Skip to main content

Advertisement

Log in

Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach

Evaluation de l’influence du changement climatique et du détournement d’eau entre bassins Sur le bassin versant de la rivière Haihe dans l’Est de la Chine: une approche de modélisation couplée

Evaluación de la influencia del cambio climático y el trasvase de agua entre cuencas en la Cuenca del río Haihe, este de China: un enfoque de Modelo acoplado

耦合模型法评估气候变化和跨流域调水对中国东部海河流域的影响

Avaliando a influência da mudança climática e transposição de água entre bacias na bacia do Rio Haihe, China oriental: uma abordagem de Modelo acoplado

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model–groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP’s operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.

Résumé

La modélisation des changements pour les eaux de surface et les eaux souterraines, dans les secteurs concernés par des projets de dérivation d’eau inter-bassins, est. assez difficile du fait que les modèles pour les eaux de surface et les eaux souterraines sont menés séparément la plupart du temps, et que l’absence de données suffisantes limite la mise en œuvre de modèles couplés eaux de surface/eaux souterraines basés sur des lois physiques, en particulier dans les pays en voie de développement. Dans cette étude, un modèle couplé distribué associant eaux de surface et eaux souterraines, dénommé modèle hydrogéologique distribué à gain variant dans le temps (MDGVT-MES), a été utilisé pour évaluer l’influence du changement climatique et la dérivation d’eau inter-bassins sur un cycle hydrologique du bassin versant. Le modèle MDGVT-MES peut représenter les processus d’interaction entre les eaux de surface et les eaux souterraines à l’échelle du bassin. Le modèle a été appliqué au bassin versant de la rivière Haihe (BRH) dans l’Est de la Chine. Les influences possibles du changement climatique et du projet de diversion des eaux du Sud vers le Nord (PDESN) sur les eaux de surface et souterraines dans le BRH ont été analysées pour différents scénarii. Les résultats ont montré que le modèle MDGVT-MES, nouvellement construit, peut raisonnablement simuler le ruissellement et écoulement de surface, et décrire les caractéristiques de la distribution spatio-temporelle des niveaux piézométriques, du stockage d’eaux souterraines et la recharge de l’aquifère. Les résultats des prévisions selon différents scénarii ont montré une diminution de l’exploitation annuelle des eaux souterraines et aussi du ruissellement dans le BRH, tandis qu’une augmentation du stockage des eaux souterraines et des niveaux piézométriques est. notée après la mise en œuvre du PDESN. De plus, comme le projet aborde également les scénarii futurs, une légère augmentation de l’évapotranspiration réelle, de la teneur en eau du sol et de la recharge de l’aquifère est. prévue. Cette étude fournit de précieuses informations pour développer des options de gestion durable des eaux souterraines pour le BRH.

Resumen

El modelado de los cambios en las aguas superficiales y subterráneas en las áreas de proyectos de trasvase de agua entre cuencas es bastante difícil porque los modelos de aguas superficiales y subterráneas se ejecutan por separado la mayoría del tiempo y la falta de datos suficientes limita la aplicación de modelos complejos con acoplamiento de aguas superficiales – aguas subterráneas basados en leyes físicas, especialmente para países en desarrollo. En este estudio, se utilizó un modelo distribuido de acoplamiento de aguas superficiales y subterráneas, denominado modelo de ganancia de variante de tiempo distribuido (DTVGM-GWM), para evaluar la influencia del cambio climático y el trasvase de agua entre cuencas en un ciclo hidrológico de la cuenca. El modelo DTVGM-GWM puede reflejar los procesos de interacción de aguas superficiales y subterráneas a escala de cuenca. El modelo se aplicó en la cuenca del río Haihe (HRB) en el este de China. Las posibles influencias del cambio climático y el proyecto de trasvase de agua de sur a norte (SNWDP) en aguas superficiales y subterráneas en la HRB se analizaron bajo varios escenarios. Los resultados mostraron que el modelo recientemente construido DTVGM-GWM puede simular razonablemente la escorrentía superficial y fluvial, y describir las características de distribución espacio-temporal del nivel de agua subterránea, el almacenamiento de agua subterránea y la recarga freática. Los resultados de la predicción en diferentes escenarios mostraron una disminución en la explotación anual de aguas subterráneas y también la escorrentía en la HRB, mientras que un aumento en el almacenamiento de aguas subterráneas y el nivel del agua subterránea después de la operación del SNWDP. Además, como el proyecto también aborda los escenarios futuros, se predice un ligero aumento en la evapotranspiración real, en el contenido de agua en el suelo y en la recarga freática. Este estudio proporciona información valiosa para desarrollar opciones sostenibles de gestión del agua subterránea para la HRB.

