Hydrologic analysis of the challenges facing water resources and sustainable development of Wadi Feiran basin, southern Sinai, Egypt

Report
  • 221 Downloads

Abstract

Wadi Feiran basin is one of the most promising areas in southern Sinai (Egypt) for establishing new communities and for growth in agriculture, tourism, and industry. The present challenges against development include water runoff hazards (flash flooding), the increasing water demand, and water scarcity and contamination. These challenges could be mitigated by efficient use of runoff and rainwater through appropriate management, thereby promoting sustainable development. Strategies include the mitigation of runoff hazards and promoting the natural and artificial recharge of aquifers. This study uses a watershed modeling system, geographic information system, and classification scheme to predict the effects of various mitigation options on the basin’s water resources. Rainwater-harvesting techniques could save more than 77% of the basin’s runoff (by volume), which could be used for storage and aquifer recharge. A guide map is provided that shows possible locations for the proposed mitigation options in the study basin. Appropriate measures should be undertaken urgently: mitigation of groundwater contamination (including effective sewage effluent management); regular monitoring of the municipal, industrial and agricultural processes that release contaminants; rationalization and regulation of the application of agro-chemicals to farmland; and regular monitoring of contaminants in groundwater. Stringent regulations should be implemented to prevent wastewater disposal to the aquifers in the study area.

Keywords

Hydrologic analysis Water resources development Rainwater harvesting Sustainable development Egypt 

Analyze hydrologique des défis concernant les ressources en eau et le développement durable du bassin du Wadi Feiran dans le Sinaï méridional en Egypte

Résumé

Le bassin du Wadi Feiran est l’un des secteurs les plus prometteurs du Sud Sinaï (Egypte) pour établir de nouvelles communautés et pour la croissance de l’agriculture, du tourisme, et de l’industrie. Les défis actuels face au développement comprennent les risques liés au ruissellement (crues éclairs), la demande croissante en eau, la pénurie et la contamination de l’eau. Ces défis pourraient être atténués par l’utilization efficace des eaux superficielles et des eaux de pluie grâce à une gestion appropriée, favorisant de ce fait un développement durable. Les stratégies incluent la réduction des risques liés au ruissellement et favorisent la recharge normale et artificielle des aquifères. Cette étude utilize un modèle de bassin versant, un système d’information géographique, et une typologie pour prévoir les effets de diverses options de mitigation sur les ressources en eau du bassin. Les techniques de collecte des eaux pluviales pourraient économiser plus de 77% de l’eau superficielle du bassin (en volume), qui pourrait être employée pour le stockage et la recharge des aquifères. Une carte est présentée. Elle montre les endroits possibles pour les options de mitigation proposées dans le bassin d’étude. Des mesures appropriées devraient être prises instamment: réduction des contaminations des eaux souterraines (incluant la gestion efficace des effluents); surveillance régulière des actions municipales, industrielles et agricoles qui libèrent des contaminants; rationalization et règlementation de l’application des produits agrochimiques dans les exploitations agricoles; et surveillance régulière des contaminants dans les eaux souterraines. Des règlementations rigoureuses devraient être mises en place pour empêcher les rejets d’eaux usées vers les aquifères dans le secteur d’étude.

Análisis hidrológico de los desafíos que enfrentan los recursos hídricos y el desarrollo sostenible en la cuenca de Wadi Feiran, Sinaí meridional, Egipto

