Fault and natural fracture control on upward fluid migration: insights from a shale gas play in the St. Lawrence Platform, Canada

Contrôle des failles et des fractures naturelles sur la migration ascendante des fluides: aperçu d’une zone de gaz de schiste dans la plateforme du Saint-Laurent, Canada

Control de fallas y fracturas naturales en la migración ascendente de fluidos: información a partir de interpretar un shale gas en St. Lawrence Platform, Canadá

断层和天然断裂对流体向上迁移的控制:从加拿大St. Lawrence台地一个页岩气体所扮演的角色得到的启示

Controle por falha e fraturas naturais da migração ascendente de fluidos: percepções a partir de uma formação de gás de xisto na Plataforma do Rio St. Lawrence, Canadá

Abstract

Environmental concerns have been raised with respect to shale gas exploration and production, especially in eastern Canada and northeastern United States. One of the major public concerns has been the contamination of freshwater resources. This paper focuses on the investigation of possible fluid upward migration through structural features in the intermediate zone (IZ), located between a deep shale-gas reservoir and shallow aquifers. The approach provides insights into how such an investigation can be done when few data are available at depth. The study area is located in the shale-dominated succession of the St. Lawrence Platform (eastern Canada), where the Utica Shale was explored for natural gas between 2006 and 2010. Detailed analyses were carried out on both shallow and deep geophysical log datasets providing the structural attributes and preliminary estimates of the hydraulic properties of faults and fractures. Results show that the active groundwater flow zone is located within the upper 60 m of bedrock, where fractures are well interconnected. Fractures from one set were found to be frequently open in the IZ and reservoir, providing a poorly connected network. The fault zones are here described as combined conduit-barrier systems with sealed cores and some open fractures in the damage zones. Although no direct hydraulic data were available at depth, the possibility that the fracture network or fault zones act as large-scale flow pathways seems very unlikely. A conceptual model of the fluid flow patterns, summarizing the current understanding of the system hydrodynamics, is also presented.

Résumé

Des préoccupations environnementales ont été soulevées concernant l'exploration et la production de gaz de schiste, particulièrement dans l'est du Canada et dans le nord-est des États-Unis d’Amérique. L’une des principales préoccupations du public est la contamination des ressources en eau douce. Cet article porte sur l’étude de la possible migration ascendante de fluide à travers des éléments structuraux de la zone intermédiaire (ZI), située entre un réservoir profond de gaz de schiste et un aquifère peu profond. Les résultats présentés fournissent des éléments de réflexion sur la façon dont les impacts environnementaux du développement du gaz de schiste sur les aquifères peuvent être étudiés, lorsque peu de données sont disponibles en profondeur. La zone d'étude est située dans la plate-forme du Saint-Laurent (est du Canada), où le Shale d'Utica a fait l’objet de travaux d’exploration (2006 à 2010). Des analyses détaillées ont été faites à partir de données de diagraphies afin d’obtenir une estimation préliminaire des propriétés hydrauliques des failles et fractures. Les résultats montrent que la zone active d'écoulement est située dans les 60 m supérieurs du substratum rocheux, où les fractures sont bien interconnectées. Ce sont principalement les fractures d’une famille qui semblent ouvertes en profondeur. Ces dernières sont cependant mal interconnectées, défavorisant ainsi la circulation sur de grandes distances. Les zones de failles ont été conceptuellement décrites comme une combinaison de conduits/barrières aux écoulements, avec un cœur de faille scellé par de la gouge et des fractures ouvertes dans la zone de dommages. Bien qu’aucune donnée hydraulique ne soit disponible en profondeur, la possibilité que le réseau de fractures ou les zones de failles agissent comme des voies d’écoulement à grande échelle semble très improbable. Un modèle conceptuel des types d’écoulement de fluides, résumant la compréhension actuelle de ce système est également présenté.

Resumen

Se han planteado preocupaciones ambientales con respecto a la exploración y producción de shale gas, especialmente en el este de Canadá y el noreste de los Estados Unidos. Una de las principales preocupaciones públicas ha sido la contaminación de los recursos de agua dulce. Este documento se centra en la investigación de la posible migración ascendente del fluido a través de las características estructurales en la zona intermedia (IZ), ubicada entre un reservorio profundo de shale gas y acuíferos poco profundos. El enfoque proporciona información sobre cómo se puede realizar dicha investigación cuando hay pocos datos disponibles en profundidad. El área de estudio se encuentra en la sucesión dominada por las lutitas de la St. Lawrence Platform (este de Canadá), donde se exploró el Utica Shale para gas natural entre 2006 y 2010. Se realizaron análisis detallados de conjuntos de datos de perfilajes geofísicos someros y profundos aportando los atributos estructurales y las estimaciones preliminares de las propiedades hidráulicas de las fallas y fracturas. Los resultados muestran que la zona de flujo de agua subterránea activa se encuentra dentro de los 60 m superiores de la roca madre, donde las fracturas están bien interconectadas. Las fracturas de un conjunto se encontraron frecuentemente abiertas en el IZ y el reservorio, proporcionando una red mal conectada. Las zonas de falla se describen aquí como sistemas combinados de barrera de conductos con núcleos sellados y algunas fracturas abiertas en las zonas de daños. Aunque no se disponía de datos hidráulicos directos en profundidad, la posibilidad de que la red de fracturas o las zonas de fallas actúen como vías de flujo a gran escala parece muy poco probable. También se presenta un modelo conceptual de los patrones de flujo de fluidos, que resume la comprensión actual de la hidrodinámica del sistema.

