Advertisement

Hydrogeology Journal

, Volume 26, Issue 8, pp 2669–2691 | Cite as

Chemical and isotopic investigations (δ18O, δ2H, 3H, 87Sr/86Sr) to define groundwater processes occurring in a deep-seated landslide in flysch

  • M. DeianaEmail author
  • F. Cervi
  • M. Pennisi
  • M. Mussi
  • C. Bertrand
  • A. Tazioli
  • A. Corsini
  • F. Ronchetti
Paper

Abstract

Deep-seated landslides are complex systems. In many cases, multidisciplinary studies are necessary to unravel the key hydrological features that can influence their evolution in space and time. The deep-seated Berceto landslide, in the northern Apennines of Italy, has been investigated in order to define the origin and geochemical evolution of groundwater (GW), to identify the slope system hydrological boundary, and to highlight the GW flow paths, transit time and transfer modalities inside the landslide body. This research is based on a multidisciplinary approach that involves monitoring GW levels, obtaining analyses of water chemistry and stable and unstable isotopes (δ18O-δ2H, 3H, 87Sr/86Sr), performing soil leaching tests, geochemical modelling (PHREEQC), and principal component analysis (PCA). The results of δ18O-δ2H and 87Sr/86Sr analyses show that the source of GW recharge in the Berceto landslide is local rainwater, and external contributions from a local stream can be excluded. In the landslide body, two GW hydrotypes (Ca-HCO3 and Na-HCO3) are identified, and the results of PHREEQC and PCA confirm that the chemical features of the GW depend on water–rock interaction processes occurring inside the landslide. The 3H content suggests a recent origin for GW and appears to highlight mixing between shallow and deep GW aliquots. The 3H content and GW levels data confirm that shallow GW is mainly controlled by a mass transfer mechanism. The 3H analyses with GW levels also indicate that only deep GW is controlled by a pressure transfer mechanism, and this mechanism is likely the main influence on the landslide kinematics.

Keywords

Water isotopes Landslide Flysch Hydrochemistry Italy 

Etudes géochimiques et isotopiques (δ18O, δ2H, 3H, 87Sr/86Sr) pour déterminer les processus hydrogéologiques intervenant dans un glissement de terrain ancré en profondeur dans des flyschs

Résumé

Les glissements de terrain ancrés en profondeur sont des systèmes complexes. Dans de nombreux cas, des études pluridisciplinaires sont nécessaires pour mettre en évidence les principales caractéristiques hydrologiques qui peuvent influencer leur évolution spatio-temporelle. Le glissement de terrain ancré en profondeur de Berceto, dans le Nord des Apenins en Italie, a étudié afin de définir l’origine et l’évolution géochimique des eaux souterraines (ESO), d’identifier les limites hydrologiques du système, et de mettre en évidence les circulations d’ESO, le temps de transit et de transfert au sein du glissement de terrain. Cette recherche repose sur une approche pluridisciplinaire qui implique la surveillance des niveaux piézométriques, la réalisation d’analyses de la chimie de l’eau et des isotopes stables et instables (δ18O-δ2H, 3H, 87Sr/86Sr), de tests de lixiviation de sols, la modélisation géochimique (PHREEQC), et l’analyse en composantes principales (ACP). Les résultats des analyses de δ18O-δ2H et 87Sr/86Sr montrent que la recharge des ESO dans le glissement de terrain de Berceto a une origine associée aux précipitations locales, et que des contributions externes à partir d’un cours d’eau local peuvent être exclues. Au sein du glissement de terrain, deux types d’eaux souterraines (Ca-HCO3 et Na-HCO3) sont identifiés, et les résultats de PHREEQC et de l’ACP confirment que les caractéristiques chimiques des ESO sont marquées par les processus d’interaction eau roche qui prennent place dans le glissement de terrain. La concentration en 3H suggère une origine récente des ESO et semble mettre en évidence un mélange entre certaines ESO peu profondes et profondes. Les teneurs en 3H et les données piézométriques confirment que les ESO peu profondes sont principalement contrôlées par un mécanisme de transfert de masse. Les analyses d’3H combinées à celles des niveaux piézométriques indiquent également que seules les eaux souterraines profondes sont contrôlées par un mécanisme de transfert de pression, et que ce mécanisme est. probablement la principale influence sur la cinématique du glissement de terrain.

