Skip to main content
Log in

A possible brine supply from the Afar continental endorheic hyper saline lakes to the Red Sea bottom brine pools

Un possible apport de saumures à partir des lacs endoréiques continentaux hyper salins des Afar aux réservoirs de saumures du fond de la mer Morte

Un posible suministro de salmuera desde los lagos híper-salinos endorreicos continentales de Afar hasta las depresiones de salmuera de fondo del Mar Rojo

从Afar大陆内流超咸水湖到红海海底卤水池可能的卤水供给

Um possível suprimento de salmora a partir do lago hipersalino endorreico continental de Afar para as piscinas de salmora do fundo do Mar vermelho

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Concentrated brine pools are known to exist at the bottom of the Red Sea at depths of 2,000–2,800 m below sea level (bsl). Concentrated continental brines are also known to exist in the nearby continental endorheic base level of the Afar Depression, which is considerably below sea level, attaining 155 m bsl at Lake Asal. According to the modelling that was carried out with the FEFLOW code, the Afar Depression brines have had sufficient time to migrate also northward along the conductive plate boundary of the Red Sea and emerge at the Red Sea submarine pools, since there is evidence of brines in Lake Asal some 6,000 years ago. It is proposed, therefore, that these dense brines descend in the continental brine lakes and subsequently move by density-driven mechanisms along the conductive plate boundary of the Red Sea.

Résumé

Des réservoirs de saumures concentrées sont connus pour exister sur le fond de la mer Morte à des profondeurs de 2,000 à 2,800 m sous le niveau de la mer. Des saumures continentales sont également connues pour exister près des niveaux de base endoréique continentaux de la dépression des Afar, qui sont situés à des niveaux considérables sous le niveau de la mer, atteignant 155 m sous le niveau de la mer au niveau du lac Asal. Selon les modèles qui ont été développés à l’aide du code FEFLOW, les saumures de la dépression des Afar ont eu suffisamment de temps pour migrer vers le nord le long de la limite conductrice de la plaque de la mer Morte et pour émerger vers les réservoirs sous-marins de la mer Morte, du fait qu’il y ait des traces de saumure dans le lac, datant d’environ 6,000 ans. Il est donc proposé que ces saumures denses descendent vers les lacs continentaux de saumure et se déplacent ensuite par mécanismes mus par la densité le long de la limite conductrice de la plaque de la mer Morte.

Resumen

Se conoce que existen depresiones con salmueras concentradas en el fondo del Mar Rojo a profundidades de 2,000 a 2,800 m bajo el nivel del mar (bnm). También es conocido que existen salmueras concentradas continentales próximo al nivel de base continental de la Depresión de Afar, que está considerablemente por debajo del nivel del mar, alcanzando 155 m bnm en el Lago Asal. Según el modelo que se llevó a cabo con el código FEFLOW, las salmueras de la Depresión Afar tuvieron tiempo suficiente para migrar también hacia el norte a lo largo del límite de la placa conductiva del Mar Rojo y emerger en las depresiones submarinas del Mar Rojo, ya que hay evidencia de salmueras en El lago Asal desde hace unos 6,000 años. Se propone, por lo tanto, que estas salmueras densas desciendan en los lagos de salmuera continentales y posteriormente se muevan por mecanismos accionados por densidad a lo largo del límite de la placa conductiva del Mar Rojo.

摘要

已知在红海海面之下2,000到2,800米的深度存在着浓缩的卤水池。还已知在附近的Afar凹陷大陆内流基面存在着浓缩的大陆卤水,这个内流基面大大低于海平面,在Asal湖处于海平面以下155米。根据FEFLOW编码进行的模拟,Afar凹陷卤水有足够的时间沿红海传导板块边界向北迁移,出现在红海水下的卤水池中,因为大约6,000年前在Asal湖有卤水的证据。因此,认为在大陆卤水湖中这些浓密的卤水下降,随后受密度驱使机理影响沿红海传导板块边界运移。

Resumo

Sabe-se que existem piscinas de salmoura concentradas no fundo do Mar Vermelho a profundidades de 2,000 a 2,800 m abaixo do nível do mar. Também se sabe que as salmouras continentais concentradas existem no nível da base endorreica continental próxima da Depressão de Afar, que está consideravelmente abaixo do nível do mar, atingindo 155 m no Lago Asal. De acordo com a modelagem realizada com o código FEFLOW, as salmouras da Depressão de Afar tiveram tempo suficiente para migrar também para o norte ao longo do limite da placa condutora do Mar Vermelho e emergir nos tanques submarinos do Mar Vermelho, já que há evidências de salmouras em Lago Asal cerca de 6,000 anos atrás. Propõe-se, portanto, que essas salmouras densas descessem nos lagos de salmouras continentais e subsequentemente se movessem por mecanismos conduzidos pela densidade ao longo do limite da placa condutora do Mar Vermelho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bischoff JL (1969) Red Sea geothermal brine deposits: their mineralogy chemistry, and genesis. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 368–401