摘要

人们对页岩气的勘探和开采,尤其是对加拿大东部和美国东北部页岩气的勘探和开采的环境关切日益提高。公众的主要关切之一就是淡水资源的污染。本文重点论述了液体通过位于深层页岩气储和浅层含水层之间的过渡带中的构造地貌向上运移的可能性研究成果。该方法提供了在深部缺乏数据的情况下怎样开展调查工作方面的认识。研究区位于 (加拿大东部)St. Lawrence台地上的页岩主导的交替层上,2006年到2010年在这里对Utica页岩层天然气进行了勘探。对提供断层和断裂的构造属性和水力特征的初步估算结果的浅层和深层地球物理测井数据集进行了详细的分析 。结果显示, 活跃的地下水流带位于基岩上部的 60米内,这里的断裂连通良好。发现同一层的断裂在过渡带和水储中常常是开放的,致使网络的连接性很差。这里的断层带被描述为具有密封的核心及损伤带中有开放断裂的组合通道屏障系统。尽管没有深部直接的水力数据,但断裂网络或者断层带充当大规模的水流通道的可能性似乎很小。这里还展示了流体流动模式的概念模型,该模型总结了目前对系统水动力学的认识。

Resumo

Preocupações ambientais foram levantadas com respeito a exploração e produção de gás de xisto, especialmente no leste do Canadá e nordeste dos Estados Unidos. A contaminação dos recursos hídricos é uma das maiores preocupações do público. Este artigo foca nas investigações da possível migração ascendente de fluídos através de estruturas na zona intermediária (ZI), localizada entre o reservatório de gás de xisto profundo e os aquíferos rasos. A abordagem fornece percepções sobre quais investigações poder ser feitas quando poucos dados estão disponíveis. A área de estudo é localizada na sucessão dominada por xistos na Plataforma de St. Lawrence (leste do Canadá), onde o Xisto Utica foi explorado para gás natural entre 2006 e 2010. Análise detalhada foi desenvolvida em ambos perfis de geofísica, raso e profundo, fornecendo atributos estruturais e estimativas preliminares das propriedades hidráulica de falhas e fraturas. Os resultados mostram que a zona ativa de fluxo de águas subterrâneas está localizada nos primeiros 60 m de rocha, onde as fraturas estão bem interconectadas. As fraturas de um dos dados parecem estar abertas na ZI e no reservatório, fornecendo uma rede pobremente conectada. As zonas de fraturas são descritas aqui como sistemas combinados de condutos-barreiras com testemunho selados e algumas fraturas abertas na zona de danos. Apesar de nenhum dado hidráulico estar disponível em profundidade, a possibilidade da rede de fraturas ou zonas de falhas atuarem como caminhos de fluxo de grande escala parece ser improvável. Um modelo conceitual do padrão de fluxo de fluídos, resumindo o entendimento atual do sistema hidrodinâmico, também é apresentado.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Atlas D (1982) Well logging and interpretation techniques: the course for home study. Dresser, Stanford, CT

  2. BAPE (2010) Comparaison des shales d’Utica et de Lorraine avec des shales en exploitation: réponse de la l’APGQ aux questions de la Commission du BAPE sur les gaz de schiste [Comparison of Utica and Lorraine shales to shales in production: response of the QOGA to questions from the public hearing commission on shale gas]. Bureau d’Audiences Publiques sur l’Environnement DB25, BAPE, Quebec City

  3. BAPE (2014) Les enjeux liés à l’exploration et l’exploitation du gaz de schiste dans le shale d’Utica des basses-terres du Saint-Laurent [Challenges related to shale gas exploration and production of shale gas from the Utica Shale in the St. Lawrence Lowlands]. Rapport d’enquête et d’audience publique [Investigation and public hearings report]. Bureau d’audiences publiques sur l’environnement (BAPE), Bibliothèque et Archives nationales du Québec, Québec City, 546 pp

  4. Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686

    Article  Google Scholar 

  5. Bear J (1993) 1 - Modeling flow and contaminant transport in fractured rocks. In: Bear J, Tsang C-F, de Marsily G(eds) Flow and contaminant transport in fractured rock. Elsevier, Amsterdam, pp 1–37

  6. Bédard K, Raymond J, Malo M, Konstantinovskaya E, Minea V (2014) St Lawrence Lowlands bottom-hole temperatures: various correction methods. GRC Trans 38, Geothermal Research Council, Davis, CA