Investigaciones químicas e isotópicas (δ18O, δ2H, 3H, 87Sr/86Sr) para definir procesos de aguas subterráneas que ocurren en un deslizamiento profundo en flysch

Resumen

Los deslizamientos profundos son sistemas complejos. En muchos casos, se necesitan estudios multidisciplinarios para desentrañar las principales características hidrológicas que pueden influir en su evolución en el espacio y el tiempo. Se investigó el deslizamiento profundo de Berceto, en los Apeninos septentrionales de Italia, para definir el origen y la evolución geoquímica del agua subterránea (GW), para identificar el límite hidrológico del sistema de taludes y resaltar las trayectorias de flujo del GW, el tiempo de tránsito y las modalidades de transferencia dentro del cuerpo del deslizamiento. Esta investigación se basa en un enfoque multidisciplinario que implica monitorear niveles de GW, obtener análisis de química del agua e isótopos estables e inestables (δ18O-δ2H, 3H, 87Sr/86Sr), realizar pruebas de lixiviación del suelo, modelado geoquímico (PHREEQC) y la componente principal de los análisis (PCA). Los resultados de los análisis de δ18O-δ2H and 87Sr/86Sr muestran que la fuente de recarga del GW en el deslizamiento de Berceto es el agua de la lluvia local, y se pueden excluir las contribuciones externas de un flujo local. En el cuerpo del deslizamiento, se identifican dos hidrotipos GW (Ca-HCO3 and Na-HCO3) y los resultados de PHREEQC y PCA confirman que las características químicas del GW dependen de los procesos de interacción agua–roca que ocurren dentro del deslizamiento. El contenido de 3H sugiere un origen reciente para el GW y parece resaltar la mezcla entre alícuotas de GW superficiales y profundas. El contenido de 3H y los datos de los niveles de GW confirman que el GW somera está controlado principalmente por un mecanismo de transferencia de masa. Los análisis de 3H con los niveles de GW también indican que solo el GW profundo está controlado por un mecanismo de transferencia de presión, y este mecanismo es probablemente la principal influencia en la cinemática del deslizamiento.

化学和同位素调查(δ18O, δ2H, 3H, 87Sr/86Sr)确定在复理层深位滑坡中的地下水过程

摘要

深位滑坡是非常复杂的系统。在许多情况下,需要进行多学科研究渗入了解可影响时空演化的关键特征。调查了意大利亚平宁山脉北部的Berceto深位滑坡,就是为了明确地下水的成因和地球化学演化过程,确定边坡系统水文边界,突出滑坡体内部的地下水水流通道、经过时间和运移形态。本研究基于一种多学科方法,该方法涉及到监测地下水位、获取水化学和稳定同位素和非稳定同位素(δ18O-δ2H, 3H, 87Sr/86Sr)分析结果、进行土壤滤淋试验、地球化学模拟以及主要成分分析。δ18O-δ2H 和 87Sr/86Sr分析结果显示,Berceto滑坡中的地下水补给源是当地的雨水,当地河流外部的补给可以排除。在滑坡体中,确定了两种地下水水类型(Ca-HCO3 和 Na-HCO3),地球化学模拟和主要成分分析结果确认,地下水的化学特征依赖于出现在滑坡内的水岩相互作用过程。3H含量表明,地下水为近代成因,似乎显示出浅层地下水和深层地下水的混合。3H含量和地下水位数据确认,浅层地下水主要受控于质量传输机制。3H分析结果和地下水位还表明,只有深层地下水受控于压力传输机理,这个机理可能是滑坡动力学的主要影响因素。

Investigação química e isotópica (δ18O, δ2H, 3H, 87Sr/86Sr) para determinar processos das águas subterrâneas ocorrendo em um escorregamento profundamente arraigado em flysch

