Skip to main content

Advertisement

Log in

Spatial and temporal dynamics of deep percolation, lag time and recharge in an irrigated semi-arid region

Dynamique spatiale et temporelle de la percolation profonde, temps de retard et recharge dans une région semi-aride irriguée

Dinámica espacial y temporal de la percolación profunda, tiempo de retardo y recarga en una región semiárida irrigada

灌溉的半干旱地区深部渗透、滞留时间和补给的空间和时间上的动力学

Dinâmicas espaciais e temporais da percolação profunda, tempo de atraso e recarga em região semiárida irrigada

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The time required for deep percolating water to reach the water table can be considerable in areas with a thick vadose zone. Sustainable groundwater management, therefore, has to consider the spatial and temporal dynamics of groundwater recharge. The key parameters that control the lag time have been widely examined in soil physics using small-scale lysimeters and modeling studies. However, only a small number of studies have analyzed how deep-percolation rates affect groundwater recharge dynamics over large spatial scales. This study examined how the parameters influencing lag time affect groundwater recharge in a semi-arid catchment under irrigation (in northeastern Iran) using a numerical modeling approach. Flow simulations were performed by the MODFLOW-NWT code with the Vadose-Zone Flow (UZF) Package. Calibration of the groundwater model was based on data from 48 observation wells. Flow simulations showed that lag times vary from 1 to more than 100 months. A sensitivity analysis demonstrated that during drought conditions, the lag time was highly sensitive to the rate of deep percolation. The study illustrated two critical points: (1) the importance of providing estimates of the lag time as a basis for sustainable groundwater management, and (2) lag time not only depends on factors such as soil hydraulic conductivity or vadose zone depth but also depends on the deep-percolation rates and the antecedent soil-moisture condition. Therefore, estimates of the lag time have to be associated with specific percolation rates, in addition to depth to groundwater and soil properties.

Résumé

Le temps nécessaire à une eau percolant en profondeur pour atteindre la surface de la nappe peut être considérable dans les régions à zone vadose épaisse. Ainsi, la gestion durable de l’eau souterraine doit considérer la dynamique spatiale et temporelle de la recharge des eaux souterraines. Les paramètres-clés qui contrôlent le temps de retard ont été largement étudiés en physique des sols, en utilisant des lysimètres de petite échelle et des études sur modèle. Cependant, seul un petit nombre d’études ont analysé comment les taux de percolation profonde affectent la dynamique de la recharge des eaux souterraines à de grandes échelles spatiales. La présente étude examine comment les paramètres influençant le temps de retard affectent la recharge des eaux souterraines dans un bassin versant semi-aride sous irrigation (Nord-Est de l’Iran) en utilisant une approche par modèle numérique. Des simulations de l’écoulement ont été réalisées avec le code MODFLOW-NWT et le module d’écoulement de la Zone Vadose (UZF). Le calage du modèle des eaux souterraines a été effectué à partir de données provenant de 48 piézomètres. Les simulations de l’écoulement ont montré que le temps de retard varie de 1 mois à plus de 100 mois. Une analyse de sensibilité a montré que pendant des situations de sècheresse, le temps de retard était extrêmement sensible au taux de percolation profonde. L’étude a illustré deux points cruciaux : (1) l’importance de la fourniture d’estimations du temps de recharge comme base de la gestion durable des eaux souterraines, et (2) le temps de retard dépend non seulement de facteurs comme la conductivité hydraulique du sol ou la profondeur de la zone vadose, mais aussi des taux de percolation profonde et de la condition d’humidité antérieure du sol. Ainsi, les estimations du temps de retard doivent être associées aux taux de percolation spécifique, en sus de la profondeur des eaux souterraines et des propriétés du sol.