  7. Bense VF, Van Balen R (2004) The effect of fault relay and clay smearing on groundwater flow patterns in the Lower Rhine Embayment. Basin Res 16:397–411. https://doi.org/10.1111/j.1365-2117.2004.00238.x

    Article  Google Scholar 

  8. Bense VF, Person MA (2006) Faults as conduit-barrier systems to fluid flow in siliclastic sedimentary aquifers. Water Resour Res 42. https://doi.org/10.1029/2005WR004480

  9. Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth-Sci Rev 127:171–192. https://doi.org/10.1016/j.earscirev.2013.09.008

    Article  Google Scholar 

  10. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884. https://doi.org/10.1016/s0309-1708(02)00042-8

    Article  Google Scholar 

  11. Birdsell DT, Rajaram H, Dempsey D, Viswanathan HS (2015) Hydraulic fracturing fluid migration in the subsurface: a review and expanded modeling results. Water Resour Res 51:7159–7188. https://doi.org/10.1002/2015wr017810

    Article  Google Scholar 

  12. Bordeleau G, Rivard C, Lavoie D, Lefebvre R, Ahad J, Mort A, Xu X (2018a) A multi-isotope approach to determine the origin of methane and higher alkanes in groundwater of the Saint-Édouard area, eastern Canada. Environ Geoscie. https://doi.org/10.1306/eg.04121817020

  13. Bordeleau G, Rivard C, Lavoie D, Lefebvre R, Malet X, Ladevèze P (2018b) Geochemistry of groundwater in the St-Edouard area, Quebec, Canada, and its influence on the distribution of methane in the aquifers. Appl Geochem 89:92–108. https://doi.org/10.1016/j.apgeochem.2017.11.012

    Article  Google Scholar 

  14. Borghi A, Renard P, Courrioux G (2015) Generation of 3D spatially variable anisotropy for groundwater flow simulations. Groundwater. https://doi.org/10.1111/gwat.12295

  15. Bossennec C, Graud Y, Moretti I, Mattioni L, Stemmelen D (2018) Pore network properties of sandstones in a fault damage zone. J Struct Geol 110:24–44. https://doi.org/10.1016/j.jsg.2018.02.003

    Article  Google Scholar 

  16. Bowker KA (2007) Barnett shale gas production, Fort Worth Basin: issues and discussion. AAPG Bull 91:523–533

    Article  Google Scholar 

  17. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co;2

    Article  Google Scholar 

  18. Castonguay S, Dietrich J, Shinduke R, Laliberté J-Y (2006) Nouveau regard sur l’architecture de la Plate-forme du Saint-Laurent et des Appalaches du sud du Québec par le retraitement des profils de sismique réflexion M-2001, M-2002 et M-2003 [Structural architecture of the St. Lawrence platform and Quebec Appalachians: insights from the reprocessed seismic reflection Lines M-2001, M-2002 and M-2003]. Dossier Public 5328, Commission géologique du Canada, Quebec City, 19 pp

  19. CCA (2014) Environmental impacts of shale gas extraction in Canada. Council of Canadian Academies, Ottawa, 292 pp

  20. Chatellier J-Y, Flek P, Molgat M, Anderson I, Ferworn K, Lazreg Larsen N, Ko S (2013) Overpressure in shale gas: when geochemistry and reservoir engineering data meet and agree, chap 3. AAPG Spec Vol Mem 103:45–69

  21. Chen Z, Lavoie D, Malo M, Jiang C, Sanei H, Ardakani HO (2017) A dual-porosity model for evaluating petroleum resource potential in unconventional tight-shale plays with application to Utica Shale, Quebec (Canada). Mar Petrol Geol 80:333–348. https://doi.org/10.1016/j.marpetgeo.2016.12.011

    Article  Google Scholar 

  22. Clark TH (1964) Région d’Upton (Upton area). Rapport Géologique 100, Service d’Exploration Géologique, Ministère des Richesses Naturelles, Quebec City

  23. Clark TH, Globensky Y (1973) Portneuf et parties de St-Raymond et de Lyster: comtés de Portneuf et de Lotbinière [Portneuf and parts of St-Raymond and Lyster: counties of Portneuf and Lotbinière]. Rapport Géologique 148, Ministère des Richesses Naturelles, Direction Générale des Mines, Quebec City

  24. Crow HL, Ladevèze P (2015) Downhole geophysical data collected in 11 boreholes near St.-Édouard-de-Lotbinière, Québec. Open File 7768, Geological Survey of Canada, 48 pp. https://doi.org/10.4095/297047

  25. Davatzes NC, Hickman SH (2010) Stress, fracture, and fluid-flow analysis using acoustic and electrical image logs in hot fractured granites of the Coso geothermal field, California, USA. Proc World Geothermal Congress 2010. Bali, Indonesia, 25–29 April 2010