摘要

由于长期以来地表水模型和地下水模型在各自的领域独立运行,同时数据的匮乏限制了基于物理机制构建的复杂地表水-地下水模型的应用,特别是在发展中国家,这些因素给跨流域调水地区地表水和地下水变化的研究带来了巨大挑战。基于此,本文建立了一个分布式地表水-地下水耦合模型 (DTVGM-GWM) 用于评估气候变化和跨流域调水对流域水循环的影响,该模型可以在流域尺度上反映地表水和地下水的交互关系。本文进一步应用该模型采用多情景设置方法分析了气候变化和南水北调工程 (SNWDP) 对中国东部海河流域地表水和地下水的影响。研究结果表明,DTVGM-GWM 可以合理地模拟地表和河流径流, 描述地下水水位、地下水储量和潜水补给的时空分布特征。不同情景下的预测结果表明, 海河地下水的年开采量和径流量均呈下降趋势, 但在南水北调工程运行后地下水储量和地下水位开始增加。此外, 实际蒸散发、土壤含水量、潜水补给量受未来气候影响略有增加。本研究为海河流域地下水可持续管理提供了有价值的参考。

Resumo

A modelagem de mudança nas águas superficiais e subterrâneas em áreas de projeto transposição de água entre bacias é muito difícil porque os modelos de água superficial e subterrânea são executados na maior parte do tempo separadamente e a falta de dados suficientes limita a aplicação modelos complexo acoplados baseados nas leis físicas da água superficial/subterrânea, especialmente para países em desenvolvimento. Neste estudo, um modelo de água superficial e subterrânea acoplado distribuído, chamado de modelo de ganho variável no tempo – água subterrânea (distributed time variant gain model–groundwater model DTVGM-GWM), foi usado para avaliar a influência de mudança climática e transposição de água do ciclo hidrológico em bacia hidrográfica. O modelo DTVGM-GWM pode refletir o processo de interação entre a águas superficiais e a águas subterrâneas na escala da bacia. O modelo foi aplicado na Bacia do Rio Haihe (BRH) na China oriental. As possíveis influências da mudança climática e o projeto de transposição de água de Sul-a-Norte (PTASN) na água superficial e subterrânea na BRH foi analisada sob várias condições. Os resultados mostram que o modelo DTVGM-GWM recentemente construído pode simular racionalmente o escoamento superficial e fluvial, e descreve a distribuição espaço-temporal das características do nível, armazenamento e recarga das águas subterrâneas. Os resultados estimados sob diferentes condições mostraram um declínio anual na explotação da água subterrânea e também no escoamento na BRH, enquanto um acréscimo no armazenamento e nível freático das águas subterrâneas depois da operação do PTASN. Adicionalmente, como o projeto também analisou situações futuras, um pequeno acréscimo foi estimado na atual evapotranspiração, umidade do solo e recarga freática. Este estudo fornece informações valiosas para o desenvolvimento de opções sustentáveis de gerenciamento de águas subterrâneas para o BRH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alcamo J, Grassl H, Hoff H, Kabat P, Lansigan F, Lawford R, Lettenmaier D, Lévêque C, Meybeck M, Naiman R (2005) The Global Water system Project: science framework and implementation activities. University of North Texas Libraries, Denton, TX