Resumo

Escorregamentos profundamente arraigados são sistemas complexos. Em muitos casos, estudos multidisciplinares são necessários para desvendar as principais feições hidrogeológicas que podem influenciar sua evolução no espaço e no tempo. O deslizamento profundamente arraigado Barceto, no norte dos Apeninos da Itália, tem sido investigado para definir a origem e evolução geoquímica da água subterrânea (AS), para identificar o limite do declive do sistema hidrológico, e destacar os caminhos de fluxo da AS, o tempo de trânsito e as modalidades de transferência dentro do corpo de escorregamento. Esta pesquisa está baseada e uma abordagem multidisciplinar que envolve monitoramento do nível da AS, obtenção de analise química da água e isótopos estáveis e instáveis (δ18O-δ2H, 3H, 87Sr/86Sr), realização de testes de lixiviação de solo, modelagem geoquímica (PHREEQC) e analise de componentes principais (ACP). Os resultados das análises de δ18O-δ2H e 87Sr/86Sr mostraram que a fonte de recarga da AS do escorregamento Berceto é a precipitação local e as contribuições externas de um fluxo local pode ser excluída. No corpo do escorregamento, foram identificados dois tipos hidroquímicos (Ca-HCO3 e Na-HCO3) e os resultado do PHREEQC e ACP confirmam que as características da AS depende do processo de interação água–rocha ocorrendo dentro do escorregamento. O conteúdo de 3H sugere uma origem recente da AS e parece destacar mistura entre as alíquotas de AS profunda e superficial. O conteúdo de 3H e níveis de AS confirmam que a AS superficial é controlada principalmente pelo mecanismo de transferência de massa. A análise do 3H com o nível de AS também indica que apenas a AS profunda é controlada por um mecanismo de transferência de pressão, este mecanismo é provavelmente a principal influência na cinemática do escorregamento.

Notes

Acknowledgements

The authors would like to thank the editor, Dr. Martin Appold, the associate editor, the reviewer Tsung-Ren Peng and an anonymous reviewer as their valuable and constructive remarks greatly improved the early version of the manuscript. Gratitude must also be expressed to the Emilia-Romagna Region, Technical Service of the Po River tributaries, Reggio Emilia, which made available a large amount of data.