  26. Dusseault M, Jackson R (2014) Seepage pathway assessment for natural gas to shallow groundwater during well stimulation, in production, and after abandonment. Environ Geosci 21:107–126

    Article  Google Scholar 

  27. EPA (2016) Hydraulic fracturing for oil and gas: impacts from the hydraulic fracturing water cycle on drinking water resources in the United States (final report). EPA/600/R-16/236F:666, US EPA, Washington, DC

  28. Farrell NJC, Healy D (2017) Anisotropic pore fabrics in faulted porous sandstones. J Struct Geol 104:125–141. https://doi.org/10.1016/j.jsg.2017.09.010

    Article  Google Scholar 

  29. Ferrill DA, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A, Morris AP (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9:1–8

    Google Scholar 

  30. Freeman B, Yielding G, Needham DT, Badley ME (1998) Fault seal prediction: the gouge ratio method. Geol Soc Lond Spec Publ 127:19–25. https://doi.org/10.1144/gsl.sp.1998.127.01.03

    Article  Google Scholar 

  31. Gale J, Ukar E, Elliott SJ, Wang Q (2015) Bedding-parallel fractures in shales: characterization, prediction and importance. AAPG Annual Convention and Exhibition, Denver, CO, May 31–June 3, 2015

  32. Gale JF, Reed RM, Holder J (2007) Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments. AAPG Bull 91:603–622

    Article  Google Scholar 

  33. Gassiat C, Gleeson T, Lefebvre R, McKenzie J (2013) Hydraulic fracturing in faulted sedimentary basins: numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resour Res 49:8310–8327. https://doi.org/10.1002/2013wr014287

    Article  Google Scholar 

  34. Globensky Y (1987) Géologie des Basses Terres du Saint-Laurent [St Lawrence Lowlands Geology]. MM 85-02, Direction Générale de l’Exploration Géologique et minérale du Québec, Gouvernement du Québec, Quebec City

  35. Grasby SE, Ferguson G, Brady A, Sharp C, Dunfield P, McMechan M (2016) Deep groundwater circulation and associated methane leakage in the northern Canadian Rocky Mountains. Appl Geochem 68:10–18. https://doi.org/10.1016/j.apgeochem.2016.03.004

    Article  Google Scholar 

  36. Haeri-Ardakani O, Sanei H, Lavoie D, Chen Z, Jiang C (2015) Geochemical and petrographic characterization of the Upper Ordovician Utica Shale, southern Quebec, Canada. Int J Coal Geol 138:83–94. https://doi.org/10.1016/j.coal.2014.12.006

    Article  Google Scholar 

  37. Héroux Y, Bertrand R (1991) Maturation thermique de la matière organique dans un bassin du Paléozoïque inférieur, basses-Terres du Saint-Laurent, Québec, Canada [Thermal maturation of organic matter in the St Lawrence lowlands]. Can J Earth Sci 28:1019–1030

    Article  Google Scholar 

  38. Jackson RE, Gorody AW, Mayer B, Roy JW, Ryan MC, Van Stempvoort DR (2013) Groundwater protection and unconventional gas extraction: the critical need for field-based hydrogeological research. Groundwater 51:488–510. https://doi.org/10.1111/gwat.12074

    Article  Google Scholar 

  39. Janos D, Molson J, Lefebvre R (2018) Regional groundwater flow dynamics and residence times in Chaudière-Appalaches, Québec, Canada: insights from numerical simulations. Can Water Resour J 26. https://doi.org/10.1080/07011784.2018.1437370

  40. Kissinger A, Helmig R, Ebigbo A, Class H, Lange T, Sauter M, Heitfeld M, Klünker J, Jahnke W (2013) Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70:3855–3873. https://doi.org/10.1007/s12665-013-2578-6

    Article  Google Scholar 

  41. Knott SD, Beach A, Brockbank PJ, Lawson Brown J, McCallum JE, Welbon AI (1996) Spatial and mechanical controls on normal fault populations. J Struct Geol 18:359–372. https://doi.org/10.1016/S0191-8141(96)80056-3

    Article  Google Scholar 

  42. Konstantinovskaya E, Rodriguez D, Kirkwood D, Harris L, Thériault R (2009) Effects of basement structure, sedimentation and erosion on thrust wedge geometry: an example from the Quebec Appalachians and analogue models. Bull Can Petrol Geol 57:34–62

    Article  Google Scholar 

  43. Konstantinovskaya E, Malo M, Castillo DA (2012) Present-day stress analysis of the St. Lawrence lowlands sedimentary basin (Canada) and implications for caprock integrity during CO2 injection operations. Tectonophysics 518–521:119–137. https://doi.org/10.1016/j.tecto.2011.11.022

    Article  Google Scholar 

  44. Konstantinovskaya E, Malo M, Badina F (2014a) Effects of irregular basement structure on the geometry and emplacement of frontal thrusts and duplexes in the Quebec Appalachians: interpretations from well and seismic reflection data. Tectonophysics 637:268–288. https://doi.org/10.1016/j.tecto.2014.10.012