  • Andersen J, Refsgaard JC, Jensen KH (2001) Distributed hydrological modelling of the Senegal River basin: model construction and validation. J Hydrol 247(3):200–214

    Article  Google Scholar 

  • Biswas AK (2004) Integrated water resources management: a reassessment—a water forum contribution. Water Int 29(2):248–256

    Article  Google Scholar 

  • Blasone RS, Madsen H, Rosbjerg D (2008) Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J Hydrol 353(1):18–32

    Article  Google Scholar 

  • Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Groundwater 50(2):170–176

    Article  Google Scholar 

  • Cao G, Zheng C, Scanlon BR, Liu J, Li W (2013) Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour Res 49(1):159–175

    Article  Google Scholar 

  • Chang Y, Wu J, Jiang G, Kang Z (2017) Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model. J Hydrol 548:75–87

  • Chen Z, Nie Z, Zhang Z, Qi J, Nan Y (2005) Isotopes and sustainability of ground water resources, North China Plain. Groundwater 43(4):485–493

    Article  Google Scholar 

  • Cui Y, Wang Y, Shao J, Chi Y, Lin L (2009) Research on groundwater regulation and recovery in North China Plain after the implementation of south-to-north water transfer (in Chinese with English abstract). Resource Science 31(3):382–387

    Google Scholar 

  • Duan Q, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158(3–4):265–284

    Article  Google Scholar 

  • Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary Aquifer of the North China Plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12(1):81–93

    Article  Google Scholar 

  • Gellens D, Roulin E (1998) Streamflow response of Belgian catchments to IPCC climate change scenarios. J Hydrol 210(1):242–258

    Article  Google Scholar 

  • Hornig JF (1999) Social and environmental impacts of the James Bay hydroelectric project, vol 18. McGill-Queen’s Press, Kingston, ON

  • Kendy E, Wang J, Molden DJ, Zheng C, Liu C, Steenhuis TS (2007) Can urbanization solve inter-sector water conflicts? Insight from a case study in Hebei Province, North China Plain. Water Policy 9(S1):75–93

    Article  Google Scholar 

  • Kim NW, Chung IM, Won YS, Arnold JG (2008) Development and application of the integrated SWAT–MODFLOW model. J Hydrol 356(1):1–16

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2006) Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958

    Article  Google Scholar 

  • Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59(1):1–28

    Article  Google Scholar 

  • Lieke VR, Sonnenborg TO, Jensen KH (2009) Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resour Res 45:150–164

    Google Scholar 

  • Little SP (1996) Canada’s capacity to control the flow: water export and the North American Free Trade Agreement. Pace Int’l L Rev 8:127

    Google Scholar 

  • Li L, Xia J, Xu CY, Singh VP (2010) Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. J Hydrol 390(3):210–221

    Article  Google Scholar 

  • Liu J, Zheng C (2016) Towards integrated groundwater management in China. In: Integrated groundwater management. Springer, Heidelberg, Germany, pp 455–475

  • Liu J, Zheng C, Zheng L, Lei Y (2008) Ground water sustainability: methodology and application to the North China Plain. Groundwater 46(6):897–909

    Google Scholar 

  • Mao X, Jia J, Liu C, Hou Z (2005) A simulation and prediction of agricultural irrigation on groundwater in well irrigation area of the piedmont of Mt. Taihang, North China. Hydrol Process 19(10):2071–2084

    Article  Google Scholar 

  • Markstrom SL, Niswonger RG, Regan RS, Prudic DE, Barlow PM (2008) GSFLOW: coupled ground-water and surface-water flow model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005), chap 1. In: US Geological Survey Ground-Water/Surface-WaterBook 6, Modeling techniques. https://pubs.usgs.gov/tm/tm6d1/. April 2018

  • Montanari A, Young G, Savenije H, Hughes D, Wagener T, Ren LL, Koutsoyiannis D, Cudennec C, Toth E, Grimaldi S (2013) “Panta Rhei–everything flows”: change in hydrology and society—the IAHS scientific decade 2013–2022. Hydrol Sci J 58(6):1256–1275

