Skip to main content

Advertisement

Log in

Assessing groundwater monitoring strategy for leakage detection in the Texas Gulf Coast Aquifer (USA) at a hypothetical CO2 storage site: a reactive transport modeling approach

Evaluation de la stratégie de surveillance de détection de fuite dans l’Aquifère côtier du golfe du Texas (Etats-unis d’Amérique) à un site hypothétique de stockage de CO2: une approche de modélisation du transport réactif

Evaluación de la estrategia de monitoreo del agua subterránea para la detección de filtraciones en el Texas Gulf Coast Aquifer (EEUU) en un sitio hipotético de almacenamiento de CO2: un enfoque de modelado de transporte reactivo

(美国)德克萨斯海湾沿海一个假设CO2储藏地泄漏的地下水监测策略评价:反应运移模拟方法

Avaliando a estratégia de monitoramento de águas subterrâneas para detecção de vazamento no Aquífero da Costa do Golfo do Texas (EUA) em um local hipotético de armazenamento de CO2: uma abordagem de modelagem de transporte reativo

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study presents a three-dimensional reactive transport model to simulate upward and lateral migration of CO2 plumes under different scenarios through a leaky section of a plugged and abandoned well at a hypothetical CO2 storage site into the Texas Gulf Coast Aquifer (TGCA). The TGCA is the most active region in research and operation of carbon capture, utilization, and storage, with the largest technically accessible resource of CO2 storage, in the United States. The results suggest that dissolved inorganic carbon (DIC) concentration and pH, better than Cl concentration (or total dissolved solids), can be indicators for leakage detection in the TGCA; DIC has earlier detection time than pH. The modeling results show that detection of CO2 leakage in the shallow aquifers may take hundreds of years because of the confining unit in the TGCA, suggesting that (1) monitoring wells should be placed as deep as possible and (2) characterization of confining units in the overlying aquifer system is critical. Regional hydraulic gradient and groundwater pumping in the TGCA are important factors for monitoring well placement. While this study was conducted in the TGCA, the results provide valuable information for groundwater monitoring at other geological carbon sequestration sites.

Résumé

Cette étude présente un modèle de transport réactif tridimensionnel pour la simulation de la migration ascendante et latérale de panaches de CO2 pour différents scénarios de fuite le long d’une section d’un puits bouché et abandonné pour un site hypothétique de stockage de CO2 dans l’aquifère côtier du golfe du Texas (ACGT). L’ACGT est la région des Etats-Unis d’Amérique la plus active pour la recherche et les opérations de captation, d’utilisation et de stockage du carbone; elle contient la plus importante ressource techniquement accessible pour le stockage du CO2. Les résultats suggèrent que la concentration en carbone inorganique dissous (CID) et le pH, peuvent être de meilleurs indicateurs de détection de fuite dans l’ACGT que la concentration en Cl (ou en solides dissous totaux). Le CID est détecté plus tôt que le pH. Les résultats de modélisation montrent que la détection de fuite de CO2 dans les aquifères peu profonds peut prendre plusieurs centaines d’années du fait de l’unité à caractère confinant dans l’ACGT, suggérant que (1) les puits de surveillance devraient être placés le plus profond possible et (2) la caractérisation des unités à caractère confinant du système aquifère sus-jacent est essentielle. Le gradient hydraulique régional et les pompages des eaux souterraines dans l’ACGT sont des facteurs importants pour l’emplacement des puits de surveillance. Bien que cette étude soit menée dans l’ACGT, les résultats fournissent de précieuses informations pour la surveillance des eaux souterraines concernant d’autres sites de séquestration géologique du carbone.

Resumen

Este estudio presenta un modelo tridimensional de transporte reactivo para simular la migración ascendente y lateral de plumas de CO2 en diferentes escenarios a través de una sección con filtración de un pozo obstruido y abandonado en un sitio hipotético de almacenamiento de CO2 en el Texas Gulf Coast Aquifer (TGCA). El TGCA es la región más activa en la investigación y operación de captura, utilización y almacenamiento de carbono, con el recurso de almacenamiento de CO2 más accesible técnicamente en los Estados Unidos. Los resultados sugieren que la concentración de carbono inorgánico disuelto (DIC) y el pH, mejor que la concentración de Cl (o los sólidos disueltos totales), pueden ser indicadores para la detección de fugas en el TGCA. DIC tiene un tiempo de detección más temprano que el pH. Los resultados del modelo muestran que la detección de filtraciones de CO2 en los acuíferos poco profundos puede demorar cientos de años debido a la unidad de confinamiento en el TGCA, lo que sugiere que (1) los pozos de monitoreo deben colocarse lo más profundo posible y (2) es crítica la caracterización de las unidades de confinamiento en el sistema de acuíferos suprayacentes. El gradiente hidráulico regional y el bombeo de agua subterránea en el TGCA son factores importantes para monitorear la ubicación del pozo. Si bien este estudio se realizó en el TGCA, los resultados brindan información valiosa para el monitoreo del agua subterránea en otros sitios de secuestro geológico de carbono.