Resumen

La cuenca de Wadi Feiran en el sur del Sinaí (Egipto) es una de las áreas más prometedoras para establecer nuevas comunidades y para crecer en la agricultura, el turismo y la industria. Los desafíos actuales contra el desarrollo incluyen riesgos de escurrimientos de agua (inundaciones repentinas), la creciente demanda de agua y la escasez y contaminación del agua. Estos desafíos podrían mitigarse mediante el uso eficiente del escurrimiento y el agua de lluvia a través de una gestión adecuada, promoviendo así el desarrollo sostenible. Las estrategias incluyen la mitigación de los riesgos del escurrimiento y la promoción de la recarga natural y artificial de los acuíferos. Este estudio utiliza un sistema de modelado de cuencas hidrográficas, un sistema de información geográfica y un esquema de clasificación para predecir los efectos de diversas opciones de mitigación en los recursos hídricos de la cuenca. Las técnicas de recolección de agua de lluvia podrían ahorrar más del 77% del escurrimiento de la cuenca (en volumen), que podría utilizarse para el almacenamiento y la recarga del acuífero. Se proporciona un mapa guía que muestra posibles ubicaciones para las opciones de mitigación propuestas en la cuenca de estudio. Deben tomarse medidas apropiadas con urgencia: mitigación de la contaminación del agua subterránea (incluida la gestión efectiva de efluentes cloacales); monitoreo periódico de los procesos municipales, industriales y agrícolas que liberan contaminantes; racionalización y regulación de la aplicación de agroquímicos a las tierras agrícolas; y monitoreo periódico de contaminantes en el agua subterránea. Se deben implementar regulaciones estrictas para evitar la eliminación de aguas residuales a los acuíferos en el área de estudio.

التحليل الهيدرولوجي للتحديات التي تواجه موارد المياه والتنمية المستدامة لحوض وادي فيران بجنوب سيناء بمصر

الملخص

يعد حوض وادي فيران من أكثر المناطق الواعدة في جنوب سيناء بمصر لإقامة مجتمعات عمرانية جديدة وتوسعات زراعية وسياحية وصناعية؛ إلا أن هناك عديد من التحديات التى تقف عائقاً أمام التنمية المستدامة بمنطقة الحوض والتى تتمثل فى المخاطر الناجمة عن الجريان السطحي (السيول المفاجئة) وتزايد الطلب على المياه وندرة المياه وتلوثها، لقد بينت الدراسة الحالية أنه يمكن التغلب على هذه التحديات عن طريق الاستخدام الأمثل لمياه الأمطار والسيول من خلال تطبيق استراتيجيات وبدائل الإدارة المناسبة ومن ثم تعزيز التنمية المستدامة بالمنطقة، وتتمثل الاستراتيجيات المقترحة بهذه الدراسة على الحد من مخاطر الجريان السطحي وتعزيز التغذية الطبيعية والصناعية لخزانات المياه الجوفية بمنطقة الحوض. لقد اعتمدت هذه الدراسة على استخدام نظام نمذجة الأحواض المائية ونظم المعلومات الجغرافية وعمل نظام هيدرولوجى للتنبؤ بتأثير مختلف الخيارات والبدائل الاستراتيجية المقترحة على موارد المياه بالحوض، ولقد أظهرت نتائج الدراسة الحالية أن استخدام تقنيات حصاد مياه الأمطار والسيول يمكن أن يوفر أكثر من 77٪ من حجم مياه الجريان السطحي بمنطقة الحوض والتى يمكن تخزينها أو استخدامها فى تغذية خزانات المياه الجوفية بالمنطقة، ولقد تم فى هذه الدراسة إعداد خريطة إرشادية توضح أفضل المواقع للخيارات الاستراتيجية والبدائل المقترحة بمنطقة الحوض. وتوصى الدراسة الحالية بسرعة اتخاذ التدابير المناسبة للحد من تلوث المياه الجوفية بالمنطقة بما في ذلك الإدارة المثلى لمياه الصرف الصحي والرصد والمراقبة المنتظمة للعمليات والأنشطة البشرية والصناعية والزراعية التى قد تؤدى بدورها إلى تلوث الموارد المائية وإدارة وترشيد استخدام الكيماويات الزراعية بالأراضي الزراعية وكذلك الرصد المنتظم لملوثات المياه الجوفية، هذا وينبغى وضع لوائح وتشريعات صارمة لمنع التخلص من مياه الصرف إلى طبقات المياه الجوفية بمنطقة الحوض.