    Chapter  Google Scholar 

  • Brewer PG, Spencer DW (1969) A note on the chemical composition of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 174–179

    Chapter  Google Scholar 

  • Camerlenghi A (1990) Anoxic basins of the eastern Mediterranean: geological framework. Mar Chem 31:1–19

    Article  Google Scholar 

  • Cita MB (1991) Anoxic basins of the eastern Mediterranean: an overview. Paleoceanography 6:133–141

    Article  Google Scholar 

  • Craig H (1966) Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science 154:1544–1548. https://doi.org/10.1126/science.154.3756.1544

    Article  Google Scholar 

  • Craig H (1969) Geochemistry and origin of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 208–242

    Chapter  Google Scholar 

  • Danielsson LG, Dyrssen D, Graneli A (1980) Chemical investigations of Atlantis II and discovery brines in the Red Sea. Geochim Cosmochim Acta 44:2051–2065

    Article  Google Scholar 

  • Degens ET, Ross DA (2013) Hot brines and recent heavy metal deposits in the Red Sea: a geochemical and geophysical account. Springer-Verlag, New York

  • Diersch H-LG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944

    Article  Google Scholar 

  • Doubre C, Manighetti I, Dorbath L, Dorbath C, Bertil D, Delmond JC (2007) Crustal structure and magmato-tectonic processes in an active rift (Asal-Ghoubbet, Afar, East Africa): 2. insights from the 23-year recording of seismicity since the last rifting event. J Geophys Res 112 (B5), B05406. https://doi.org/10.1029/2006JB004333

  • Elmi D (2005) Analysis of geothermal well test data from the Asal Rift area, Republic of Djibouti. UN Univ. Geothermal Training Programme Rep. 6, UNU-GTP, Reykjavik, Iceland

  • Fan Y, Duffy CJ, Oliver DS (1997) Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments. J Hydrol 196:139–184

    Article  Google Scholar 

  • Fouillac AM, Fouillac C, Cesbron F, Pillard F, Legendre O (1989) Water-rock interaction between basalt and high-salinity fluids in the Asal Rift, Republic of Djibouti. Chem Geol 76:271–289

    Article  Google Scholar 

  • Fritz SC, Baker PA, Lowenstein TK, Seltzer GO, Rigsby CA, Dwyer GS, Tapia PM, Arnold KK, Ku T-L, Luo S (2004) Hydraulic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quat Res 61:95–104

    Article  Google Scholar 

  • Garfunkel Z, Beyth M (2006) Constraints on the structural development of afar imposed by the kinematics of the major surrounding plates. In: Yirgu G, Ebinger CG, Maguire PKH (eds) The Afar Volcanic Province within the east African rift system. Geol Soc Lond Spec Publ 259:23–42

    Article  Google Scholar 

  • Gasse F, Rognonand P, Street FA (1980) Quaternary history of the Afar and Ethiopian rift lakes. In: Williams MAJ, Faure H (eds) The Sahara and the Nile: Quaternary environments and prehistoric occupation in northern Africa. Balkema, Rotterdam, pp 361–400

    Google Scholar 

  • Gasse F, Fontes J-C (1989) Palaeoenvironments and palaeohydrology of a tropical closed Lake (Lake Asal, Djibouti) since 10,000 yr B.P. Palaeogeogr Palaeoclimatol Palaeoecol 69:67–102

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974

    Article  Google Scholar 

  • Jalludin M, Razak M (1994) Analysis of pumping tests, with regards to tectonics, hydrothermal effects and weathering, for fractured Dalha and stratiform basalts, Republic of Djibouti. J Hydrol 155:237–250

    Article  Google Scholar 

  • Joffe S, Garfunkel Z (1987) Plate kinematics of the circum Red Sea: a re-evaluation. Tectonophysics 141:5–22

    Article  Google Scholar 

  • Kafri U (1984) Current subsurface seawater intrusion to base levels below sea level. Environ Geol Water Sci 6:223–227

    Article  Google Scholar 

  • Kafri U (2016) Subsurface seawater intrusion, an additional factor influencing the limnological history of the Dead Sea basin. Environ Manage Sustain Develop 5:244–254. https://doi.org/10.5296/emsd.v5i.10130

    Article  Google Scholar 

  • Kafri U, Yechieli Y (2010) Groundwater base level changes and adjoining hydrological systems. https://doi.org/10.1007/978-3-642-13944-4, Springer, Heidelberg, Germany, 171 pp

    Book  Google Scholar 

  • Kafri U, Yechieli Y (2011) The relationship between current and paleo groundwater base levels. Quat Int 257:83–96. https://doi.org/10.1016/j.quaint.2011.08.028

    Article  Google Scholar 

  • Kafri U, Goldman M, Levi E, Wollman S (2014) Detection of saline groundwater bodies between the Dead Sea and the Mediterranean Sea, Israel, using the TDEM method and hydrochemical parameters. Environ Process 1:21–41. https://doi.org/10.1007/s40710-014-0001-2