References

  1. ARPAE Emilia Romagna (2016) Regional agency for environmental protection in the Emilia Romagna region: precipitation and air temperature database. Available at: http://www.arpa.emr.it. Accessed November 2016
  2. Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, central Italy). Appl Geochem 20:2063–2081CrossRefGoogle Scholar
  3. Bakari SS, Aagaard P, Vogt RD, Ruden F, Johansen I, Vuai SA (2013) Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania. J Geochem Explor 130: 1–14CrossRefGoogle Scholar
  4. Bernini M, Vescovi P, Zanzucchi G (1997) Schema strutturale dell’Appennino Nord-Occidentale [Structural scheme of the north-western Apennines]. L’Ateneo Parmense Acta Naturalia 33:43–54Google Scholar
  5. Bertoldi R, Chelli A, Roma R, Tellini C, Vescovi P (2004) First remarks on late Pleistocene lacustrine deposits in the Berceto area (northern Apennines, Italy). Il Quaternario 17:133–143Google Scholar
  6. Bogaard TA, Greco R (2016) Landslide hydrology: from hydrology to pore pressure. WIREs Water 3:439–459CrossRefGoogle Scholar
  7. Bogaard TA, Guglielmi Y, Marc V, Emblanch C, Bertrand C, Mudry J (2007) Hydrogeochemistry in landslide research: a review. Bull Soc Géol Fr 178:113–126CrossRefGoogle Scholar
  8. Bonzanigo L, Eberhardt E, Loew S (2001) Hydromechanical factors controlling the creeping Campo Vallemaggia landslide. In: Proceedings of the International Conference on Landslides: Causes, Impacts and Countermeasures, Davos, Switzerland, June 2001, pp 13–22Google Scholar
  9. Cattell RB, Jaspers JA (1967) A general plasmode for factor analytic exercises and research. Multivar Behav Res Monogr 3: 1–212Google Scholar
  10. Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the western Mediterranean region at three different time scales. Geophys Res Lett 28(7):1215–1218CrossRefGoogle Scholar
  11. Cervi F (2015) Hydrogeological processes in clay-rich slopes: further insights from geochemical modeling. Rend Online Soc Geol It 35:58–61.  https://doi.org/10.3301/ROL.2015.63 CrossRefGoogle Scholar
  12. Cervi F, Ronchetti F, Martinelli G, Bogaard T, Corsini A (2012) Origin and assessment of deep groundwater inflow in the Ca’ Lita landslide using hydrochemistry and in situ monitoring. Hydrol Earth Syst Sci 16:4205–4221CrossRefGoogle Scholar
  13. Cervi F, Borgatti L, Martinelli G, Ronchetti F (2014) Evidence of deep water inflow in a tectonic window of the northern Apennines (Italy). Environ Earth Sci 72(7):2389–2409CrossRefGoogle Scholar
  14. Cervi F, Ronchetti A, Doveri M, Mussi M, Marcaccio M, Tazioli A (2016) The use of stable water isotopes from rain gauges network to define the recharge areas of springs: problems and possible solutions from case studies in the northern Apennines. Geoeng Environ Min 149:19–26Google Scholar
  15. Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313CrossRefGoogle Scholar
  16. Corsini A, Farina P, Antonello G, Barbieri M, Casagli N, Coren F, Guerri L, Ronchetti F, Sterzai P, Tarchi D (2006) Space-borne and ground-based SAR interferometry as tools for landslide hazard management in civil protection. Int J Remote Sens 27:2351–2367CrossRefGoogle Scholar
  17. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  18. Cruden D M, and Varnes D J (1996) Landslides types and processes, in: Landslides: Investigation and Mitigation, Special Report, edited by: Turner A K, and Schuster R L, Transportation Research Board, National Academy Press, Washington DC, 247: 36–75Google Scholar
  19. De Montety V, Marc V, Emblanch C, Malet JP, Bertrand C, Maquaire O, Bogaard T (2007) Identifying origin of groundwater and flow processes in complex landslides affecting black marls in southern French Alps: insights from a hydrochemical survey. Earth Surf Process Landf 32:32–48CrossRefGoogle Scholar
  20. Debieche TH, Bogaard TA, Marc V, Emblanch C, Krzeminska DM, Malet JP (2012) Hydrological and hydrochemical processes observed during a large-scale infiltration experiment at the Super-Sauze mudslide (France). Hydrol Process 26(14):2157–2170CrossRefGoogle Scholar
  21. Deiana M (2017) Stable and unstable groundwater isotopes applied to deep-seated landslides. PhD Thesis, University of Modena and Reggio Emilia, Modena, ItalyGoogle Scholar
  22. Deiana M, Ronchetti F, Mussi M (2016a) 2014–2015 Tritium values in small and shallow aquifers in northern Apennines. EGU General Assembly 2016, vol 18, Vienna, April 2016Google Scholar