    Article  Google Scholar 

  45. Konstantinovskaya E, Rutqvist J, Malo M (2014b) CO2 storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): insights from coupled reservoir-geomechanical modeling. Int J Greenhouse Gas Control 22:88–110. https://doi.org/10.1016/j.ijggc.2013.12.008

  46. Ladevèze P, Rivard C, Lefebvre R, Lavoie D, Parent M, Malet X, Bordeleau G, Gosselin J-S (2016) Travaux de caractérisation hydrogéologique dans la plateforme sédimentaire du Saint-Laurent, région de Saint-Édouard-de-Lotbinière, Québec [Hydrogeological characterization in the St Lawrence platform, Saint-Édouard-de-Lotbinière area, Québec]. Dossier Public 8036, Commission géologique du Canada, 112 pp. https://doi.org/10.4095/297891

  47. Ladevèze P, Séjourné S, Rivard C, Lefebvre R, Lavoie D, Rouleau A (2018) Defining the natural fracture network in a shale gas play and its cover succession: the case of the Utica Shale in eastern Canada. J Struct Geol 108:157–170. https://doi.org/10.1016/j.jsg.2017.12.007

    Article  Google Scholar 

  48. Laubach SE (2003) Practical approaches to identifying sealed and open fractures. AAPG Bull 87:561–579

    Article  Google Scholar 

  49. Laubach SE, Olson JE, Gale JFW (2004) Are open fractures necessarily aligned with maximum horizontal stress? Earth Planet Sci Lett 222:191–195. https://doi.org/10.1016/j.epsl.2004.02.019

    Article  Google Scholar 

  50. Lavoie D (2008) Appalachian Foreland Basin of Canada, chap 3. In: Andrew DM (ed) Sedimentary basins of the world. Elsevier, Amsterdam, pp 65–103

  51. Lavoie D, Hamblin AP, Theriault R, Beaulieu J, Kirkwood D (2008) The upper Ordovician Utica shales and Lorraine Group flysch in southern Québec: tectonostratigraphic setting and significance for unconventional gas. Open File 5900, Commission géologique du Canada, Quebec City, 56 pp

  52. Lavoie D, Desrochers A, Dix G, Knight I, Salad Hersi O (2012) The great American carbonate bank in eastern Canada: an overview. In: Derby JR, Fritz RD, Longacre SA, Morgan WA, Sternbach CA (eds) The great American carbonate bank: the geology and economic resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia. AAPG Mem 98:499–523

  53. Lavoie D, Rivard C, Lefebvre R, Séjourné S, Thériault R, Duchesne MJ, Ahad JME, Wang B, Benoit N, Lamontagne C (2014) The Utica Shale and gas play in southern Quebec: geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. Int J Coal Geol 126:77–91. https://doi.org/10.1016/j.coal.2013.10.011

    Article  Google Scholar 

  54. Lavoie D, Pinet N, Bordeleau G, Ardakani OH, Ladevèze P, Duchesne MJ, Rivard C, Mort A, Brake V, Sanei H, Malet X (2016) The Upper Ordovician black shales of southern Quebec (Canada) and their significance for naturally occurring hydrocarbons in shallow groundwater. Int J Coal Geol 158:44–64. https://doi.org/10.1016/j.coal.2016.02.008

    Article  Google Scholar 

  55. Lefebvre R (2016) Mechanisms leading to potential impacts of shale gas development on groundwater quality. Interdiscip Rev Water. https://doi.org/10.1002/wat2.1188

  56. Lehner FK, Pilaar WF (1997) The emplacement of clay smears in synsedimentary normal faults: inferences from field observations near Frechen, Germany. Norwegian Petroleum Society Spec Publ 7:39–50

  57. Luthi SM, Souhaite P (1990) Fracture apertures from electrical borehole scans. Geophysics 55:821–833. https://doi.org/10.1190/1.1442896

    Article  Google Scholar 

  58. Manzocchi T, Walsh J, Nell P, Yielding G (1999) Fault transmissibility multipliers for flow simulation models. Pet Geosci 5:53–63

    Article  Google Scholar 

  59. Martini AM, Walter LM, Budai JM, Ku TCW, Kaiser CJ, Schoell M (1998) Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochim Cosmochim Acta 62:1699–1720. https://doi.org/10.1016/S0016-7037(98)00090-8

    Article  Google Scholar 

  60. Méheust Y, Schmittbuhl J (2001) Geometrical heterogeneities and permeability anisotropy of rough fractures. J Geophys Res: Solid Earth 106:2089–2102. https://doi.org/10.1029/2000jb900306

    Article  Google Scholar 

  61. Moreno L, Tsang C-F, Tsang Y, Neretnieks I (1990) Some anomalous features of flow and solute transport arising from fracture aperture variability. Water Resour Res 26:2377–2391. https://doi.org/10.1029/WR026i010p02377

