竭的影响可能会使许多依赖该资源的人付出代价。这些成本并不完全是由大容量的抽水机承担的,这在很大程度上造成了问题。理想的情况是,地下水可持续管理应包括解决经济外部性和社会公平问题,尽管往往无法提供量化这些关切的信息。这项工作估计地下水透支对家庭水井所有者的影响主要是由于抽更深的农业水井造成的。一项针对美国加州中南部山谷的图拉雷县的研究报告指出,在最近的一次干旱中,国内油井供应出现了许多中断。这起案件有不同寻常的详细记录和可供分析的数据。发展了一种方法来模拟受地下水位下降影响的生活水井供应中断并估算其费用。在地下水可持续管理规划的背景下进行了分析,并提出了治理经济外部性的建议。这项工作可以为评估研究区域以外的流域过度抽水对油井所有者造成的经济影响提供依据,因为在研究区域以外的地区,可获得的数据可能较少。
Resumo
Os efeitos da depleção das águas subterrâneas podem impor custos a muitas pessoas que dependem do recurso. Tais custos não são suportados inteiramente pelas bombas de alto volume que criam em grande parte as condições problemáticas. Idealmente, o manejo sustentável das águas subterrâneas deve incluir a abordagem das externalidades econômicas e da equidade social, embora a informação que quantifica essas preocupações esteja muitas vezes indisponível. Este trabalho estima os impactos para os proprietários de poços domésticos do esgotamento de reservas de água subterrânea causado principalmente pelo bombeamento de poços agrícolas mais profundos. Um estudo é apresentado para o Condado de Tulare, no sul do Vale Central da Califórnia, EUA, onde ocorreram muitas interrupções no abastecimento de poços domésticos durante uma recente seca. O caso tem condições e dados incomumente bem documentados disponíveis para análise. Um método é desenvolvido para modelar as interrupções de fornecimento e estimar os custos para os suprimentos domésticos de poços que são impactados pelo declínio dos níveis das águas subterrâneas. A análise é realizada no contexto do planejamento para o manejo sustentável das águas subterrâneas e são feitas sugestões para o gerenciamento da externalidade econômica. Este trabalho pode fornecer uma base para avaliar os impactos econômicos em proprietários de poços de bombeamento excessivo em bacias fora da área de estudo, onde menos dados podem estar disponíveis.
This is a preview of subscription content, access via your institution.
















References
Ayotte JD, Nolan BT, Gronberg JA (2016) Predicting arsenic in drinking water wells of the Central Valley, California. Environ Sci Technol 50:7555–7563. https://doi.org/10.1021/acs.est.6b01914
Balazs C, Ray I (2014) The drinking water disparities framework: on the origins and persistence of inequities in exposure. Am J Public Health 104(4):603–611. https://doi.org/10.2105/AJPH.2013.301664
Balazs C, Morello-Frosch R, Hubbard A, Ray I (2011) Social disparities in nitrate-contaminated drinking water in California’s San Joaquin Valley. Environ Health Perspect (119) 9:1272–1278
Balazs C, Morello-Frosch R, Hubbard A, Ray I (2012) Environmental justice implications of arsenic contamination in California’s San Joaquin Valley: a cross-sectional, cluster-design examining exposure and compliance in community drinking water systems. Environ Health 11:84. https://doi.org/10.1186/1476-069X-11-84
Barlow PM, Leakey SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376
Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18(2):247–260. https://doi.org/10.1007/s10040-009-0514-3
Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York
Bentley LR (1997) Influence of the regularization weighting matrix on parameter estimates. Adv Water Resour (20) 4:231–247
Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water (40) 4:340–345
CADWR (2014a) Public update for drought response: groundwater basins with potential water shortages, gaps in groundwater monitoring, monitoring of land subsidence, and agricultural land fallowing. California Department of Water Resources. http://wwwwatercagov/waterconditions/docs/DWR_PublicUpdateforDroughtResponse_GroundwaterBasinspdf Accessed 5 July 2017
CADWR (2014b) California water plan update 2013. California Department of Water Resources California Department of Water Resources. https://wwwwatercagov/Programs/California-Water-Plan/Water-Plan-Updates. Accessed 9 April 2018
CADWR (2015) California’s most significant droughts: comparing historical and recent conditions. California Department of Water Resources. https://water.ca.gov/LegacyFiles/waterconditions/docs/California_Signficant_Droughts_2015_small.pdf. Accessed 17 January 2018
CADWR (2017a) Groundwater information center interactive map application. California Department of Water Resources. https://giswatercagov/app/gicima/. Accessed 5 July 2017