  23. Deiana M, Cervi F, Bertrand C, Ronchetti F (2016b) Hydrogeological investigation of Pietra di Bismantova slab and surrounding slope deposits (northern Apennines, Italy). Rend Online Soc Geol Ital 41:135–138.  https://doi.org/10.3301/ROL.2016.112 CrossRefGoogle Scholar
  24. Deiana M, Mussi M, Ronchetti F (2017) Discharge and environmental isotope behaviours of adjacent fractured and porous aquifers. Environ Earth Sci 76:595.  https://doi.org/10.1007/s12665-017-6897-x. CrossRefGoogle Scholar
  25. Dondi M (1999) Clay materials for ceramic tiles from the Sassuolo District (northern Apennines, Italy): geology, composition and technological properties. Appl Clay Sci 15:337–366CrossRefGoogle Scholar
  26. Fetter CW (1980) Applied hydrogeology. Prentice Hall, Englewood Cliffs, NJ, 691 ppGoogle Scholar
  27. Fontes JC, Matray JM (1993a) Geochemistry and origin of formation brines from the Paris Basin, France: 2, saline solutions associated with oil fields. Chem Geol 109:177–200CrossRefGoogle Scholar
  28. Fontes JC, Matray JM (1993b) Geochemistry and origin of formation brines from the Paris Basin, France: 1, brines associated with Triassic salts. Chem Geol 109:149–175CrossRefGoogle Scholar
  29. Galleani L, Vigna B, Banzato C, Lo Russo S (2011) Validation of a vulnerability estimator for spring protection areas: the VESPA index. J Hydrol 369:233–245CrossRefGoogle Scholar
  30. Gargini A, Vincenzi V, Piccinini L, Zuppi GM, Canuti P (2008) Groundwater flow systems in turbidites of the northern Apennines (Italy): natural discharge and high speed railway tunnel drainage. Hydrogeol J 16:1577–1599CrossRefGoogle Scholar
  31. Gran G (1952) Determination of the equivalence point in the potentiometric titrations. Analyst 77: 661–671CrossRefGoogle Scholar
  32. Guglielmi Y, Bertrand C, Compagnon F, Follacci JP, Mudry J (2000) Acquisition of water chemistry in a mobile fissured basement massif: its role in the hydrogeological knowledge of the La Clapière landslide (Mercantour Massif, Southern Alps, France). J Hydrol 229:138–148CrossRefGoogle Scholar
  33. Guglielmi Y, Vengeon JM, Bertrand C, Mudry J, Follacci JP, Giraud A (2002) Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses [Case study of La Clapière and Séchilienne alpine landslide]. Bull Eng Geol Environ 61:311–324CrossRefGoogle Scholar
  34. Helena B, Pardo B, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816CrossRefGoogle Scholar
  35. Hu S, Luo T, Jing C (2013) Principal component analysis of fluoride geochemistry of groundwater in Shanxi and Inner Mongolia, China. J Geochem Explor 135:124–129CrossRefGoogle Scholar
  36. Krzeminska DM, Bogaard TA, Debieche TH, Cervi F, Marc V, Malet JP (2014) Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments. Earth Surf Dyn 2:181–195CrossRefGoogle Scholar
  37. Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32(2):114–123CrossRefGoogle Scholar
  38. Leibundgut C, Maloszewski P, Külls C (2011) Tracers in hydrology. Wiley, New YorkCrossRefGoogle Scholar
  39. Liñán Baena C, Andreo B, Mudry J, Carrasco Cantos F (2009) Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: the Sierra de Las Nieves karst aquifer, southern Spain. Hydrogeol J 17:843–853CrossRefGoogle Scholar
  40. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88CrossRefGoogle Scholar
  41. López-Chicano M, Bouamama M, Vallejos A, Pulido-Bosch A (2001) Factors which determine the hydrogeochemical behaviour of karstic springs: a case study from the Betic Cordilleras, Spain. Appl Geochem 16:1179–1192CrossRefGoogle Scholar
  42. Marc V, Bertrand C, Malet JPh, Carry N, Simler R, Cervi F (2017) Groundwater-Surface waters interactions at slope and catchment scales: implications for landsliding in clay‐rich slopes. Hydrol. Process 31 (2): 364–381CrossRefGoogle Scholar
  43. Matiatos I, Alexopoulos A, Godelitsas A (2014) Multivariate statistical analysis of hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece). Sci Total Environ 476–477:577–590CrossRefGoogle Scholar
  44. Mazor E (2004) Chemical and isotopic groundwater hydrology. Dekker, New YorkGoogle Scholar
  45. Mikoš M, Cetina M, Brilly M (2004) Hydrologic conditions responsible for triggering the Stoze landslide, Slovenia. Eng Geol 73:193–213CrossRefGoogle Scholar