    Article  Google Scholar 

  • Nakayama T, Yang Y, Watanabe M, Zhang X (2006) Simulation of groundwater dynamics in the North China Plain by coupled hydrology and agricultural models. Hydrol Process 20(16):3441–3466

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Ning L, Xia J, Zhan C, Zhang Y (2016) Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis. J Arid Land 8(4):506–520

    Article  Google Scholar 

  • Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27(4):361–382

    Article  Google Scholar 

  • Panday S, Langevin CD, Niswonger RG, Ibaraki M, Hughes JD (2013) MODFLOW–USG version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. US Geol Surv Techniques Methods 6-A45

  • Perkins SP, Sophocleous M (1999) Development of a comprehensive watershed model applied to study stream yield under drought conditions. Groundwater 37(3):418–426

    Article  Google Scholar 

  • Qin H, Sun A, Liu J, Zheng C (2012) System dynamics analysis of water supply and demand in the North China Plain. Water Policy 14(2):214–231

    Article  Google Scholar 

  • Qin H, Cao G, Kristensen M, Refsgaard JC, Rasmussen MO, He X, Liu J, Shu Y, Zheng C (2013) Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrol Earth Syst Sci 17(10):3759–3778

    Article  Google Scholar 

  • Schmidt S, Geyer T, Marei A, Guttman J, Sauter M (2013) Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods. J Hydrol 502:177–190

    Article  Google Scholar 

  • Schmatz D, Luterbacher J, Zimmermann N, Pearman P (2015) Gridded climate data from 5 GCMs of the last glacial maximum downscaled to 30 arc s for Europe. Clim Past Discuss 11(3):2585–2613

    Article  Google Scholar 

  • Sebben ML, Werner AD, Liggett JE, Partington D, Simmons CT (2013) On the testing of fully integrated surface–subsurface hydrological models. Hydrol Process 27(8):1276–1285

    Article  Google Scholar 

  • Shao J, Zhao Z, Cui Y, Wang R, Li C, Yang Q (2009) Application of groundwater modeling system to the evaluation of groundwater resources in North China plain (in Chinese with English abstract). Resour Sci 31(3):361–367

    Google Scholar 

  • Shen C, Phanikumar MS (2010) A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling. Adv Water Resour 33(12):1524–1541

    Article  Google Scholar 

  • Shen H, Leblanc M, Tweed S, Liu W (2015) Groundwater depletion in the Hai River basin, China, from in situ and GRACE observations. Hydrol Sci J 60(4):671–687

    Article  Google Scholar 

  • Simpson SC, Meixner T, Hogan JF (2013) The role of flood size and duration on streamflow and riparian groundwater composition in a semi-arid basin. J Hydrol 488:126–135

    Article  Google Scholar 

  • Srivastava V, Graham W, Muñoz-Carpena R, Maxwell RM (2014) Insights on geologic and vegetative controls over hydrologic behavior of a large complex basin–global sensitivity analysis of an integrated parallel hydrologic model. J Hydrol 519:2238–2257

    Article  Google Scholar 

  • Wang G (2005) Theory and method of distributed time-variant gain model (in Chinese with English abstract). PhD Thesis, Institute of Geographic Sciences and Natural Resources Research, CAS, China

  • Wang G, Xia J, Chen J (2009) Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: a case study of the Chaobai River basin in northern China. Water Resour Res 45(7). https://doi.org/10.1029/2007WR006768

  • Wang L, Tian F, Hu H (2010) Physically based hydrological model using finite volume methods based on a triangulated irregular network. Adv Water Sci 21(6):733–741

    Google Scholar 

  • Wang Y, Zhang W, Zhao Y, Peng H, Shi Y (2016) Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the middle-lower Hanjiang River. J Hydrol 541:1348–1362

    Article  Google Scholar 

  • Xia J (1991) Identification of a constrained nonlinear hydrological system described by Volterra functional series. Water Resour Res 27(9):2415–2420