CADWR (2017b) Well completion report map application. California Department of Water Resources. https://dwrmapsarcgiscom/apps/webappviewer/indexhtml?id=181078580a214c0986e2da28f8623b37. Accessed 28 November 2017
CADWR (2018a) Sustainable groundwater management website. California Department of Water Resources. https://www.water.ca.gov/Programs/Groundwater-Management/SGMA-Groundwater-Management/. Accessed 9 April 2018
CADWR (2018b) California Data Exchange Center: chronological reconstructed Sacramento and San Joaquin Valley water year hydrologic classification indices. California Department of Water Resources. California Department of Water Resources. http://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST. Accessed 30 December 2018
Cooley RL, Vecchia AV (1987) Calculation of nonlinear confidence and prediction intervals for ground-water flow models. Water Resour Bull 23(4):581–599
County of Tulare (2017) Drought effects status updates. http://tularecountycagov/emergencies/indexcfm/drought/drought-effects-status-updates/. Accessed 5 July 2017
Döll P, Schmied HM, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. https://doi.org/10.1002/2014WR015595
Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York
Electricity Local (2018) Local electricity rates and statistics: Tulare electricity rates. https://wwwelectricitylocalcom/states/california/tulare/. Accessed 10 January 2018
Erickson ML, Barnes RJ (2005) Well characteristics influencing arsenic concentrations in ground water. Water Res 39(16):4029–4039. https://doi.org/10.1016/j.watres.2005.07.026
Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. https://doi.org/10.1029/2010GL046442
Farr TG, Jones C, Liu Z (2015) Progress report: subsidence in the Central Valley, California. California Department of Water Resources. http://water.ca.gov/groundwater/docs/NASA_REPORT.pdf. Accessed 5 July 2017
Faunt CC (ed) (2009) Groundwater availability of the Central Valley aquifer, California. US Geol Surv Prof Pap 1766
Feinstein L, Phurisamban R, Ford A, Tyler C, Crawford A (2017) Drought and equity in California, Pacific Institute, Oakland, CA. http://pacinstorg/publication/drought-equity-california/. Accessed 28 September 2017
Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc B 358(1440):1957–1972. https://doi.org/10.1098/rstb.2003.1380
Gailey RM (2017) Inactive supply wells as conduits for flow and contaminant migration: conditions of occurrence and suggestions for management. Hydrogeol J 25(7):2163–2183. https://doi.org/10.1007/s10040-017-1588-y
Gailey RM (2018) Using geographic distribution of well-screen depths and hydrogeologic conditions to identify areas of concern for contaminant migration through inactive supply wells. Hydrogeol J. https://doi.org/10.1007/s10040-018-1734-1
Gailey RM, Arnold BJ, Kwon AJ, Medellín-Azuara J, Lund JR (2016) The effect of declining groundwater levels on supply well operations, Appendix A of economic analysis of the 2016 California drought on agriculture. Report for the California Department of Food and Agriculture, Center for Watershed Sciences, University of California Davis. https://watershed.ucdavis.edu/droughtimpacts. Accessed 26 September 2017
Glennon RJ (2002) Water follies: groundwater pumping and the fate of America’s fresh waters. Island, Washington, DC
Griffin RC (2006) Water resources economics, the analysis of scarcity, policies, and projects. MIT Press, Cambridge, MA
Hanak E, Lund J, Arnold B, Escriva-Bou A, Gray B, Green S, Harter H, Howitt R, MacEwan D, Medellín-Azuara MP, Seavey N (2017) Water stress and a changing San Joaquin Valley. Public Policy Institute of California, March 2017. http://www.ppic.org/main/publication.asp?i=1224. Accessed 5 July 2017
Hill MC, Tiedeman CR (2007) Effective groundwater model calibration. Wiley, Hoboken, NJ
Helweg OJ, Scott VH, Scalmanini JC (1983) Improving pump and well efficiency. American Water Works Association, Denver, CO
Houben GJ, Treskatis C (2007) Water well rehabilitation and reconstruction. McGraw Hill, New York
Jenkins CT (1969) Electric-analog and digital-computer model analysis of stream depletion by wells. Ground Water 6(6):27–34
Johnson TD, Belitz K (2015) Identifying the location and population served by domestic wells in California. J Hydrol 3(2015):31–86. https://doi.org/10.1016/j.ejrh.2014.09.002
Johnson TD, Belitz K (2017) Domestic well locations and population served in the contiguous U.S.: 1990. Sci Total Environ 607–608(2017):658–668. https://doi.org/10.1016/j.scitotenv.2017.07.018
Konikow LF (2013) Groundwater depletion in the United States (1900–2008). US Geol Surv Sci Invest Rep 2013-5079
Lund J, Medellín-Azuara J, Durand J, Stone K (2018) Lessons from California’s 2012–2016 drought. J Water Resour Plan Manag 144(10):04018067. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984
Mansuy N (1999) Water well rehabilitation, a practical guide to understanding well problems and solutions. Lewis, New York
Moran T, Choy J, Sanchez C (2014) The hidden costs of groundwater overdraft, understanding California’s groundwater. Stanford Water in the West. http://waterintheweststanfordedu/groundwater/overdraft/. Accessed 5 July 2017
Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, Cambridge, MA
Perrone D, Jasechko S (2017) Dry groundwater wells in the western United States. Environ Res Lett 12(10):104002. https://doi.org/10.1088/1748-9326/aa8ac0
Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour, and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568
Smith R, Knight R, Chen J, Reeves JA, Zebker HA, Farr T, Liu Z (2017) Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour Res 53:2133–2148. https://doi.org/10.1002/2016WR019861
Smith R, Knight R, Fendorf S (2018) Overpumping leads to California groundwater arsenic threat. Nat Commun 9:2089. https://doi.org/10.1038/s41467-018-04475-3
Smith SA, Comeskey AE (2010) Sustainable wells: maintenance, problem prevention, and rehabilitation. CRC, Boca Raton, FL
Sneed M, Brandt J, Solt M (2013) Land subsidence along the Delta-Mendota canal in the northern part of the San Joaquin Valley, California 2003–10. US Geol Surv Sci Invest Rep 2013-5142
Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43. https://doi.org/10.1016/S0022-1694(00)00263-8
State of California (2017) Household Water Supply shortage reporting system. https://mydrywatersupply.water.ca.gov/report/publicpage. Accessed 5 July 2017
Stevenson GG (1991) Common property economics: a general theory and land use applications. Cambridge University Press, Cambridge, MA
Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civil Eng 10:277–280
Tulare County Agricultural Commissioner (1998) Tulare County crop and livestock report, 1997. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (1999) Tulare County crop and livestock report, 1998. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2000) Tulare County crop and livestock report, 1999. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2001) Tulare County crop and livestock report, 2000. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2002) Tulare County crop and livestock report, 2001. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2003) Tulare County crop and livestock report, 2002. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2004) Tulare County crop and livestock report, 2003. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2005) Tulare County crop and livestock report, 2004. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2006) Tulare County crop and livestock report, 2005. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2007) Tulare County crop and livestock report, 2006. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2008) Tulare County crop and livestock report, 2007. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2009) Tulare County crop and livestock report, 2008. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2010) Tulare County crop and livestock report, 2009. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2011) Tulare County crop and livestock report, 2010. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2012) Tulare County crop and livestock report, 2011. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2013) Tulare County crop and livestock report, 2012. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2014) Tulare County crop and livestock report, 2013. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2015) Tulare County crop and livestock report, 2014. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2016) Tulare County crop and livestock report, 2015. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
Tulare County Agricultural Commissioner (2017) Tulare County crop and livestock report, 2016. http://agcomm.co.tulare.ca.us/ag/index.cfm/standards-and-quarantine/crop-reports1/. Accessed 17 January 2018
