Skip to main content
Log in

Corrected interface flow model for seawater intrusion in confined aquifers: relations to the dimensionless parameters of variable-density flow

Modèle d'écoulement d'interface corrigé pour l'intrusion d'eau de mer dans des aquifères captifs: relations avec les paramètres sans dimension d'écoulement à densité variable

Modelo corregido del flujo en la interfaz de la intrusión de agua de mar en acuíferos confinados: relaciones con los parámetros adimensionales del flujo de densidad variable

承压含水层海水入侵校正的界面-水流模型 : 与可变密度水流无量纲参数的关系

Modelo corretor de interface-fluxo para intrusão de água marinha em aquíferos confinados: relações com os parâmetros adimensionais do fluxo de densidade variável

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Sharp-interface (or interface) flow models with Dupuit-Forchheimer approximation are widely used to assess, to first order, an aquifer’s vulnerability to seawater intrusion (SWI) and to evaluate sustainable management options for coastal groundwater resources at the screening level. Recognising that interface flow models overestimate SWI, corrections have been proposed to account for the neglected mixing and also for the outflow through a finite gap. These corrections, however, were introduced in the context of specific studies and may not be generally applicable as proposed. The interface model is revisited, placing its corrections in the context of variable-density flow (VDF) theory, by expressing them in terms of the dimensionless parameters governing VDF in schematised (aspect ratio = thickness/length) homogeneous confined coastal aquifers: the coupling parameter (α), a Péclet number (Pe), and the dispersivities ratio (rα). Interfaces are compared to the 50%-salinity lines of VDF numerical solutions and regression equations are developed for estimating the outflow gap and for correcting the length of the interface (terminating with a blunted edge); the dispersion correction, which modifies the interface curvature, is restated with a variable exponent. The corrections for dispersion and for the interface length appear to be the most effective; an outflow gap is important only at small α values (strong advection relative to vertical flow due to density differences). These concepts are applied successfully to calculate the interface position in the lowermost confined sub-unit of the Coastal Plain aquifer of Israel, as an estimate of SWI.

Résumé

Les modèles d’écoulement à interface abrupt (ou à interface) basés sur l’approximation de Dupuit-Forchheimer sont utilisés largement pour estimer, dans un premier temps, la vulnérabilité des aquifères à l’intrusion d’eau marine (IEM) et évaluer les options de gestion durable pour les ressources en eaux souterraines côtières au niveau des crépines. Reconnaissant que les modèles d’écoulement à interface surestiment l’IEM, des corrections ont été proposées pour prendre en considération le mélange négligé et aussi les sorties d’eau dans un espace fini. Ces corrections, cependant, ont été introduites dans un contexte d’études spécifiques et ne peuvent être applicables généralement comme proposé. Le modèle à interface est. revisité, introduisant les corrections pour un contexte de la théorie de l’écoulement à densité variable (EDF), en les exprimant avec des paramètres sans dimension gouvernant l’EDF pour des aquifères côtiers schématisés (rapport d’aspect = épaisseur/longueur) homogènes captifs: le paramètre de couplage (α), le nombre de Péclet (Pe), et le rapport de dispersivité (rα). Les interfaces sont comparées aux lignes de 50% de salinité des solutions numériques d’EDF et les équations de régression sont développées pour estimer l’espace de sorties d’eau et pour corriger la longueur de l’interface (terminant avec une arête émoussée); la correction de la dispersion, qui modifie la courbure de l’interface, est. reconsidéré avec un exposant variable. Les corrections pour la dispersion et pour la longueur de l’interface apparaissent comme étant les plus efficaces; un espace de sorties d’écoulement est. important seulement pour les petites valeurs α (forte advection relative à l’écoulement vertical due aux différences de densité). Ces concepts sont appliqués avec succès pour calculer la position de l’interface dans la sous-unité captive inférieure de l’aquifère de la plaine côtière d’Israël, une estimation de IEM.