摘要

本研究展示了三维反应运移模型,该模型通过德克萨斯海湾沿海含水层一个堵塞和废弃井的渗漏剖面模拟了不同情况下CO2 的向上和侧向运移。德克萨斯海湾沿海含水层是碳捕获、利用和储藏研究最活跃的地区,这一地区是美国最大的CO2储藏地。研究结果显示,溶解无机碳含量和pH比Cl含量更能作为德克萨斯海湾沿海含水层渗漏监测的参数。溶解无机碳比pH探测时间更早。模拟结果显示,浅层含水层CO2渗漏的探测需要数百年,这是因为德克萨斯海湾沿海含水层的承压单元表明:(1)监测井应当设置在尽可能深的地方;(2)上覆含水层系统中承压单元的特征描述非常关键。德克萨斯海湾沿海含水层区域水力梯度及地下水开采是监测井布置的关键因素。这项研究在德克萨斯海湾沿海含水层进行,但研究结果为其它地质碳储存地的地下水监测提供了宝贵的信息。

Resumo

Este estudo apresenta um modelo tridimensional de transporte reativo para simular a migração ascendente e lateral de plumas de CO2 sob diferentes cenários através de uma seção com vazamento de um poço obstruído e abandonado em um local hipotético de armazenamento de CO2 no Aquífero da Costa do Golfo do Texas (ACGT). O ACGT é a região mais ativa em pesquisa e operação de captura, utilização e armazenamento de carbono, com o maior recurso tecnicamente acessível de armazenamento de CO2 nos Estados Unidos. Os resultados sugerem que a concentração de carbono inorgânico dissolvido (CID) e o pH, melhor que a concentração de Cl (ou sólidos totais dissolvidos), podem ser indicadores de detecção de vazamentos no ACGT. O CID tem um tempo de detecção anterior ao pH. Os resultados da modelagem mostram que a detecção de vazamento de CO2 nos aquíferos rasos pode levar centenas de anos por causa da unidade de confinamento no ACGT, sugerindo que (1) os poços de monitoramento devem ser colocados o mais fundo possível e (2) a caracterização das unidades confinantes no sistema aquífero sobrejacente é crítica. O gradiente hidráulico regional e o bombeamento de águas subterrâneas no ACGT são fatores importantes para monitorar a locação do poço. Embora este estudo tenha sido conduzido no ACGT, os resultados fornecem informações valiosas para o monitoramento de águas subterrâneas em outros locais geológicos de sequestro de carbono.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ampomah W, Balch RS, Cather M, Will R, Gunda D, Dai Z, Soltanian MR (2017) Optimum design of CO2 storage and oil recovery under geological uncertainty. Appl Energy 195:80–92. https://doi.org/10.1016/j.apenergy.2017.03.017

    Article  Google Scholar 

  • Bacon DH, Qafoku NP, Dai Z, Keating EH, Brown CF (2016) Modeling the impact of carbon dioxide leakage into an unconfined, oxidizing carbonate aquifer. Int J Greenh Gas Control 44:290–299. https://doi.org/10.1016/j.ijggc.2015.04.008

    Article  Google Scholar 

  • Baker ETJ (1979) Stratigraphic and hydrogeologic framework of part of the coastal plain of Texas. US Geol Surv Open-File Rep 77-712

  • Carroll S, Hao Y, Aines R (2009) Geochemical detection of carbon dioxide in dilute aquifers. Geochem Trans 10:4–22. https://doi.org/10.1186/1467-4866-10-4

    Article  Google Scholar 

  • Carroll SA, Keating E, Mansoor K, Dai Z, Sun Y, Trainor-Guitton W, Brown C, Bacon D (2014) Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs. Int J Greenh Gas Control 29:153–168. https://doi.org/10.1016/j.ijggc.2014.07.007

    Article  Google Scholar 

  • Chowdhury AH, Wade S, Mace RE, Ridgeway C (2004) Groundwater availability model of the Central Gulf Coast aquifer system: numerical simulations through 1999. Texas Water Development Board, Austin, TX

    Google Scholar 

  • Dai Z, Middleton R, Viswanathan H, Fessenden-Rahn J, Bauman J, Pawar R, Lee S-Y, McPherson B (2013) An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environ Sci Technol Lett 1:49–54. https://doi.org/10.1021/ez4001033