  46. Nisi B, Buccianti A, Vaselli O, Perini G, Tassi F, Minissale A, Montegrossi G (2008) Hydrogeochemistry and strontium isotopes in the Arno River basin (Tuscany, Italy): constraints on natural controls by statistical modeling. J Hydrol 360:166–183CrossRefGoogle Scholar
  47. Parkhurst DL, Appelo CAJ (2004) PHREEQC user’s manual program. US Geol Water Resour Invest Rep 99-4259Google Scholar
  48. Peng TR, Wang CH, Lai TC, Ho FS-K (2007) Using hydrogen, oxygen, and tritium isotopes to identify the hydrological factors contributing to landslides in a mountainous area, central Taiwan. Environ Geol 52:1617–1629CrossRefGoogle Scholar
  49. Peng T-R, Wang C-H, Hsu S-M, Chen C-N, Su T-W, Lee J-F (2012) Use of stable water isotopes to assess sources and influences of slope groundwater on slope failure. Hydrol Process 26:345–355CrossRefGoogle Scholar
  50. Pennisi M, Tonarini S, Leeman WP, Pennisi A, Nabelek P (2000) Sr, O and H isotope geochemistry of groundwaters from Mt. Etna (Sicily): hydrologic implications. Geochim Cosmochim Acta 64(6):961–974CrossRefGoogle Scholar
  51. Ravikumar P, Somashekar RK (2015) Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi River basin, Karnataka state, India. Appl Water Sci 7(2):745–755.  https://doi.org/10.1007/s13201-015-0287-x CrossRefGoogle Scholar
  52. Ronchetti F, Borgatti L, Cervi F, Gorgoni C, Piccinini L, Vincenzi V, Corsini A (2009) Groundwater processes in a complex landslide, northern Apennines. Nat Hazards Earth Syst Sci 9:895–904CrossRefGoogle Scholar
  53. Sajinkumar KS, Unnikrishnan Warrier C, Muraleedharan C, Shahul Hameed A, Rani VR, Pradeepkumar AP, Sundarajan P (2017) A study on landslides and subsurface piping, facilitated by dykes, using vertical electrical sounding and δ18O and δ2H stable isotopes. Bull Eng Geol Environ 76:1297–1306CrossRefGoogle Scholar
  54. Santoni S, Huneaua F, Garel E, Aquilina L, Vergnaud-Ayraudc V, Labasque T, Celle-Jeanton H (2016) Strontium isotopes as tracers of water–rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Sci Total Environ 573:233–246CrossRefGoogle Scholar
  55. Tamburini A, Del Conte S, Larini G, Lopardo L, Malaguti C, Vescovi P (2011) Application of SqueeSAR to the characterization of deep seated gravitational slope deformations: the Berceto case study (Parma, Italy). Proceedings of the Second World Landslide Forum, Rome, October 2011, pp 3–7Google Scholar
  56. Thornthwaite CW, Mater JR (1957) Instruction and tables for computing potential evapotranspiration and the water balance. Publ Clim 10:185–311Google Scholar
  57. Uliana MM, Banner JL, Sharp JM Jr (2007) Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. J Hydrol (3–4): 334–346CrossRefGoogle Scholar
  58. USGS (2005) A simple field leach test to assess potential leaching of soluble constituents from mine wastes, soils, and other geologic materials. US Geol Surv Fact Sheet 2005–3100Google Scholar
  59. Vallet A, Bertrand C, Mudry J, Bogaard T, Fabbri O, Baudement C, Régent B (2015) Contribution of time-related environmental tracing combined with tracer tests for characterization of a groundwater conceptual model: a case study at the Séchilienne landslide, Western Alps (France). Hydrogeol J 23:1761–1779CrossRefGoogle Scholar
  60. Vescovi P (2002) Foglio 216 “Borgo Val di Taro” della Nuova Carta Geologica d’Italia alla scala 1:50.000 e note illustrative. Servizio Geologico d’Italia, RomeGoogle Scholar
  61. Vespasiano G, Apollaro C, De Rosa R, Muto F, Larosa S, Fiebig J, Mulch A, Marini L (2015) The small spring method (SSM) for the definition of stable isotope–elevation relationships in northern Calabria (southern Italy). Appl Geochem 63:333–346CrossRefGoogle Scholar
  62. Xie X, Wang Y, Ellis A, Su C, Li J, Li M, Duan M (2013) Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China. J Hydrol 476: 87–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Geological SciencesUniversity of Modena and Reggio E.ModenaItaly
  2. 2.Department of Civil, Chemical, Environmental, and Materials EngineeringUniversity of BolognaBolognaItaly
  3. 3.Institute of Geosciences and Earth ResourcesCNRPisaItaly
  4. 4.UMR6249 Chrono-Environment—University of Bourgogne Franche-ComtéBesançon CedexFrance
  5. 5.Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed UrbanisticaUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations