Skip to main content
Log in

The single-well test dilemma: the skin effect and variable-rate pumping perspective

Le dilemme de l’essai au puits unique: sous l’angle de l’effet de skin et du pompage à débit variable

El dilema del ensayo de un solo pozo: el efecto piel y la perspectiva del bombeo a caudal variable

单井抽水试验的缺陷:从表皮效应与变流量抽水两方面探讨

O dilemana do poço único: o efeito parede e a perspectiva de bombeamento de taxa variável

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A finite-element numerical model based on COMSOL Multiphysics was developed for a variable-rate single-well pumping test considering skin effect. The variable rate was assumed to be a decreasing exponential function of time. Some important results were obtained. First, due to the variable pumping rate, the drawdown will decrease (or the water level will recover) after a certain pumping period. A larger decay constant of the pumping rate (α) causes a faster decrease of drawdown. Second, for the special case of uniform skin distribution, the drawdown inside the well with a positive skin decreases significantly as the ratio of skin hydraulic conductivity to that of the formation zone (ρ) increases, while it approaches an asymptote when ρ exceeds a certain value, where the positive (or negative) skin implies that the skin’s hydraulic conductivity is smaller (or larger) than that of the formation zone. The drawdown inside the well due to a thick positive skin is larger than that due to a thick negative skin. In the case of non-uniform skin, especially for the positive skin, the drawdown inside the wellbore varies with depth. There is more fluctuation of drawdown due to a smaller ρ for the positive skin case, and little effect can be found for the negative skin case. This finding indicates that the single-well pumping test might bring about significant errors when estimating aquifer parameters without considering the skin effect. The possible effect of a non-uniform skin should be taken into consideration when the drawdown is dependent on depth.

Résumé

Un modèle numérique aux éléments finis réalisé avec COMSOL Multiphysics a été développé pour simuler un essai de pompage à débit variable dans un puits unique en considérant l’effet de skin. Il a été supposé que le débit variable est une fonction exponentielle décroissant avec le temps. Plusieurs résultats importants ont été obtenus. Premièrement, du fait du débit variable, le rabattement va décroître (ou le niveau piézométrique va remonter) après une certaine durée de pompage. Plus la constante de décroissance du débit (α) est élevée, plus la diminution du rabattement est rapide. Deuxièmement, pour le cas particulier d’une distribution uniforme du skin, dans un puits de skin positif, le rabattement décroît significativement lorsque le rapport (ρ) entre la conductivité hydraulique de skin et celle de la formation captée augmente, tandis qu’il atteint une asymptote lorsque ρ dépasse une certaine valeur ; le skin positif (ou négatif) implique que la conductivité hydraulique de skin est plus faible (ou plus grande) que celle de la formation captée. Le rabattement dans le puits dû à un épais skin positif est plus grand que celui qui est dû à un épais skin négatif. Dans le cas d’un skin non uniforme, le rabattement à l’intérieur du puits varie avec la profondeur, tout particulièrement pour le skin positif. Il y a plus de fluctuation du rabattement pour un faible ρ dans le cas d’un skin positif et un plus faible effet dans le cas d’un skin négatif. Ce résultat indique que l’essai de pompage dans un puits unique pourrait induire des erreurs significatives lors de l’estimation des paramètres de l’aquifère si on ne considère pas l’effet de skin. L’effet potentiel d’un skin non uniforme devrait être pris en considération lorsque le rabattement dépend de la profondeur.

Resumen

Se desarrolló un modelo numérico de elementos finitos basado en COMSOL Multiphysics para un ensayo de bombeo de un solo pozo a caudal variable teniendo en cuenta el efecto piel. Se supuso que el caudal variable era una función exponencial decreciente en el tiempo. Se obtuvieron algunos resultados importantes. En primer lugar, debido al caudal de bombeo variable, la depresión disminuirá (o el nivel del agua se recuperará) después de un cierto período de bombeo. Una constante mayor disminución del caudal de bombeo (α) causa una disminución más rápida de la depresión. Segundo, para el caso especial de distribución uniforme de la piel, la depresión dentro del pozo con una piel positiva disminuye significativamente a medida que aumenta la relación de conductividad hidráulica de la piel a aquella de la zona de formación (ρ), mientras que se aproxima a una asíntota cuando ρ excede un cierto valor, donde la piel positiva (o negativa) implica que la conductividad hidráulica de la piel es más pequeña (o más grande) que la de la zona de formación. La depresión dentro del pozo debido a una piel espesa y positiva es mayor que a una piel espesa y negativa. En el caso de una piel no uniforme, especialmente para la piel positiva, la depresión dentro del pozo varía con la profundidad. Hay una mayor fluctuación de la depresión debido a un caso de piel más pequeñaρpara la positiva, y se puede encontrar poco efecto para el caso de piel negativa. Este hallazgo indica que el ensayo de bombeo de un solo pozo podría generar errores significativos al estimar los parámetros del acuífero sin considerar el efecto piel. El posible efecto de una piel no uniforme debe tenerse en cuenta cuando la depresión depende de la profundidad.

摘要

本文针对考虑表皮效应的单井变流量抽水试验,建立了基于COMSOL Multiphysics的有限元数值模型,并假设抽水流量是随时间递减的指数函数,得出了一些重要结论。首先,由于变流量抽水,井中降深在抽水一定时期后会突然下降(即水位会回升)。抽水流量衰减因子(α)越大,井中水位回升越快。其次,对于均匀表皮,定义了表皮区渗透系数与含水层渗透系数的比值(ρ),ρ<1即正表皮情况,ρ>1即负表皮情况,在正表皮情况下,ρ越大,所造成的井中水位降深越大,然而,当ρ超过一定值时,井中水位降深趋于一致。同时,较厚的正表皮造成的井壁处降深显著大于负表皮情况。而对于非均匀表皮,井中水位降深由于表皮不均匀性随深度而变化,尤其在正表皮情况下,ρ越大,井中水位降深随深度变化的越剧烈,而负表皮影响相对较小。通过本研究发现单井抽水试验在反演含水层参数时可能会导致很大的误差,当水位降深随深度变化时应考虑非均匀表皮的影响。

Resumo

Um modelo numérico de elementos finitos baseado no COMSOL Multiphysics foi desenvolvido para um teste de bombeamento de um único poço a taxa variável, considerando o efeito de parede. A taxa variável foi assumida como uma função exponencial decrescente do tempo. Alguns resultados importantes foram obtidos. Primeiro, devido à taxa de bombeamento variável, o rebaixamento diminuirá (ou o nível da água se recuperará) após um certo período de bombeamento. Uma alta constante de decaimento da taxa de bombeamento (α) causa uma diminuição mais rápida do rebaixamento. Segundo, para o caso especial da distribuição uniforme da parede, o rebaixamento dentro do poço com uma parede positiva diminui significativamente à medida que a razão entre a condutividade hidráulica da parede e a da zona de formação (ρ) aumenta, enquanto se aproxima de uma assíntota quando ρ excede um certo valor, onde a parede positiva (ou negativa) implica que a condutividade hidráulica da parede é menor (ou maior) que a da zona de formação. O rebaixamento dentro do poço devido a uma parede grossa positiva é maior do que devido a uma parede grossa negativa. No caso de parede não uniforme, especialmente para a parede positiva, o rebaixamento dentro do poço varia com a profundidade. Há mais flutuação do rebaixamento devido a um menor valor de ρ para o caso da parede positiva, e pouco efeito pode ser encontrado para o caso de parede negativa. Este achado indica que o teste de bombeamento de poço único pode trazer erros significativos ao estimar os parâmetros do aquífero sem considerar o efeito da parede. O possível efeito de uma parede não uniforme deve ser levado em consideração quando a redução for dependente da profundidade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abu-Zied M, Scott V (1963) Non-steady flow for wells with decreasing discharge. J Hydraul Div 89:119–132

  • Bachmat Y, Mandel S, Bugayevski M (1988) A single-well tracer technique for evaluating aquifer parameters, I: theoretical work. J Hydrol 99:143–163

    Article  Google Scholar 

  • Bidaux P, Tsang CF (1991) Fluid flow patterns around a well bore or an underground drift with complex skin effects. Water Resour Res 27:2993–3008

    Article  Google Scholar 

  • Chang CC, Chen CS (2002) An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin. Water Resour Res 38:1–7

    Article  Google Scholar 

  • Chen CS, Chang CC (2002) Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effects: field experiment and data analysis. Water Resour Res 38:189–195

    Article  Google Scholar 

  • Chen CS, Chang CC (2006) Theoretical evaluation of non-uniform skin effect on aquifer response under constant rate pumping. J Hydrol 317:190–201

    Article  Google Scholar 

  • Chiu PY, Yeh HD, Yang SY (2007) A new solution for a partially penetrating constant-rate pumping well with a finite-thickness skin. Int J Numer Anal Methods Geomech 31:1659–1674

    Article  Google Scholar 

  • Doherty J, Brebber L, Whyte P (1994) PEST: model-independent parameter estimation. Watermark, Brisbane, Australia, 122 pp

  • Feng Q, Wen Z (2016) Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin. Hydrogeol J 72:1–10

    Google Scholar 

  • Halford KJ, Weight WD, Schreiber RP (2006) Interpretation of transmissivity estimates from single-well pumping aquifer tests. Ground Water 44:467–471

    Article  Google Scholar 

  • Hall SH (1993) Single well tracer tests in aquifer characterization. Groundw Monitor Remed 13:118–124

    Article  Google Scholar 

  • Hurst W, Clark JD, Brauer EB (1969) Skin effect in producing wells. J Pet Technol 21:1483–1489

    Article  Google Scholar 

  • Lai RYS, Su CW (1974) Nonsteady flow to a large well in a leaky aquifer. J Hydrol 22:333–345