    Article  Google Scholar 

  • Dai Z, Stauffer PH, Carey JW, Middleton RS, Lu Z, Jacobs JF, Hnottavange-Telleen K, Spangler LH (2014) Pre-site characterization risk analysis for commercial-scale carbon sequestration. Environ Sci Technol 48:3908–3915. https://doi.org/10.1021/es405468p

    Article  Google Scholar 

  • Dai Z et al (2016) CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites. Environ Sci Technol 50:7546–7554. https://doi.org/10.1021/acs.est.6b01744

    Article  Google Scholar 

  • Dai Z, Zhang Y, Stauffer P, Xiao T, Zhang M, Ampomah W, Yang C, Zhou Y, Ding M, Middleton R, Soltanian MR, Bielicki JM (2017) Injectivity evaluation for offshore CO2 sequestration in marine sediments. Energy Procedia 4:2921–2932

  • Hajirezaie S, Hemmati-Sarapardeh A, Mohammadi AH, Pournik M, Kamari A (2015) A smooth model for the estimation of gas/vapor viscosity of hydrocarbon fluids. J Nat Gas Sci Eng 26:1452–1459. https://doi.org/10.1016/j.jngse.2015.07.045

    Article  Google Scholar 

  • Hajirezaie S, Pajouhandeh A, Hemmati-Sarapardeh A, Pournik M, Dabir B (2017a) Development of a robust model for prediction of under-saturated reservoir oil viscosity. J Mol Liq 229:89–97. https://doi.org/10.1016/j.molliq.2016.11.088

    Article  Google Scholar 

  • Hajirezaie S, Wu X, Peters CA (2017b) Scale formation in porous media and its impact on reservoir performance during water flooding. J Nat Gas Sci Eng 39:188–202. https://doi.org/10.1016/j.jngse.2017.01.019

    Article  Google Scholar 

  • Hovorka SD, Doughty C, Holtz MH (2005) Testing efficiency of storage in the subsurface: Frio Brine Pilot Experiment. 7th Int. Conf. on greenhouse gas control technologies, Vancouver, September 5–9, 2005, Elsevier, Oxford, pp 1361–1366

    Google Scholar 

  • Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13:105–121

    Article  Google Scholar 

  • Hovorka SD, Meckel TA, Treviño RH (2013) Monitoring a large-volume injection at Cranfield, Mississippi: project design and recommendations. Int J Greenh Gas Control 18:345–360. https://doi.org/10.1016/j.ijggc.2013.03.021

    Article  Google Scholar 

  • IPCC (2005) Carbon dioxide capture and storage. IPCC, Geneva, Switzerland

  • Karkevandi-Talkhooncheh A, Hajirezaie S, Hemmati-Sarapardeh A, Husein MM, Karan K, Sharifi M (2017) Application of adaptive neuro fuzzy interface system optimized with evolutionary algorithms for modeling CO2-crude oil minimum miscibility pressure. Fuel 205:34–45. https://doi.org/10.1016/j.fuel.2017.05.026

    Article  Google Scholar 

  • Lee K-K, Lee SH, Yun S-T, Jeen S-W (2016) Shallow groundwater system monitoring on controlled CO2 release sites: a review on field experimental methods and efforts for CO2 leakage detection. Geosci J 20:569–583. https://doi.org/10.1007/s12303-015-0060-z

    Article  Google Scholar 

  • Mace RE, Davidson SC, Angle ES, Mullican WFI (2006) Aquifers of the Gulf coast of Texas. Texas Water Development Board, Austin, TX

  • National Energy Technology Laboratory (2015) Carbon storage atlas, 5th edn. National Energy Technology Laboratory, Pittsburgh, PA

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. US Geological Survey, Menlo Park, CA

    Book  Google Scholar 

  • Pan F, McPherson BJ, Dai Z, Jia W, Lee S-Y, Ampomah W, Viswanathan H, Esser R (2016) Uncertainty analysis of carbon sequestration in an active CO2-EOR field. Int J Greenh Gas Control 51:18–28. https://doi.org/10.1016/j.ijggc.2016.04.010

    Article  Google Scholar 

  • Qafoku NP, Lawter AR, Bacon DH, Zheng L, Kyle J, Brown CF (2017) Review of the impacts of leaking CO2 gas and brine on groundwater quality. Earth-Sci Rev 169:69–84. https://doi.org/10.1016/j.earscirev.2017.04.010

    Article  Google Scholar 

  • Ryder PD, Ardis AF (2002) Hydrology of the Texas Gulf Coast aquifer systems. US Geol Surv Open-File Rep 91-64