Resumen

El tiempo requerido para que el agua de filtración profunda llegue al nivel freático puede ser considerable en áreas con una zona vadosa espesa. La gestión sostenible del agua subterránea, por lo tanto, debe considerar la dinámica espacial y temporal de la recarga del agua subterránea. Los parámetros clave que controlan el tiempo de retardo se han examinado ampliamente en la física del suelo utilizando lisímetros de pequeña escala y estudios de modelización. Sin embargo, solo un pequeño número de estudios han analizado cómo las tasas de percolación profunda afectan la dinámica de recarga de aguas subterráneas en grandes escalas espaciales. Este estudio examinó cómo los parámetros que influyen en el tiempo de retardo afectan la recarga del agua subterránea en una cuenca semiárida bajo riego (noreste de Irán) utilizando un enfoque de modelado numérico. Las simulaciones de flujo se realizaron mediante el código MODFLOW-NWT con el paquete de flujo de Zona Vadosa (UZF). La calibración del modelo de agua subterránea se basó en datos de 48 pozos de observación. Las simulaciones de flujo mostraron que los tiempos de retardo varían de 1 a más de 100 meses. Un análisis de sensibilidad demostró que, durante las condiciones de sequía, el tiempo de retardo era muy sensible a la tasa de percolación profunda. El estudio ilustró dos puntos críticos: (1) la importancia de proporcionar estimaciones del tiempo de retardo como base para el manejo sostenible del agua subterránea, y (2) el tiempo de retardo no solo depende de factores como la conductividad hidráulica del suelo o la profundidad de la zona vadosa, sino que también depende en las tasas de percolación profunda y la condición antecedente de humedad del suelo. Por lo tanto, las estimaciones del tiempo de retardo deben asociarse con tasas de percolación específicas, además de la profundidad del agua subterránea y de las propiedades del suelo.

摘要

在包气带很厚的地区,深部渗透的水抵达水位所需要的时间值得考虑。因此,可持续的地下水管理不得不考虑地下水补给的空间和时间上的动力学。采用小尺度测渗仪及模拟研究在土壤物理学中广泛测验了控制滞留时间的关键参数。然而,只有很少一部分研究分析了大的空间尺度上深部渗透量是怎样影响地下水补给动力学的。本研究采用数值模拟方法研究了影响滞留时间的参数是怎样影响灌溉条件下半干旱汇水区(伊朗东北部)地下水补给的。利用带有包气带水流软件包的MODFLOW-NWT编码进行了水流模拟。地下水模型的校正基于48个观测井的数据。水流模拟显示,滞留时间从1个月到100多个月变化不等。灵敏度分析表明,干旱条件下,滞留时间对深部渗透量高度敏感。研究描述了关键两点:1)提供滞留时间的估算值作为可持续地下水管理的重要性;2)滞留时间不仅依赖于诸如土壤水力传导率或者包气带深度等因素,还依赖于深部渗透量以及先前的土壤水分条件。因此,滞留时间的估算值除了要考虑到地下水的深度和土壤特性,必须还要考虑单位渗透量。

Resumo

O tempo necessário para água percolada em profundidade atingir o nível freático pode ser considerável em áreas com zona vadosa espessa. O gerenciamento sustentável das águas subterrâneas, no entanto, tem que considerar as dinâmicas espaciais e temporais da recarga das águas subterrâneas. Os parâmetros chave que controlam o tempo de atraso foram amplamente examinados na física dos solos utilizando lisímetros de baixa-escala e estudos de modelagem. Entretanto, apenas um pequeno número de estudos analisou o quanto as taxas de percolação profunda afetaram as dinâmicas de recarga pelas escalas espaciais maiores. Esse estudo examinou como os parâmetros influenciando o tempo de atraso afetam a recarga de águas subterrâneas em uma bacia hidrográfica semiárida sob irrigação (Nordeste do Irã) utilizando abordagem de modelagem numérica. Simulações de fluxo foram executadas pelo código MODFLOW-NWT com pacote de fluxo de Zona Vadosa (UZF). A calibração do modelo de águas subterrâneas foi baseada em dados de 48 poços de observação. Simulações de fluxo demonstraram que os tempos de atraso variam de 1 a mais de 100 meses. A análise de sensibilidade demonstrou que durante condições de seca, o tempo de atraso foi altamente sensível às taxas de percolação profunda. O estudo ilustrou dois pontos críticos: (1) a importância das estimativas providas do tempo de atraso como base para gerenciamento de águas subterrâneas sustentáveis, e (2) tempo de atraso não apenas depende em fatores como condutividade hidráulica de solo ou profundidade de zona vadosa mas também depende das taxas de percolação profunda e condições de umidade de solo antecedente. Portanto, as estimativas de tempo de atraso têm que ser associadas com taxas de percolação especifica, em adição à profundidade das águas subterrâneas e propriedades do solo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi T, Ziaei AN, Davary K, Faridhosseini A, Izady A (2012) Estimation of groundwater recharge using various methods in Neishaboor Plain, Iran. IAHR International Groundwater Symposium, November 2012, Kuwait

    Chapter  Google Scholar 

  • Brunner P, Bauer P, Eugster M, Kinzelbach W (2004) Using remote sensing to regionalize local precipitation recharge rates obtained from the chloride method. J Hydrol 294(4):241–250. https://doi.org/10.1016/j.jhydrol.2004.02.023

    Article  Google Scholar 

  • Brunner P, Li HT, Kinzelbach W, Li WP, Dong XG (2008) Extracting phreatic evaporation from remotely sensed maps of evapotranspiration. Water Resour Res 44(8). https://doi.org/10.1029/2007wr006063

  • Brunner P, Doherty J, Simmons CT (2012) Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models. Water Resour Res 48(7). https://doi.org/10.1029/2011wr011342

  • Cao G (2011) Recharge estimation and sustainability assessment of groundwater resources in the North China Plain. PhD Thesis, The University of Alabama, Tuscaloosa, AL

  • Cao G, Scanlon BR, Han D, Zheng C (2016) Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. J Hydrol 537:260–270. https://doi.org/10.1016/j.jhydrol.2016.03.049

    Article  Google Scholar 

  • Cook PG, Solomon DK (1995) Transport of atmospheric trace gases to the water table: implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resour Res 31(2):263–270. https://doi.org/10.1029/94wr02232

    Article  Google Scholar 

  • Corona CR, Gurdak JJ, Dickinson JE, Ferré TPA, Maurer EP (2017) Climate variability and vadose zone controls on damping of transient recharge. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.08.028

    Article  Google Scholar 

  • de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17. https://doi.org/10.1007/s10040-001-0171-7

    Article  Google Scholar 

  • Dickinson JE, Ferré TPA, Bakker M, Crompton B (2014) A screening tool for delineating subregions of steady recharge within groundwater models. Vadose Zone J 13(6):15. https://doi.org/10.2136/vzj2013.10.0184

    Article  Google Scholar 

  • Doherty J (2016) Model-independent Parameter Estimation User Manual Part I: Pest Sensan and Global Optimisers. Watermark Numerical Computing, Brisbane, pp 390

  • Graham DN, Butts MB (2005) Flexible, integrated watershed modelling with MIKE SHE. In: Watershed models. CRC, Boca Raton, FL

  • Grismer ME (2013) Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA. Hydrol Process 27(3):378–393. https://doi.org/10.1002/hyp.9249

    Article  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Geological Survey, Reston, VA

  • Harrington GA, Cook PG, Herczeg AL (2002) Spatial and temporal variability of ground water recharge in Central Australia: a tracer approach. Groundwater 40(5):518–527. https://doi.org/10.1111/j.1745-6584.2002.tb02536.x

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge, UK

  • Hill MC (1998) Methods and guidelines for effective model calibration. US Geological Survey, Denver, CO

    Google Scholar 

  • Hocking M, Kelly BFJ (2016) Groundwater recharge and time lag measurement through vertosols using impulse response functions. J Hydrol 535:22–35. https://doi.org/10.1016/j.jhydrol.2016.01.042

    Article  Google Scholar 

  • Horst A, Mahlknecht J, Merkel BJ, Aravena R, Ramos-Arroyo YR (2008) Evaluation of the recharge processes and impacts of irrigation on groundwater using CFCs and radiogenic isotopes in the Silao-Romita basin, Mexico. Hydrogeol J 16(8):1601. https://doi.org/10.1007/s10040-008-0318-x

    Article  Google Scholar 

  • Hubbell JM, Nicholl MJ, Sisson JB, McElroy DL (2004) Application of a Darcian approach to estimate liquid flux in a deep vadose zone. Vadose Zone J 3(2):560–569. https://doi.org/10.2136/vzj2004.0560

    Article  Google Scholar 

  • Hunt RJ, Prudic DE, Walker JF, Anderson MP (2008) Importance of unsaturated zone flow for simulating recharge in a humid climate. Groundwater 46(4):551–560. https://doi.org/10.1111/j.1745-6584.2007.00427.x

    Article  Google Scholar 

  • Izady A, Davary K, Alizadeh A, Ziaei AN, Alipoor A, Joodavi A, Brusseau ML (2014) A framework toward developing a groundwater conceptual model. Arab J Geosci 7(9):3611–3631. https://doi.org/10.1007/s12517-013-0971-9

    Article  Google Scholar 

  • Izady A, Davary K, Alizadeh A, Ziaei A, Akhavan S, Alipoor A, Joodavi A, Brusseau M (2015) Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran. Hydrogeol J 23(1):47–68. https://doi.org/10.1007/s10040-014-1219-9

    Article  Google Scholar 

  • Khorasan Razavi Regional Water Authority (2011) Final report of extend prohibition of groundwater extraction increase (Neyshaboor plain case study) (in Persian). Ministry of Energy, Mashhad, pp 72

  • Khorasan-Razavi Regional Water Authority (2010) Water resources study of the Neishaboor watershed report (in Persian). In: Integrated study and water budget, vol 4. Ministry of Energy, Tehran

  • Kinzelbach W, Aeschbach W, Alberich C, Goni I, Beyerle U, Brunner P, Chiang W, Rueedi J, Zoellmann K (2002) A survey of methods for groundwater recharge in arid and semi-arid regions early warning and assessment report series, United Nations Environment Programme, Nairobi, Kenya

  • Kinzelbach W, Bauer P, Siegfried T, Brunner P (2003) Sustainable groundwater management: problems and scientific tools. Episodes 2003-news magazine of the International Union of Geological Sciences Ottawa, International Union of Geological Sciences, Paris, pp 279–284

  • Miller CT, Abhishek C, Farthing MW (2006) A spatially and temporally adaptive solution of Richards’ equation. Adv Water Resour 29(4):525–545. https://doi.org/10.1016/j.advwatres.2005.06.008

    Article  Google Scholar 

  • Nameghi H, Hosseini M, Mb S (2014) An analytical procedure for estimating land subsidence parameters using field data and InSAR images in Nieshaboor plain. J Iran Assoc Eng Geol 6(1–2):33–50

  • Niswonger RG, Prudic DE, Regan RS (2006) Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005. US Geological Survey, Reston, VA

  • Niswonger RG, Panday S, Ibaraki M (2011) MODFLOW-NWT, a Newton formulation for MODFLOW-2005. US Geological Survey Techniques and Methods 6-A37

  • O’Reilly AM (2004) A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model. US Geological Survey, Reston, VA

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Pfletschinger H, Prömmel K, Schüth C, Herbst M, Engelhardt I (2014) Sensitivity of vadose zone water fluxes to climate shifts in arid settings. Vadose Zone J 13(1):vzj2013.02.0043

    Article  Google Scholar 

  • Rawls W, Brakensiek D, Saxtonn K (1982) Estimation of soil water properties. Trans ASABE 25(5):1316–1320. https://doi.org/10.13031/2013.33720

    Article  Google Scholar 

  • Rossman N, Zlotnik VA, Rowe C, Szilagyi J (2014) Vadose zone lag time and potential 21st century climate change effects on spatially distributed groundwater recharge in the semi-arid Nebraska Sand Hills. J Hydrol 519:656–669. https://doi.org/10.1016/j.jhydrol.2014.07.057

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39. https://doi.org/10.1007/s10040-001-0176-2

    Article  Google Scholar 

  • Sharma ML, Hughes MW (1985) Groundwater recharge estimation using chloride, deuterium and oxygen-18 profiles in the deep coastal sands of Western Australia. J Hydrol 81(1):93–109. https://doi.org/10.1016/0022-1694(85)90169-6

    Article  Google Scholar 

  • Singh VP, Joseph ES (1994) Kinematic-wave model for soil-moisture movement with plant-root extraction. Irrig Sci 14(4):189–198. https://doi.org/10.1007/bf00190190

    Article  Google Scholar 

  • Smith RE (1983) Approximate soil water movement by kinematic characteristics. Soil Sci Soc Am J 47(1):3–8. https://doi.org/10.2136/sssaj1983.03615995004700010001x

    Article  Google Scholar 

  • Turkeltaub T, Dahan O, Kurtzman D (2014) Investigation of groundwater recharge under agricultural fields using transient deep vadose zone data. Vadose Zone J 13(4). https://doi.org/10.2136/vzj2013.10.0176

    Article  Google Scholar 

  • Wheater HS, Mathias SA, Li X (2010) Groundwater modelling in arid and semi-arid areas. Cambridge University Press, Cambridge, UK

  • Zharf Poya (2016) Geoelectric survey in Nieshaboor Plain (in Persian). Khorasan Razavi Regional Water Authority, Mashhad, pp 144

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Ministry of Science, Research and Technology of Iran and the Khorasan Razavi Regional Water Authority (grant No. 92035-KOW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarieh, F., Ansari, H., Ziaei, A.N. et al. Spatial and temporal dynamics of deep percolation, lag time and recharge in an irrigated semi-arid region. Hydrogeol J 26, 2507–2520 (2018). https://doi.org/10.1007/s10040-018-1789-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1789-z

Keywords

Navigation