Resumen

Los modelos de flujo de la interfaz con la aproximación Dupuit-Forchheimer se utilizan ampliamente para evaluar, en primer lugar, la vulnerabilidad del acuífero a la intrusión de agua de mar (SWI) y evaluar opciones de gestión sostenible para los recursos de aguas subterráneas costeras a nivel de prueba. Reconociendo que los modelos de flujo de interfaz sobreestiman SWI, se han propuesto correcciones para explicar la mezcla y también para el flujo de salida a través de un espacio finito. Sin embargo, estas correcciones se introdujeron en el contexto de estudios específicos y no pueden ser generalmente aplicables según lo propuesto. El modelo de interfaz se revisa, colocando sus correcciones en el contexto de la teoría de flujo de densidad variable (VDF), expresándolas en términos de los parámetros adimensionales que gobiernan VDF en acuíferos costeros confinados homogéneos esquematizados (relación de aspecto = espesor/longitud): el parámetro de acoplamiento (α), un número de Péclet (Pe) y la relación de dispersividades (rα). Las interfaces se comparan con las líneas de salinidad al 50% de las soluciones numéricas VDF y las ecuaciones de regresión se desarrollan para estimar el espacio del flujo de salida y para corregir la longitud de la interfaz (que termina con un borde romo); la corrección de la dispersión, que modifica la curvatura de la interfaz, se replantea con un exponente variable. Las correcciones para la dispersión y para la longitud de la interfaz parecen ser las más efectivas; un espacio de salida es importante solo a valores pequeños (fuerte advección relativa al flujo vertical debido a las diferencias de densidad). Estos conceptos se aplican con éxito para calcular la posición de la interfaz en la subunidad confinada más baja del acuífero de llanura costera de Israel, como una estimación de SWI.

摘要

棉线的分界面(或者说界面)水流模型与Dupuit-Forchheimer近似法广泛用来评价一阶含水层遭受海水入侵的脆弱性以及筛选级别上评估沿海地下水资源可持续管理的选项。认识到界面水流模型会过高估算海水入侵,因此,提出了校正以解释忽略的混合,以及通过有限差距的出流量。然而,这些校正被引入到特定的研究环境中,可能会不象推荐的那样普遍适用。再访界面模型,把校正数据放入可变密度水流理论中,用控制扼要表示的(纵横比 = 厚度/长度)均质承压沿海含水层中可变密度水流的无量纲参数表示:耦合参数(α)、一个Péclet数(Pe)以及分散性比(rα)。界面与可变密度水流数值解的50%-盐度线进行了对比,建立了回归方程,以估算出流量差,并校正界面的长度(用圆滑边缘终结);采用可变的成分重新开始进行修饰界面曲率的分散校正。分散和界面长度的校正似乎最有效;出流量差只有在α值很小时才非常重要(由于密度差,强烈的对流和垂直水流有关)。这些概念成功应用于计算以色列沿海平原含水层最低处的承压亚单元的界面位置,作为海水入侵的估算值。

Resumo

Os modelos de interface delgada (ou interface), utilizando aproximação de Dupuit-Forchheimer, são amplamente utilizados para avaliar, em primeira ordem, a vulnerabilidade de um aquífero à intrusão de água marinha (IAM) e avaliar opções de manejo sustentável para recursos de águas subterrâneas costeiras no nível de triagem. Reconhecendo que os modelos de fluxo de interface superestimam a IAM, correções foram propostas para analisar a porção negligenciada da mistura e obter o fluxo de saída através de um intervalo finito. Estas correções, no entanto, foram introduzidas no contexto de um estudo de caso e podem não ser aplicados, como aqui proposto, de forma genérica. O modelo de interface é revisto, sendo adicionadas correções no contexto da teoria do fluxo de densidade variável (FDV), expressando-as em termos dos parâmetros adimensionais que governam o FDV em aquíferos costeiros confinados homogêneos (razão de aspecto = comprimento/espessura): o parâmetro acoplado (α), número de Péclet (Pe) e razão de dispersividades (rα). Interfaces são comparadas com as isolinhas de 50% de salinidade das soluções numéricas das equações de FDV e equações de regressão são desenvolvidas para estimar a lacuna de vazão e para corrigir o comprimento da interface (terminando com uma borda grosseira); a correção de dispersão, que modifica a curvatura da interface, é reapresentada com um expoente variável. As correções para dispersão e para comprimento da interface parecem ser as mais efetivas; um intervalo de vazão é importante apenas em valores pequenos de α (forte advecção em relação ao fluxo vertical devido a diferenças de densidade). Estes conceitos são aplicados com sucesso para calcular a posição da interface na subunidade confinada inferior do aquífero da planície costeira de Israel, como uma estimativa da IAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abarca E, Carrera J, Sánchez-Vila X, Dentz M (2007) Anisotropic dispersive Henry problem. Adv Water Resour 30(4):913–926. https://doi.org/10.1016/j.advwatres.2006.08.005

    Article  Google Scholar 

  • Abou Zakhem B, Hafez R (2007) Environmental isotope study of seawater intrusion in the coastal aquifer (Syria). Environ Geol 51:1329–1339. https://doi.org/10.1007/s00254-006-0431-x

    Article  Google Scholar 

  • AlZubari WK (2001) Impacts of groundwater over-exploitation on desertification of soils in Bahrain—A case study (1956–1992). In: Regional Aquifer Systems in Arid Zones – Managing non-renewable resources: Proceedings of the International Conference Tripoli, Libya, 20–24 November 1999. IHP-V Technical Documents in Hydrology no. 42, UNESCO, Paris, pp 311–321

  • Amir N, Kafri U, Herut B, Shalev E (2013) Numerical simulation of submarine groundwater flow in the coastal aquifer at the Palmahim area, the Mediterranean coast of Israel. Water Resour Manag 27:4005–4020. https://doi.org/10.1007/s11269-013-0392-2

    Article  Google Scholar 

  • Bakker M (2003) A Dupuit formulation for modeling seawater intrusion in regional aquifer systems. Water Resour Res 39(5):1131. https://doi.org/10.1029/2002WR001710

    Article  Google Scholar 

  • Bakker M (2014) Exact versus Dupuit Interface flow in anisotropic coastal aquifers. Water Resour Res 50(10):7973–7983. https://doi.org/10.1002/2014WR016096

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York, 764 pp

    Google Scholar 

  • Beebe CR, Ferguson G, Gleeson T, Morgan LK, Werner AD (2016) Application of an analytical solution as a screening tool for sea water intrusion. Groundwater 54(5):709–718. https://doi.org/10.1111/gwat.12411

    Article  Google Scholar 

  • Cooper HH (1964) A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. In: Sea Water in Coastal Aquifers, US Geological Survey Water-Supply Paper 1613-G. US Government Printing Office, Washington, DC, pp C1–C12

  • Custodio E, Llamas RM (2003) Intensive use of groundwater: introductory considerations. In: Llamas R, Custodio E (eds) Intensive use of groundwater: challenges and opportunities. Balkema, Rotterdam, pp 3–12

    Google Scholar 

  • Dagan G (1995) Contribution to discussion of “A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: the Geneva area (Florida, U.S.A.) case study by Panday et al. (1993)”. J Contam Hydrol 18:332–334

    Article  Google Scholar 

  • de Vries A, Ghawana T (2009) Enhancing the socioeconomic viability of spate irrigation through conjunctive use in coastal areas in Yemen: case study of Wadi Ahwar. In: Jagannathan NV, Mohamed AS, Kremer A (eds) Water in the Arab World: Management perspectives and innovations. World Bank, Middle East and North Africa (MNA) Region, Washington, DC, pp 497–522

  • Dentz M, Tartakovsky DM, Abarca E, Guadagnini A, Sanchez-Vila X, Carrera J (2006) Variable-density flow in porous media. J Fluid Mech 561:209–235. https://doi.org/10.1017/S002211200600066