UNESCO (2012) Managing water under uncertainty and risk, United Nations world water development report 4, vol 1. United Nations Educational, Scientific and Cultural Organization, Paris. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/. Accessed 5 July 2017
USGS (2017) Drought impacts website. United States Geological Survey. https://ca.water.usgs.gov/data/drought/drought-impact.html. Accessed 5 July 2017
van Beek CGEM (2012) Cause and prevention of clogging of wells abstracting groundwater from unconsolidated aquifers. IWA, London
Vecchia AV, Cooley RL (1987) Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model. Water Resour Res 23(7):1237–1250
Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06. https://doi.org/10.1029/2011WR010562
Young RA, Loomis JB (2014) Determining the economic value of water, concepts and methods, 2nd edn. RFF, New York
Acknowledgements
The authors are grateful to the California Department of Water Resources for sharing an early version of the dataset regarding the geographic distribution of water supply well constructions, the Tulare County Office of Emergency Services for sharing information on the geographic distribution of domestic water supply outages, and the Tulare County Health and Human Services Agency, Environmental Health Services Division, for sharing information well construction and destruction permitting. Thomas Harter and two anonymous reviewers are also appreciatively acknowledged for editorial and technical comments that improved this manuscript.
Funding
This work was supported by the UC Office of the President’s Multi-Campus Research Programs and Initiatives (MR-15-328473) through UC Water, the University of California Water Security and Sustainability Research Initiative. Additional support was provided by the California Department of Food and Agriculture (UC Agreement 16-0125), S.D. Bechtel Jr. Foundation and US Environmental Protection Agency (Assistance Agreement 83586701) through the UC Davis Center for Watershed Sciences.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Following Gailey et al. (2016), information on calculating pump operations costs may be found in Helweg et al. (1983) as well as other references. The cost for operating a pump is calculated as:
where:
- OC:
-
is operating cost for the well pump ($)
- P :
-
is pump power (kW)
- T :
-
is total operation time (h)
- c :
-
is cost per kilowatt hour ($/kWh)
Pump energy is calculated as:
where:
- Q :
-
is pumping rate (gal/min)
- H :
-
is total dynamic head (ft)
- E :
-
is combined efficiency of the pump bowls and motor (%)
- 0.746:
-
is a conversion factor from horse power to kW
- 3956:
-
is a conversion factor from flow in gal/min and total dynamic head in feet to horse power
H is further defined as:
where:
- DTW:
-
is depth to groundwater under nonpumping conditions (ft)
- SC:
-
is the specific capacity of the pumped well (gal/min/ft)
Discharge pressure is assumed to equal zero and not contribute to total dynamic head.
Total operation time is calculated as:
where:
- T :
-
is total operation time (h)
- V :
-
is total volume required (gal)
- 60:
-
is a conversion factor from minutes to hours
Substituting Eqs. (10)–(12) into Eq. (9) yields:
Information requirements for DTW, Q and SC are addressed in section ‘Methods of analysis and data sources’. V is taken as the volume of water required for a family of four people during 1 year (approximately 400,000 gal/year) based on data for the study area region (CADWR 2014b). A location-specific value for c ($0.16 per kWh) is used (Electricity Local 2018). The value for E (0.63) is consistent with the first author’s experience (Gailey et al. 2016). Variations in the value for E resulting from pumping rate fluctuations with groundwater depth are not considered.
Rights and permissions
About this article
Cite this article
Gailey, R.M., Lund, J.R. & Medellín-Azuara, J. Domestic well reliability: evaluating supply interruptions from groundwater overdraft, estimating costs and managing economic externalities. Hydrogeol J 27, 1159–1182 (2019). https://doi.org/10.1007/s10040-019-01929-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-019-01929-w
Keywords
- Water supply
- Over-abstraction
- Economic externalities
- Geographic information systems
- USA