从水文角度上分析埃及西奈南部Wadi Feiran盆地面临水资源和可持续发展的挑战

摘要

Wadi Feiran盆地是(埃及)西奈南部建立新的社区、扩大农业生产、促进旅游业和工业最有希望的地区之一。目前发展的主要挑战包括水径流危害(骤发洪水)、日益增长的水需求、水匮乏和水污染。这些挑战可通过适当的管理有效利用径流和降雨得到缓解,从而促进可持续发展。策略包括减轻径流危害以及促进含水层天然和人工补给。本研究使用流域建模系统、地理信息系统和分类方案预测各种缓解选择方案对盆地水资源的影响。雨水收集技术可以保存盆地径流的77%以上(按体积计),这些保存的水可用于储存及含水层补给。本文提供的指南图显示出了本研究盆地内计划进行缓解选项的合适位置。迫切需要采取适当的措施:减轻地下水污染(包括有效的污水管理)、对城市、工业和农业排放污染物过程的定期监测、耕地使用农药的合理化和管理以及地下水污染物的定期监测。本地区应当实施迫切的管理规定,预防废水排放到含水层。

Análise hidrológica dos desafios encarados pelos recursos hídricos e desenvolvimento sustentável na bacia Wadi Feiran, sul do Sinai, Egito

Resumo

A bacia Wadi Feiran é uma das áreas mais promissoras do sul do Sinai (Egito) para o estabelecimento de novas comunidades e para o crescimento da agricultura, turismo e indústria. Os desafios atuais contra o desenvolvimento incluem riscos ligados ao escoamento superficial da água (inundações relâmpago), aumento da demanda de água e escassez de água e contaminação. Esses desafios poderiam ser mitigados pelo uso eficiente do escoamento superficial e da água da chuva através de uma gestão apropriada, promovendo o desenvolvimento sustentável. As estratégias incluem a mitigação de riscos ligados ao escoamento superficial e a promoção da recarga natural e artificial de aquíferos. Este estudo utiliza um sistema de modelagem de bacias hidrográficas, sistema de informação geográfica e esquema de classificação para prever os efeitos de várias opções de mitigação nos recursos hídricos da bacia. As técnicas de aproveitamento de águas pluviais podem poupar mais de 77% do escoamento superficial da bacia (em volume), que pode ser usado para armazenamento e recarga de aquíferos. É fornecido um mapa guia que mostra locais possíveis para as opções de mitigação propostas na bacia do estudo. Devem ser tomadas medidas adequadas de forma urgente: mitigação da contaminação das águas subterrâneas (incluindo o gerenciamento efetivo dos efluentes de esgoto); monitoramento regular dos processos municipais, industriais e agrícolas que liberam contaminantes; racionalização e regulação da aplicação de agroquímicos nas terras agrícolas; e monitoramento regular de contaminantes nas águas subterrâneas. Devem ser implementados regulamentos rigorosos para evitar a disposição de águas residuais para os aquíferos na área de estudo.

Notes

Acknowledgements

Our thanks go to the reviewers and the Hydrogeology Journal editorial team for their comments and assistance, which improved the quality of the article.