    Article  Google Scholar 

  • Diersch HJG (2006a) FEFLOW Finite element subsurface flow and transport simulation system reference manual. WASY GmbH Institute for Water Resources Planning and Systems Research, Berlin

  • Diersch HJG (2006b) FEFLOW 5.3: Finite element subsurface flow and transport simulation system user’s manual. WASY GmbH Institute for Water Resources Planning and Systems Research, Berlin

  • Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944. https://doi.org/10.1016/S0309-1708(02)00063-5

    Article  Google Scholar 

  • Essaid HI (1999) USGS SHARP model. In: Bear J, Cheng AH-D, Sorek S, Ouazar D, Herrera I (eds) Seawater intrusion in coastal aquifers—concepts, methods and practices. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2:342–345. https://doi.org/10.1038/nclimate1413

    Article  Google Scholar 

  • Glover RE (1959) The pattern of fresh-water flow in a coastal aquifer. J Geophys Res 64(4):457–459. https://doi.org/10.1029/JZ064i004p00457

    Article  Google Scholar 

  • Henry HR (1964a) Interfaces between salt water and fresh water in coastal aquifers, in sea water in coastal aquifers. US Geological Survey Water-Supply Paper 1613-C:C35–C70

    Google Scholar 

  • Henry HR (1964b) Effects of dispersion on salt encroachment in coastal aquifers, in sea water in coastal aquifers. US Geological Survey Water-Supply Paper 1613-C:C70–C84

    Google Scholar 

  • Kafri U, Goldman M (2006) Are the lower subaquifers of the Mediterranean coastal aquifer of Israel blocked to seawater intrusion? Results of a TDEM (time domain electromagnetic) study. Isr J Earth Sci 55:1–13

    Article  Google Scholar 

  • Kashef A-AI (1983) Salt-water intrusion in the Nile Delta. Groundwater 21:160–167. https://doi.org/10.1111/j.1745-6584.1983.tb00713.x

    Article  Google Scholar 

  • Kerrou J, Philippe R, Tarhouni J (2010) Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion. Hydrogeol J 18:1173–1190

    Article  Google Scholar 

  • Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Simmons CT (2016) Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J Hydrol 535:235–255. https://doi.org/10.1016/j.jhydrol.2016.01.083

    Article  Google Scholar 

  • Koussis AD (ed) (2001) WASSER: Utilisation of Groundwater Desalination and Wastewater Reuse in the Water Supply of Seasonally-Stressed Regions, Final Report (European Commission DGXII-D, Environment and Climate Programme, Contract no. ENV4-CT97–0459), National Observatory of Athens, Greece

  • Koussis AD, Kotronarou A, Destouni G, Prieto C (2003) Intensive groundwater development in coastal zones and small islands. In: Llamas R, Custodio E (eds) Intensive Use of Groundwater: Challenges and Opportunities. Balkema, Rotterdam

  • Koussis AD, Georgopoulou E, Kotronarou A, Lalas DP, Restrepo P, Destouni G, Prieto C, Rodriguez JJ, Rodriguez-Mirasol J, Cordero T, Gomez-Gotor A (2010a) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: general framework. Hydrolog Sci J 55(7):1217–1233. https://doi.org/10.1080/02626667.2010.512467

    Article  Google Scholar 

  • Koussis AD, Georgopoulou E, Kotronarou A, Mazi K, Restrepo P, Destouni G, Prieto C, Rodriguez JJ, Rodriguez-Mirasol J, Cordero T, Ioannou C, Georgiou A, Schwartz J, Zacharias I (2010b) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri Basin and aquifer, Cyprus. Hydrolog Sci J 55(7):1234–1245. https://doi.org/10.1080/02626667.2010.512469

    Article  Google Scholar 

  • Koussis AD, Mazi K, Riou F, Destouni G (2015) A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers. J Hydrol 525:277–285. https://doi.org/10.1016/j.jhydrol.2015.03.047

    Article  Google Scholar 

  • Kozeny J (1953) Hydraulik. Springer, Vienna

    Book  Google Scholar 

  • Lu C, Werner AD (2013) Timescales of seawater intrusion and retreat. Adv Water Resour 59:39–51. https://doi.org/10.1016/j.advwatres.2013.05.005

    Article  Google Scholar 

  • Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resour Res 39(12):1335. https://doi.org/10.1029/2002WR001891

    Article  Google Scholar 

  • Mazi K (2014) Seawater intrusion risks and controls for safe use of coastal groundwater under multiple change pressures. PhD Dissertation no. 42, Dept. Physical Geography and Quaternary Geology, Stockholm University

  • Mazi K, Koussis AD, Destouni G (2013) Tipping points for seawater intrusion in coastal aquifers under rising sea level. Environ Res Lett 8(1):014001. https://doi.org/10.1088/1748-9326/8/1/014001

    Article  Google Scholar 

  • Mazi K, Koussis AD, Destouni G (2014) Intensively exploited Mediterranean aquifers: proximity to tipping points and control criteria for sea intrusion. Hydrol Earth Syst Sc 18(5):1663–1677. https://doi.org/10.5194/hess-18-1663-2014

    Article  Google Scholar 

  • Mazi K, Koussis AD, Destouni G (2016a) Quantifying a sustainable management space for human use of coastal groundwater under multiple change pressures. Water Resour Manag 30(12):4063–4080. https://doi.org/10.1007/s11269-016-1363-1

    Article  Google Scholar 

  • Mazi K, Koussis AD, Destouni G (2016b) Erratum to: quantifying a sustainable management space for human use of coastal groundwater under multiple change pressures. Water Resour Manag 30(12):4081. https://doi.org/10.1007/s11269-016-1427-2

    Article  Google Scholar 

  • Melloul AJ, Zeitoun D G (1999) A semi-empirical approach to intrusion monitoring in Israeli coastal aquifer. In: Bear J, Cheng A, Sorek S, Ouazar D, and Herrera I (eds) Seawater Intrusion in Coastal Aquifers— Concepts, Methods, and Practices. Theory and Applications of Transport in Porous Media, vol. 14, 543–558, Springer, Dordrecht

    Chapter  Google Scholar 

  • Morgan LK, Werner AD (2015) A national inventory of seawater intrusion vulnerability for Australia. J Hydrol: Regional Studies (4):686–698.https://doi.org/10.1016/j.ejrh.2015.10.005

    Google Scholar 

  • Motz LF (1995) Discussion of “A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: the Geneva area (Florida, U.S.A.) case study”, by Panday et al. (1993). J Contam Hydrol 18:321–326

    Article  Google Scholar 

  • Moustadraf J, Razack M, Sinan M (2008) Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling. Hydrogeol J 16:1411–1426. https://doi.org/10.1007/s10040-008-0311-4

    Article  Google Scholar 

  • Nativ R, Weisbrod N (1994) Hydraulic connections among subaquifers of the coastal plain aquifer, Israel. Groundwater 32(6):997–1007

    Article  Google Scholar 

  • Panday S, Huyakorn PS, Robertson JB, McGurk B (1993) A density-dependent flow and transport analysis of the effects of groundwater development in a freshwater lens of limited areal extent: the Geneva area (Florida, U.S.A.) case study. J Contam Hydrol 12:329–354

    Article  Google Scholar 

  • Park C-H (2004) Saltwater intrusion in coastal aquifers, Ph.D. thesis, Georgia Institute of Technology:259

  • Parry M, Canziani O, Palutikof J, van der Linden PJ, Hanson CE (eds) (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Paster A, Dagan G (2007) Mixing at the interface between two fluids in porous media: a boundary-layer solution. J Fluid Mech 584:455–472