    Article  Google Scholar 

  • Kafri U, Shalev E, Lyakhovsky V, Wollman S, Yechieli Y (2013) Numerical modeling of seawater intrusion into endorheic hydrological systems. Hydrogeol J. https://doi.org/10.1007/s10040-013-0972-5

    Article  Google Scholar 

  • Kowalewska A, Cohen AS (1998) Reconstruction of paleoenvironments of the Great Salt Lake Basin during the Late Cenozoic. J Paleolimnol 20:381–407

    Article  Google Scholar 

  • Ku T-L, Thurber DL, Mathieu GG (1969) Radiocarbon chronology of Red Sea sediments. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 348–359

    Chapter  Google Scholar 

  • Laurila TE, Hannington MD, Peterson S, Garbe- Schoenberg D (2014a) Early depositional history of metalliferous sediments in the Atlantis II deep of the Red Sea: evidence from rare earth element geochemistry. Geochim Cosmochim Acta 126:146–168

    Article  Google Scholar 

  • Laurila TE, Hannington MD, Peterson S, Garbe-Schoenberg D (2014b) Trace metal distribution in the Atlantis II deep (Red Sea) sediments. Chem Geol 386:80–100

    Article  Google Scholar 

  • Miller AR, Densmore CD, Degens ET, Hathaway JC, Manheim FT, McFarlin PF, Pocklington R, Jokela A (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochem Cosmochem Acta 30: 341–359

    Article  Google Scholar 

  • Pierret MC, Clauer N, Bosch D, , Blanc G,,France-Lanord C (2001) Chemical and isotopic (87Sr/86Sr, d18O, dD) constrains to the formation processes of Red-Sea brines. Geochim Cosmochim Acta 65:1259–1275

    Article  Google Scholar 

  • Ross DA (1972) Red Sea hot brine area: revisited. Science 175:1455–1457. https://doi.org/10.1126/science.175.4029.1455

    Article  Google Scholar 

  • Sanjuan B, Michard G, Michard A (1990) Origine des substances dissoutes dans les eaux des sources thermals et des forages de la region Asal-Ghoubbet (Republique de Djibouti) [Origin of dissolved substances in the waters of thermal springs and boreholes in the Asal-Ghoubbet region (Republic of Djibouti)]. J Volcanol Geotherm Res 43:333–352

    Article  Google Scholar 

  • Schardt C (2016) Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep. Mineral Deposita 51:89–111. https://doi.org/10.1007/s00126-015-0583-2

    Article  Google Scholar 

  • Schoell M, Faber E (1978) New isotopic evidence for the origin of Red Sea brines. Nature 275:436–438

    Article  Google Scholar 

  • Shanks WC, Bischoff JL (1977) Ore transport and deposition in the Red Sea geothermal system: a geochemical model. Geochim Cosmochim Acta 41:1507–1519

    Article  Google Scholar 

  • Sibson RH (1992) Implications of fault-valve behavior for rupture nucleation and recurrence. Tectonophysics 18:1031–1042

    Google Scholar 

  • Simmons CT, Narayan KA (1997) Mixed convection processes below a saline disposal basin. J Hydrol 194:263–285

    Article  Google Scholar 

  • Stanislavsky E, Gvirtzman H (1999) Basin-scale migration of continental-rift brines: paleohydrologic modeling of the Dead Sea basin. Geology 27:791–794

    Article  Google Scholar 

  • Starinsky A (1974) Relationship between Ca-chloride brines and sedimentary rocks in Israel. Ph.D. thesis, Hebrew University, Jerusalem, 176 pp (in Hebrew)

  • Swift SA, S A, Bower AS, Schmitt RW (2012) Vertical, horizontal, and temporal changes in the Atlantis II and discovery hot brine pools, Red Sea. Deep-Sea Res I(64):118–128

    Article  Google Scholar 

  • Van der Zwan FM, Devey CW, Augustin N, Almeev RR, Bantan RA, Basaham A (2015) Hydrothermal activity at the ultraslow-to slow-spreading Red Sea rift traced by chlorine in basalt. Chem Geol 405:63–81

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Heidelberg, 1035 pp

    Book  Google Scholar 

  • Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Ruebel AP, Bayer R, Stoffers P (2001) Constrains on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Sci Planet Lett 184:671–683

    Article  Google Scholar 

  • Vengosh A, De Lange GJ, Starinsky A (1998) Boron isotope and geochemical evidence for the origin of Urania and Bannock brines at the eastern Mediterranean: effect of water–rock interactions. Geochim Cosmochim Acta 62:3221–3228

    Article  Google Scholar 

  • Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas and saline lakes. Earth-Sci Rev 58:343–365

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the constructive comments of Vyacheslav Rumynin, anonymous reviewer, and the associate editor Willem Jan Zaadnoordijk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Shalev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafri, U., Yechieli, Y., Wollman, S. et al. A possible brine supply from the Afar continental endorheic hyper saline lakes to the Red Sea bottom brine pools. Hydrogeol J 26, 2867–2874 (2018). https://doi.org/10.1007/s10040-018-1828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1828-9

Keywords

Navigation