References

  1. Abdel Aziz HM (1999) Negotiating boundaries and reconstructing landscapes: a study of the relations between Bedouin, tourism and the state. PhD Thesis, University of Surrey, Guildford, UK, 346 ppGoogle Scholar
  2. Abdel-Azeem AA, Abdel-Moneim TS, Ibrahim ME, Saleh MY, Saleh SY, Abdel-Moneim AO (2009) Microbiological and physicochemical analysis of groundwater and its biological effect on population in Saint Katherine protectorate, Egypt. 13th International Water Technology Conference, IWTC 13, Hurghada, Egypt, March 2009, pp 1491–1513Google Scholar
  3. Abdel-Mogheeth SM, Hammad FA, Abdel-Daiem AA (1985) Hydrogeological remarks on Gharandal Basin, Southwest Sinai Peninsula. Desert Inst Bull 5(2):309–329Google Scholar
  4. Abdulla HA, Ghodeif K, El-Shatory S, Dewedar A (2003) Potential contamination of groundwater in the world heritage site of the St. Katherine Protectorate, Egypt. Egypt J Biol 5:1–9Google Scholar
  5. Abou El-Magd AA (2003) Quantitative hydrogeological studies on Wadi Feiran basin, South Sinai, with emphasis on the prevailing environmental conditions. MSc Thesis, Suez Canal University, Ismailia, Egypt, 252 ppGoogle Scholar
  6. Abou Rayan MA, Djebedjian B, Khaled I (2001) Water supply and demand and a desalination option for Sinai, Egypt. Desalination 136(1–3):73–81Google Scholar
  7. Abu-Alam TS (2010) Metamorphic and structural evolution of the Wadi Feiran Complex, Southwest Sinai. PhD Thesis, Karl-Franzens University, Graz, Austria, 133 ppGoogle Scholar
  8. Abuzied S, Yuan M, Ibrahim S, Kaiser M, Saleem T (2016) Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J Arid Environ 133:54–72CrossRefGoogle Scholar
  9. Aggour TA (2005) Water resources of Wadi Feiran with emphasis on geomorphology and geology. Annals Geol Surv Egypt 29:357–387Google Scholar
  10. Ahmed AA, Abdelkareem M, Asran AM, Mahran TM (2017) Geomorphic and lithologic characteristics of Wadi Feiran basin, southern Sinai, Egypt, using remote sensing and field investigations. J Earth Syst Sci 126(6).  https://doi.org/10.1007/s12040-017-0861-8
  11. Allam AI (2004) Agriculture, animal husbandry and fisheries assessment for the South Sinai Environmental Profile and Action Plan, phase I: overview of agriculture, animal husbandry and fisheries in South Sinai. ERM Draft report, Ministry of State for Environmental Affairs, Cairo and SEAM Programme, Gosforth, UK, 38 ppGoogle Scholar
  12. APHA (American Public Health Association) (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  13. ASCE (American Society of Civil Engineers) (1996) Hydrology handbook, manuals and reports on engineering practice. No. 28, ASCE, Washington, DC, 580 ppGoogle Scholar
  14. Attaher SM, Medany MA, El-Gindy A (2010) Feasibility of some adaptation measures of on-farm irrigation in Egypt under water scarcity conditions. Options Méditérr 95:307–312Google Scholar
  15. Awulachew SB, Merrey D, Kamara A, Van Koppen B, Penning de Vries F, Boelee E (2005) Experiences and opportunities for promoting small-scale/micro irrigation and rainwater harvesting for food security in Ethiopia. IWMI, Colombo, Sri LankaGoogle Scholar
  16. Badr El-Din SS (1998) Hydrogeological studies on Wadi Feiran area, South Sinai. MSc Thesis, Cairo Univ., Cairo, 178 ppGoogle Scholar
  17. Boelee E, Yohannes M, Poda JN, McCartney M, Cecchi P, Kibret S, Hagos F, Laamrani H (2013) Options for water storage and rainwater harvesting to improve health and resilience against climate change in Africa. Reg Environ Chang 13(3):509–519CrossRefGoogle Scholar