    Article  Google Scholar 

  • Xia J (2002) A system approach to real-time hydrologic forecast in watersheds. Water Int 27(1):87–97

    Article  Google Scholar 

  • Xia J, Ning L, Wang Q, Chen J, Wan L, Hong S (2016) Vulnerability of and risk to water resources in arid and semi-arid regions of West China under a scenario of climate change. Clim Change 144(3):549–563

  • Xia J, O’Connor KM, Kachroo RK, Liang GC (1997) A non-linear perturbation model considering catchment wetness and its application in river flow forecasting. J Hydrol 200(1–4):164–178

    Article  Google Scholar 

  • Xia J, Wang GS, Tan G, Ye A, Huang GH (2005a) Development of distributed time-variant gain model for nonlinear hydrological systems. Sci China Ser D Earth Sci 48(6):713–723

    Article  Google Scholar 

  • Xia J, Wang G, Ye A, Niu C (2005b) A distributed monthly water balance model for analyzing impacts of land cover change on flow regimes. Pedosphere 15(6):761–767

    Google Scholar 

  • Yan B, Chen L (2013) Coincidence probability of precipitation for the middle route of South-to-North Water Transfer Project in China. J Hydrol 499:19–26

    Article  Google Scholar 

  • Ye A (2007) Study on catchment water cycle simulation in changing environments (in Chinese with English abstract). PhD Thesis, Wuhan University, China

  • Ye A, Duan Q, Zeng H, Wang C (2010) A distributed time-variant gain hydrological model based on remote sensing. J Resour Ecol 1:222–230

    Google Scholar 

  • Yu Z, Pollard D, Cheng L (2006) On continental-scale hydrologic simulations with a coupled hydrologic model. J Hydrol 331(1):110–124

    Article  Google Scholar 

  • Zhan C, Song X, Xia J, Tong C (2013) An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environ Model Softw 41:39–52

    Article  Google Scholar 

  • Zhang G, Lian Y, Liu C, Yan M, Wang J (2011) Situation and origin of water resources in short supply in North China Plain. J Earth Sci Environ 33(2):172–176

    Google Scholar 

  • Zhang Y, Shao Q, Ye A, Xing H, Xia J (2016) Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration. Hydrol Earth Syst Sci 20(1):529–553

    Article  Google Scholar 

  • Zhang Z, Luo G, Wang Z, Liu C, Li Y, Jiang X (2009) Study on sustainable utilization of groundwater in North China Plain (in Chinese with English abstract). Resour Sci 31(3):355–360

    Google Scholar 

  • Zhou Y, Wang L, Liu J, Li W, Zheng Y (2012) Options of sustainable groundwater development in Beijing plain, China. Phys Chem Earth, Parts A/B/C 47:99–113

    Article  Google Scholar 

  • Zou J, Xie Z, Zhan C, Qin P, Sun Q, Jia B, Xia J (2015) Effects of anthropogenic groundwater exploitation on land surface processes: a case study of the Haihe River basin, northern China. J Hydrol 524:625–641

    Article  Google Scholar 

  • Zou R, Zhang X, Liu Y, Chen X, Zhao L, Zhu X, Guo H (2014) Uncertainty-based analysis on water quality response to water diversions for Lake Chenghai: a multiple-pattern inverse modeling approach. J Hydrol 514:1–14

    Article  Google Scholar 

Download references

Funding Information

This study was supported by the National Natural Science Foundation of China (No. 41571028), Hubei Province Science and Technology Support Plan (No. 2015BCA290) and the National Key Research and Development Program (during the 13th Five-year Plan), Ministry of Science and Technology, PRC (Grant No. 2016YFC0401301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Additional information

Published in the special issue “Groundwater sustainability in fast-developing China”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Wang, Q., Zhang, X. et al. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach. Hydrogeol J 26, 1455–1473 (2018). https://doi.org/10.1007/s10040-018-1773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1773-7

Keywords

Navigation