    Article  Google Scholar 

  • Mahdi S (1964) Drawdown around wells of variable discharge. J Geophys Res 69:4221–4235

    Article  Google Scholar 

  • Malama B, Kuhlman KL, Barrash W, Cardiff M, Thoma M (2011) Modeling slug tests in unconfined aquifers taking into account water table kinematics, wellbore skin and inertial effects. J Hydrol 408:113–126

    Article  Google Scholar 

  • Mishra PK, Vessilinov V, Gupta H (2013) On simulation and analysis of variable-rate pumping tests. Ground Water 51:469–473

    Google Scholar 

  • Motz LH (2002) Leaky one-dimensional flow with storage and skin effect in finite-width sink. J Irrig Drain Eng 128:298–304

    Article  Google Scholar 

  • Novakowski KS (1989) A composite analytical model for analysis of pumping tests affected by well bore storage and finite thickness skin. Water Resour Res 25:1937–1946

    Article  Google Scholar 

  • Park E, Zhan H (2002) Hydraulics of a finite-diameter horizontal well with wellbore storage and skin effect. Adv Water Resour 25:389–400

    Article  Google Scholar 

  • Pasandi M, Samani N, Barry DA (2008) Effect of wellbore storage and finite thickness skin on flow to a partially penetrating well in a phreatic aquifer. Adv Water Resour 31:383–398

    Article  Google Scholar 

  • Perina T, Lee TC (2006) General well function for pumping from a confined, leaky, or unconfined aquifer. J Hydrol 317:239–260

    Article  Google Scholar 

  • Rasmussen TC, Haborak KG, Young MH (2003) Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River site, South Carolina, USA. Hydrogeol J 11:466–482

    Article  Google Scholar 

  • Rehbinder G (1995) Theory of single well tests in a leaky aquifer: analytical solution for non steady flow. Appl Sci Res 55:211–225

    Article  Google Scholar 

  • Sen Z, Altunkaynak A (2004) Variable discharge type curve solutions for confined aquifers. J Am Water Resour Assoc 40:1189–1196

    Article  Google Scholar 

  • Tonder GV, Riemann K, Dennis I (2002) Interpretation of single-well tracer tests using fractional-flow dimensions, part 1: theory and mathematical models. Hydrogeol J 10:351–356

    Article  Google Scholar 

  • Tumlinson LG, Osiensky JL, Fairley JP (2006) Numerical evaluation of pumping well transmissivity estimates in laterally heterogeneous formations. Hydrogeol J 14:21–30

    Article  Google Scholar 

  • Wang CT, Yeh HD, Tsai CS (2012) Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers. Hydrol Earth Syst Sci 16:441–449

    Article  Google Scholar 

  • Wen Z, Wang Q (2013) Approximate analytical and numerical solutions for radial non-Darcian flow to a well in a leaky aquifer with wellbore storage and skin effect. Int J Numer Anal Methods Geomech 37:1453–1469

    Article  Google Scholar 

  • Wen Z, Zhan H, Huang G, Jin M (2011) Constant-head test in a leaky aquifer with a finite-thickness skin. J Hydrol 399:326–334

    Article  Google Scholar 

  • Wen Z, Zhan H, Wang Q, Liang X, Ma T, Chen C (2017) Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers. J Hydrol 548:40–45

    Article  Google Scholar 

  • Yang SY, Yeh HD (2009) Radial groundwater flow to a finite diameter well in a leaky confined aquifer with a finite-thickness skin. Hydrol Process 23:3382–3390

    Article  Google Scholar 

  • Yeh HD, Yang SY (2006) A novel analytical solution for a slug test conducted in a well with a finite-thickness skin. Adv Water Resour 29:1479–1489

    Article  Google Scholar 

  • Yeh HD, Yang SY, Peng HY (2003) A new closed-form solution for a radial two-layer drawdown equation for groundwater under constant-flux pumping in a finite-radius well. Adv Water Resour 26:747–757

    Article  Google Scholar 

  • Yildiz T, Cinar Y (1997) Inflow performance and transient pressure behavior of selectively completed vertical wells. SPE Reserv Eval Eng 1:467–475

    Google Scholar 

  • Young MH, Rasmussen TC, Lyons FC, Pennell KD (2002) Optimized system to improve pumping rate stability during aquifer tests. Ground Water 40:629–637

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the comments raised by the two reviewers and the editor, which helped to improve the quality of the paper substantially.

Funding

This research was partially supported by the National Natural Science Foundation of China (Grant numbers: 41372253, 41772259, 41521001); the Natural Science Foundation of Hubei Province, China (2018CFA085, 2018CFA028); the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Wen.

Electronic supplementary material

ESM 1

(PDF 1588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Wen, Z., Zhan, H. et al. The single-well test dilemma: the skin effect and variable-rate pumping perspective. Hydrogeol J 26, 2521–2529 (2018). https://doi.org/10.1007/s10040-018-1852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1852-9

Keywords

Navigation