  • Soltanian MR, Amooie MA, Cole DR, Graham DE, Hosseini SA, Hovorka S, Pfiffner SM, Phelps TJ, Moortgat J (2016) Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state. Int J Greenh Gas Control 54(part 1):282–296. https://doi.org/10.1016/j.ijggc.2016.10.002

  • Soltanian MR, Amooie MA, Gershenzon N, Dai Z, Ritzi R, Xiong F, Cole D, Moortgat J (2017) Dissolution trapping of carbon dioxide in heterogeneous aquifers. Environ Sci Technol 51:7732–7741. https://doi.org/10.1021/acs.est.7b01540

    Article  Google Scholar 

  • Sun Y, Tong C, Trainor-Guitton WJ, Lu C, Mansoor K, Carroll SA (2013) Global sampling for integrating physics-specific subsystems and quantifying uncertainties of CO2 geological sequestration. Int J Greenh Gas Control 12:108–123. https://doi.org/10.1016/j.ijggc.2012.10.004

    Article  Google Scholar 

  • Texas Water Development Board (2017) Groundwater database (GWDB) reports. http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp. Accessed 10 July 2017

  • Trautz RC et al (2013) Effect of dissolved CO2 on a shallow groundwater system: a controlled release field experiment. Environ Sci Technol 47:298–305. https://doi.org/10.1021/es301280t

    Article  Google Scholar 

  • US Geological Survey (2013) National assessment of geologic carbon dioxide storage resources: results (ver. 1.1, September 2013). US Geological Survey, Reston, VA

  • USEPA (2013) Geologic sequestration of carbon dioxide: underground injection control (UIC) Program class VI well testing and monitoring guidance. USEPA, Washington, DC

  • Wolery TJ, Jarek RL (2003) Software user’s manual EQ3/6 (Version 8.0). Sandia National Laboratories, Albuquerque, NM

    Google Scholar 

  • Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32:145–165

    Article  Google Scholar 

  • Xu T, Kharaka YK, Doughty C, Freifeld BM, Daley TM (2010) Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot. Chem Geol 271:153–164. https://doi.org/10.1016/j.chemgeo.2010.01.006

    Article  Google Scholar 

  • Yang C, Romanak K, Hovorka SD, Holt RM, Lindner J, Trevino R (2013) Near-surface monitoring of large-volume CO2 injection at Cranfield: early field test of SECARB phase III. SPE J 18:486–494. https://doi.org/10.2118/163075-PA

    Article  Google Scholar 

  • Yang C, Dai Z, Romanak KD, Hovorka SD, Treviño RH (2014a) Inverse modeling of water–rock-CO2 batch experiments: potential impacts on groundwater resources at carbon sequestration sites. Environ Sci Technol 48:2798–2806. https://doi.org/10.1021/es4041368

    Article  Google Scholar 

  • Yang C, Hovorka S, Young MH, Trevino R (2014b) Geochemical sensitivity to CO2 leakage: detection in potable aquifers at carbon sequestration sites. Greenh Gases Sci Technol 4:384–399. https://doi.org/10.1002/ghg

    Article  Google Scholar 

  • Yang C, Hovorka SD, Treviño RH, Delgado-Alonso J (2015) Integrated framework for assessing impacts of CO2 leakage on groundwater quality and monitoring-network efficiency: case study at a CO2 enhanced oil recovery site. Environ Sci Technol 49:8887–8898. https://doi.org/10.1021/acs.est.5b01574

    Article  Google Scholar 

  • Zheng L, Spycher N (2018) Modeling the potential impacts of CO2 sequestration on shallow groundwater: the fate of trace metals and organic compounds before and after leakage stops. Greenh Gases Sci Technol 8:161–184. https://doi.org/10.1002/ghg.1728

    Article  Google Scholar 

  • Zheng L, Qafoku NP, Lawter A, Wang G, Shao H, Brown CF (2016) Evaluating impacts of CO2 intrusion into an unconsolidated aquifer: II. modeling results. Int J Greenh Gas Control 44:300–309. https://doi.org/10.1016/j.ijggc.2015.07.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and the anonymous reviewers for their constructive comments which greatly improve this manuscript. Special thanks are given to the technical editor advisor, Sue Duncan who also conducted technical edits for our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changbing Yang.

Electronic supplementary material

ESM 1

(PDF 994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bie, H., Yang, C. & Liu, P. Assessing groundwater monitoring strategy for leakage detection in the Texas Gulf Coast Aquifer (USA) at a hypothetical CO2 storage site: a reactive transport modeling approach. Hydrogeol J 27, 553–566 (2019). https://doi.org/10.1007/s10040-018-1887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1887-y

Keywords

Navigation