    Article  Google Scholar 

  62. Morin C (1991) Rapport de qualification, poursuite des travaux d’exploration Villeroy [Report, continue work with exploration activities in Villeroy]. SIGPEG, Quebec City, 52 pp

  63. Mortimer L, Aydin A, Simmons CT, Love AJ (2011) Is in situ stress important to groundwater flow in shallow fractured rock aquifers? J Hydrol 399:185–200. https://doi.org/10.1016/j.jhydrol.2010.12.034

    Article  Google Scholar 

  64. Nowamooz A, Lemieux JM, Therrien R (2013) Modélisation numérique de la migration du méthane dans les Basses-Terres du Saint-Laurent [Modeling the methane migration in the St Lawrence Lowlands]. Étude E3-10, Rapport final, Département de géologie et de génie géologique, Université Laval, Quebec City, 115 pp

  65. Oda M (1985) Permeability tensor for discontinuous rock masses. Geotechnique 35:483–495. https://doi.org/10.1680/geot.1985.35.4.483

    Article  Google Scholar 

  66. Oda M (1988) A method for evaluating the representative elementary volume based on joint survey of rock masses. Can Geotech J 25:440–447. https://doi.org/10.1139/t88-049

    Article  Google Scholar 

  67. Odling NE, Gillespie P, Bourgine B, Castaing C, Chiles JP, Christensen NP, Fillion E, Genter A, Olsen C, Thrane L, Trice R, Aarseth E, Walsh JJ, Watterson J (1999) Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Pet Geosci 5:373–384. https://doi.org/10.1144/petgeo.5.4.373

    Article  Google Scholar 

  68. Odling NE, Harris SD, Knipe RJ (2004) Permeability scaling properties of fault damage zones in siliclastic rocks. J Struct Geol 26:1727–1747. https://doi.org/10.1016/j.jsg.2004.02.005

    Article  Google Scholar 

  69. Ortoleva P, Al-Shaieb Z, Puckette J (1995) Genesis and dynamics of basin compartments and seals. Am J Sci 295:345–427. https://doi.org/10.2475/ajs.295.4.345

    Article  Google Scholar 

  70. Osborne MJ, Swarbrick RE (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bull 81:1023–1041

    Google Scholar 

  71. Peacock DCP, Nixon CW, Rotevatn A, Sanderson DJ, Zuluaga LF (2016) Glossary of fault and other fracture networks. J Struct Geol 92:12–29. https://doi.org/10.1016/j.jsg.2016.09.008

    Article  Google Scholar 

  72. Reagan MT, Moridis GJ, Keen ND, Johnson JN (2015) Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: background, base cases, shallow reservoirs, short-term gas, and water transport. Water Resour Res 51:2543–2573. https://doi.org/10.1002/2014wr016086

    Article  Google Scholar 

  73. Rider M (2002) The geological interpretation of well logs, 2nd edn. Rider-French, Rogart, UK

  74. Rodrigues N, Cobbold PR, Loseth H, Ruffet G (2009) Widespread bedding-parallel veins of fibrous calcite (‘beef’) in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): evidence for overpressure and horizontal compression. J Geol Soc 166:695–709. https://doi.org/10.1144/0016-76492008-111

    Article  Google Scholar 

  75. Ruehlicke B (2015) From borehole images to fracture permeability and fracturing pressure. Oral presentation given at Geoscience Technology Workshop, Unconventionals Update, Austin, TX, November 4–5, 2014

  76. Séjourné S, Dietrich J, Malo M (2003) Seismic characterization of the structural front of southern Quebec Appalachians. Bull Can Petrol Geol 51:29–44. https://doi.org/10.2113/51.1.29

    Article  Google Scholar 

  77. Séjourné S, Lefebvre R, Malet X, Lavoie D (2013) Synthèse géologique et hydrogéologique du Shale d’Utica et des unités sus-jacentes (Lorraine, Queenston et dépots meubles), Basses-Terres du Saint-Laurent Québec [Geological and hydrogeological synthesis of the Utica Shale and its lower units (Lorraine, Queenston and superficial deposit), St Lawrence Lowlands, Quebec], Open File 7338, Geological Survey of Canada, 165 pp. https://doi.org/10.4095/292430

  78. Séjourné S (2015) Caractérisation des réseaux de fractures naturelles, de la porosité et de la saturation en eau du Shale d’Utica et de sa couverture par l’analyse des diagraphies de forages pétroliers dans la région de Saint-Édouard, Québec [Characterization of natural fracture networks, porosity and water saturation of the Utica Shale and its overlying units through the analysis of oil drilling logs in the Saint-Édouard area, Quebec]. Open File 7980, Geological Survey of Canada, 60 pp. https://doi.org/10.4095/297473

  79. Séjourné S (2017) Étude géomécanique du Shale d’Utica et de sa couverture d’après les puits pétroliers et gaziers de la région de Saint-Édouard-de-Lotbinière, Québec [Geomechanical study of the Utica Shale and its cover using oil and gas wells of the Saint-Édouard-de-Lotbinière area, Quebec]. Open File 8196, Geological Survey of Canada 54 pp. https://doi.org/10.4095/299662