  18. Boers TM (1994) Rainwater harvesting in arid and semi-arid zones. International Institute for Land Reclamation and Improvement, Wageningen, The NetherlandsGoogle Scholar
  19. Boers TM, Ben-Asher J (1982) A review of rainwater harvesting. Agric Water Manag 5(2):145–158CrossRefGoogle Scholar
  20. CAPMAS (1990) Population census 1986, final results, South Sinai Governorate, Refs no. 853/90/AMT. Central Agency for Public Mobilization and Statistics, Cairo, pp 534Google Scholar
  21. CAPMAS (1996) Statistical yearbook. Central Agency for Public Mobilization and Statistics, CairoGoogle Scholar
  22. CAPMAS(1998) Population census 1996, final results, South Sinai Governorate. Refs no. 1102/1998/MT. Central Agency for Public Mobilization and Statistics, Cairo, pp 135Google Scholar
  23. CAPMAS (2008) Population census 2006, final results, South Sinai Governorate. Refs no. 1102/1103/2008/AMT. Central Agency for Public Mobilization and Statistics, Cairo, pp 135Google Scholar
  24. Charles MJ (2007) Rainwater harvesting systems for communities in developing countries. MSc Thesis, Michigan Technological Univ., Houghton, MI, 70 ppGoogle Scholar
  25. Chartzoulakis K, Paranychianakis N, Angelakis A (2001) Water resources management in the island of Crete, Greece, with emphasis on the agricultural use. Water Policy 3:193–205CrossRefGoogle Scholar
  26. Dames and Moore (1983) Sinai development study, phase (I), final report, vol 5, water supplies and costs. The Advisory Committee for Reconstruction, Ministry of Development, CairoGoogle Scholar
  27. Dowdy S, Weardon S, Chilko D (2004) Statistics for research, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  28. EEAA (Egyptian Environmental Affairs Agency) (2003) South Sinai Environmental Action Plan. Ministry of State for Environmental Affairs, Cairo and SEAM Programme, Gosforth, UK, 52 ppGoogle Scholar
  29. EEAA (Egyptian Environmental Affairs Agency) (2004) Growth in tourism in South Sinai: challenges facing tourism development. Working paper – May 2004, Ministry of State for Environmental Affairs, Cairo and SEAM Programme, Gosforth, UK, 10 ppGoogle Scholar
  30. EHCW (Egyptian Higher Committee for Water) (2007) Egyptian standards for drinking and domestic uses. EHCW, CairoGoogle Scholar
  31. El Afandi G, Morsy M, El Hussieny F (2013) Heavy rainfall simulation over Sinai Peninsula using the weather research and forecasting model. Int J Atmos Sci Hindawi Publ Corp 2013:241050, 11 pp.  https://doi.org/10.1155/2013/241050
  32. El Tokhi M (1992) Petrographical, geochemical and experimental studies on the migmatite rocks of Wadi Feiran, southern Sinai, Egypt. PhD Thesis, University of Karlsruhe, Karlsruhe, GermanyGoogle Scholar
  33. El-Etr HA, Saleh AS, Abdel Tawab S (1993) Mitigation of flash flood hazards of Wadi Feiran basin, Western Sinai, Egypt. Proc. Int. Conf. 30 Years Cooper, pp 309–333Google Scholar
  34. El-Etr HA, Salem SA, Samir A (1995) Mitigation of flash flood hazards of Wadi Feiran basin, Western Sinai, Egypt. Geol. Surv. Egypt Spec. Publ. 69, Geological Survey Egypt, Cairo, pp 309–333Google Scholar
  35. Elewa HH, Qaddah AA (2011) Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS-watershed-based modeling. Hydrogeol J 19:613–628CrossRefGoogle Scholar
  36. El-Fiky AA (2010) Hydrogeochemical characteristics and evolution of groundwater at the Ras Sudr-Abu Zenima Area, Southwest Sinai, Egypt. JKAU: Earth Sci 21(1):79–109  https://doi.org/10.4197/Ear.21-1.4