    Article  Google Scholar 

  • Polubarinova-Kochina PYa (1962) Theory of Ground Water Movement (Moscow, 1952), translated by J. M. Roger de Wiest. Princeton University Press, Princeton, NJ, 613 pp

  • Pool M, Carrera J (2011) A correction factor to account for mixing in Ghyben-Herzberg and critical pumping rate approximations of seawater intrusion in coastal aquifers, Water Resour Res (47):W05506. https://doi.org/10.1029/2010WR010256

  • Qahman K, Larabi A (2006) Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeol J 14:713–728. https://doi.org/10.1007/s10040-005-003-2

    Article  Google Scholar 

  • Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater-freshwater relationships in groundwater systems – a historical perspective. J Hydrol 80:125–160

    Article  Google Scholar 

  • Reilly TE, Goodman AS (1987) Analysis of seawater upconing beneath a pumping well. J Hydrol 89:169–204

    Article  Google Scholar 

  • Sadeg SA, Karahanoglu N (2001) Numerical assessment of seawater intrusion in the Tripoli region, Libya. Environ Geol 40:1151–1168. https://doi.org/10.1007/s002540100317

    Article  Google Scholar 

  • Sanford WE, Pope JP (2010) Current challenges in forecasting saltwater intrusion: lessons from the eastern shore of Virginia. Hydrogeol J 1:73–93. https://doi.org/10.1007/s10040-009-0513-4

    Article  Google Scholar 

  • Sherif M, Almulla M, Shetty A (2013) Seawater intrusion assessment and mitigation in the coastal aquifer of Wadi ham. In: Wetzelhuetter C (ed) Groundwater in the coastal zones of Asia-Pacific, Coastal Research Library 7. Springer Science Business Media, Dordrecht. https://doi.org/10.1007/978-94-007-5648-9_13

    Chapter  Google Scholar 

  • Sreekanth J, Datta B (2015) Review: simulation-optimization models for the management and monitoring of coastal aquifers. Hydrogeol J 23(6):1155–1166. https://doi.org/10.1007/s10040-015-1272-z

    Article  Google Scholar 

  • Strack ODL (1976) A single-potential solution for regional interface problems in coastal aquifers. Water Resour Res 12(6):1165–1174. https://doi.org/10.1029/WR012i006p01165

    Article  Google Scholar 

  • UN-Oceans (2016) UN Atlas of the Oceans 2002–2016, http://www.oceansatlas.org/.12/09/2017

  • Van der Veer P (1977) Analytical solution for steady interface flow in a coastal aquifer involving a phreatic surface with precipitation. J Hydrol 34(1):1–11. https://doi.org/10.1016/0022-1694(77)90058-0

    Article  Google Scholar 

  • Walther M, Graf T, Kolditz O, Liedl R, Post V (2017) How significant is the slope of the sea-side boundary for modelling seawater intrusion in coastal aquifers? J Hydrol 551:648–659. https://doi.org/10.1016/j.jhydrol.2017.02.031

    Article  Google Scholar 

  • Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of seawater intrusion. Groundwater 50(1):48–58. https://doi.org/10.1111/j.1745-6584.2011.00817.x

    Article  Google Scholar 

  • Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. https://doi.org/10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

  • Yechieli Y, Sivan O (2011) The distribution of saline groundwater and its relation to the hydraulic conditions of aquifers and aquitards: examples from Israel. Hydrogeol J 19:71–81. https://doi.org/10.1007/s10040-010-0646-5

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the National Observatory of Athens, internal project no. 2201, Research on seawater intrusion in coastal aquifers under intense exploitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis D. Koussis.

Additional information

This article is part of the topical collection “Coastal aquifers in the Middle East and North Africa region”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koussis, A.D., Mazi, K. Corrected interface flow model for seawater intrusion in confined aquifers: relations to the dimensionless parameters of variable-density flow. Hydrogeol J 26, 2547–2559 (2018). https://doi.org/10.1007/s10040-018-1817-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1817-z

Keywords

Profiles

  1. Katerina Mazi