  80. Sibson R (1977) Fault rocks and fault mechanisms. J Geol Soc 133:191–213

    Article  Google Scholar 

  81. Slivitzky A, St-Julien P (1987) Compilation géologique de la région de l’Estrie-Beauce [Geological synthesis of the Estrie-Beauce region]. Direction Générale de l’Exploration Géologique et minérale du Québec, Quebec City

  82. Snow DT (1968) Rock fracture spacings, openings, and porosities. J Soil Mech 94(1):73–92

  83. Sperrevik S, Faerseth RB, Gabrielsen RH (2000) Experiments on clay smear formation along faults. Pet Geosci 6:113–123

    Article  Google Scholar 

  84. Sperrevik S, Gillespie PA, Fisher QJ, Halvorsen T, Knipe RJ (2002) Empirical estimation of fault rock properties. Norwegian Petrol Soc Spec Publ 11:109–125

  85. St-Julien P, Hubert C (1975) Evolution of the Taconian orogen in the Quebec Appalachians. Am J Sci 275-A:337–362

    Google Scholar 

  86. St-Julien P, Slivitsky A, Feininger T (1983) A deep structural profile across the Appalachians of southern Quebec. Geol Soc Am Memoirs 158:103–112. https://doi.org/10.1130/MEM158-p103

    Article  Google Scholar 

  87. Terzaghi RD (1965) Sources of error in joint surveys. Geotechnique 15(3):287–304

    Article  Google Scholar 

  88. Thériault R, Beauséjour S (2012) Carte géologique du Québec [Quebec geological map]. Ressources Naturelles Québec DV 2012-07, Ressources Naturelles Québec, Quebec City

  89. Thompson LB (2009) Atlas of borehole imagery. AAPG/Datapages, AAPG, Tulsa, OK

  90. Tran Ngoc TD, Lefebvre R, Konstantinovskaya E, Malo M (2014) Characterization of deep saline aquifers in the Bécancour area, St. Lawrence Lowlands, Québec, Canada: implications for CO2 geological storage. Environ Earth Sci 28 pp. https://doi.org/10.1007/s12665-013-2941-7

  91. Tremblay A, Pinet N (2016) Late Neoproterozoic to Permian tectonic evolution of the Quebec Appalachians, Canada. Earth-Sci Rev 160:131–170. https://doi.org/10.1016/j.earscirev.2016.06.015

    Article  Google Scholar 

  92. Tsang C-F, Neretnieks I (1998) Flow channeling in heterogeneous fractured rocks. Rev Geophys 36:275–298. https://doi.org/10.1029/97rg03319

    Article  Google Scholar 

  93. Vrolijk PJ, Urai JL, Kettermann M (2016) Clay smear: review of mechanisms and applications. J Struct Geol 86:95–152. https://doi.org/10.1016/j.jsg.2015.09.006

    Article  Google Scholar 

  94. Watts NL (1987) Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns. Marine Petrol Geol 4:274–307. https://doi.org/10.1016/0264-8172(87)90008-0

    Article  Google Scholar 

  95. Weber KJ, Mandl GJ, Pilaar WF, Lehner BVF, Precious RG (1978) The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures. Offshore Technology Conference, Houston, TX, 8–11 May 1978

  96. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024. https://doi.org/10.1029/WR016i006p01016

    Article  Google Scholar 

  97. Wladis D, Jönsson P, Wallroth T (1997) Regional characterization of hydraulic properties of rock using well test data. Swedish Nuclear Fuel and Waste Management Co. (SKB), Technical report, Charlmers University of Technology, Göteborg, Sweden, 54 pp

    Google Scholar 

  98. Yang C, Hesse R (1993) Diagenesis and anchimetamorphism in an overthrust belt, external domain of the Taconian Orogen, southern Canadian Applachians: II, paleogeothermal gradients derived from maturation of different types of organic matter. Org Geochem 20:381–403. https://doi.org/10.1016/0146-6380(93)90127-W

    Article  Google Scholar 

  99. Yielding G, Freeman B, Needham DT (1997) Quantitative fault seal prediction. AAPG Bull 81:897–917

    Google Scholar 

  100. Zoback MD (2010) Reservoir geomechanics. Cambridge University Press, Cambridge, 449 pp

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the land owners of drilling sites, Talisman Energy (now Repsol Oil and Gas Canada inc.) and especially Marianne Molgat and Vincent Perron, as well as Charles Lamontagne of the Ministère du Développement durable, de l’Environnement et de la Lutte contre les Changements climatiques du Québec, for providing well logs and seismic data. The authors acknowledge Dr. Stephen Grasby (GSC) for reviewing the document. The manuscript was significantly improved by comments and suggestions from Elena Konstantinovskaya, Sylke Hilberg and two anonymous reviewers.

Funding

This project was part of the Environmental Geoscience Program of Natural Resources Canada. It also benefited from funding from the Energy Sector through the Eco-EII and PERD programs. This is GSC contribution 20170286.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Ladevèze.

Appendices

Appendix 1

The term “apparent apertures” is used in the paper to refer to fracture apertures estimated from shallow (ATV) and deep (FMI) well logs. Fracture aperture estimations are in fact affected by the method limitations presented in Table 4.

Table 4 Methods description and limitation for fracture aperture estimations

Appendix 2

Methods used for the calculation of the normal fault core properties of the Rivière Jacques-Cartier fault zone

The Shale Gouge Ratio (SGR) method (Yielding et al. 1997; Freeman et al. 1998; Eq. 5) is based on the length of the throw along the faults (T; i.e. the vertical displacements of the stratigraphic units), the thicknesses of the stratigraphic units (Δz) and the volume of shale (Vsh) within these units to estimate the percentage of shale within a portion of the sedimentary succession that has slipped past a certain point along the fault. T and Δz of this normal fault system were identified using the cross-section presented in Fig. 1. Similar estimations were not possible (or would have been speculative at best) in the case of the thrust faults because these structures often display only shale on shale repetitions with little lithological or stratigraphic contrasts. Gamma ray logs were used to estimate Vsh (Rider 2002). Séjourné (2015) used a similar approach, employing computed gamma ray logs (called HCGR), acquired in the deep shale gas wells and in conventional wells drilled in the area in the Lorraine Group, Utica Shale, Trenton and Beekmantown groups and an empirical equation for pre-Tertiary rocks proposed by Atlas (1982). The Vsh values used in this current exercise are from this dataset: 0.44, 0.21, 0.08 and 0.20 respectively for the Lorraine Group, Utica Shale, Trenton Group and Beekmantown Group. Tightly sealed faults display high SGR values. Threshold values of 18% (Freeman et al. 1998) or 20% (Yielding et al. 1997) were proposed for sealed faults in shale/sandstone successions that display cross-fault pressure differences.

$$ \mathrm{SGR}=\frac{\sum \left({V}_{\mathrm{sh}}\cdotp \Delta z\right)}{T}\cdotp 100 $$
(5)

The Sperrevik et al. (2002) relationship (Eq. 6) is an empirical relationship developed using core samples collected in faulted clastic reservoirs in the United Kingdom and in the Sinai Desert (Knott et al. 1996). These cores include sandstones and some clay-rich units such as shales. Equation (6) is based on the clay content and of compaction and diagenesis effects which strongly impacts rock porosity and permeability. The maximum burial depth (zmax) and the depth at the time of rock deformation/faulting (zdef) were used as proxies. This is relevant for the study area as the geological units were buried under at least 5,000 m of Paleozoic strata before erosion (Héroux and Bertrand 1991; Yang and Hesse 1993). Then, zmax corresponds to the actual depth of the units plus a 5,000 m value. Because a conservative estimate was used for the zdef value, the shallower depths of the stratigraphic units at the fault footwall were used. The parameter k is the fault core permeability expressed in milliDarcies (mD: 1 mD = 10−15 m2), the a parameters are empirical parameters proposed in Sperrevik et al. (2002) (a1 = 80,000; a2 = 19.4; a3 = 0.00403; a4 = 0.0055; a5 = 12.5). As proposed in the previous section, the use of k (m2 or mD) instead of K (m/s) is used here because of the presence of multiple phases in the pore space (water, gas, brines) of the cover succession. For comparison purposes, the k values are converted into K using the thermo-physical properties of water at 35 °C (the temperature estimated at an arbitrary depth of 1,500 m using the mean geothermal gradient proposed in Bédard et al. (2014) for the SLP)

$$ k={a}_1\cdotp \exp -\left({a}_2\cdotp {V}_{\mathrm{sh}}+{a}_3\cdotp {z}_{\mathrm{max}}+\left({a}_3\cdotp {z}_{\mathrm{def}}-{a}_5\right){\left(1-{V}_{\mathrm{sh}}\right)}^7\right) $$
(6)

Appendix 3

The numerical values of hydraulic properties plotted in Fig. 6 are provided in Table 5.

Table 5 Estimated hydraulic properties: min, geometric mean and max for the values presented in Fig. 6

Appendix 4

Higher open fracture densities values associated with thrust planes were observed in the vicinity of the Appalachian structural front (higher values for well A). The numerical values are presented in Table 6.

Table 6 Open fracture densities for deep wells (fracture densities were calculated using a 15-m window size every 5 m)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ladevèze, P., Rivard, C., Lavoie, D. et al. Fault and natural fracture control on upward fluid migration: insights from a shale gas play in the St. Lawrence Platform, Canada. Hydrogeol J 27, 121–143 (2019). https://doi.org/10.1007/s10040-018-1856-5

Download citation

Keywords

  • Natural fractures
  • Faults
  • Upward fluid migration
  • Shale gas
  • Canada