  37. El-Rayes AE (1992) Hydrogeological studies of Saint Katherine area, South Sinai, Egypt. MSc Thesis, Suez Canal University, Ismailia, EgyptGoogle Scholar
  38. El-Refaei AA (1992) Water resources of Southern Sinai, Egypt: geomorphological and hydrogeological studies. PhD Thesis, Suez Canal Univ., Ismailia, Egypt, 172 ppGoogle Scholar
  39. El-Sayed MM (2006) Geochemistry and petrogenesis of the post-orogenic bimodal dyke swarms in NW Sinai, Egypt: constraints on the magmatic-tectonic processes during the Late Precambrian. Chem Erde-Geochem 66(2):129–141CrossRefGoogle Scholar
  40. El-Sayed MH, Abo El-Fadl MM, Shawky HA (2012) Impact of hydrochemical processes on groundwater quality, Wadi Feiran, South Sinai, Egypt. Aust J Basic Appl Sci 6(3):638–654Google Scholar
  41. El-Shamy IZ, El-Rayes AE (1992) Hydrogeologic assessment of Saint Katherine area, South Sinai. Proc. 2nd Conf. Geol. Sinai Develop., Suez Canal Univ., Ismailia, Egypt, pp 71–76Google Scholar
  42. EMA (Egyptian Meteorological Authority) (2013) The monthly meteorological normal for Saint Katherine, database. EMA, CairoGoogle Scholar
  43. Eurostat (2001) Tourism trends in Mediterranean countries. European Commission, Brussels, 236 ppGoogle Scholar
  44. FAO (Food and Agriculture Organization of the United Nations) (2012) Country study on status of land tenure, planning and management in Oriental Near East countries, case of Egypt. FAO-SNO, Cairo 118 ppGoogle Scholar
  45. Farreny R, Gabarrell X, Rieradevall J (2011) Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods. Resour Conserv Recycl 55(7):686–694CrossRefGoogle Scholar
  46. Fathy I, Negm AM, El-Fiky M, Nassar M, Al-Sayed E (2015) Runoff hydrograph modeling for arid regions: case study—Wadi Sudr-Sinai. Int Water Technol J IWTJ 5(1):58–68Google Scholar
  47. Gaber S, El Bastawes M (2015) Estimating the flash flood quantitative parameters affecting the oil-fields infrastructures in Ras Sudr, Sinai, Egypt, during the January 2010 event. Egypt J Remote Sens Space Sci 18:137–149Google Scholar
  48. Gado TA (2017) Statistical characteristics of extreme rainfall events in Egypt. IWTC20, Hurghada, Egypt, 18–20 May 2017, 645 ppGoogle Scholar
  49. Garbrecht JD, Campbell J, Martz LW (2004) TOPAZ user manual: updated manual. GRL Miscell. Publ., Grazinglands Research Lab, El Reno, OKGoogle Scholar
  50. Geriesh MH (1998) Artificial recharge as an effective tool for augmenting the groundwater resources of Saint Katherine area, South Sinai, Egypt. Proc. 5th Conf. Geol. Sinai Develop., Ismailia, Egypt, 1998, pp 47–67Google Scholar
  51. Geriesh, El-Rayes (2000) Water quality assessment of Wadi Feiran catchment area, South Sinai, Egypt. IWTC 2000, Alexandria, Egypt, March 2000, pp 139–157Google Scholar
  52. Geriesh MH, El-Shamy IZ, Aboelmagd AA (2001) Flash flood mitigation and groundwater augmenting in Wadi Feiran basin, South Sinai, Egypt. Proceeding of the 6th conf. Geology of Sinai for Development, Ismailia, Egypt, 2001, pp 303–319Google Scholar
  53. Geriesh MH, El-Shamy IZ, Abouelmagd (2004) Long-term monitoring of the groundwater quality changes in Saint Katherine area, South Sinai, Egypt. Proceeding of the 7th Conf. Geol. of Sinai for Development, Ismailia, Egypt, 2004, pp 111–119Google Scholar
  54. Ghodeif KO (1995) Hydrogeological studies on east St. Katherine environ, South Central Sinai, Egypt. MSc Thesis, Suez Canal University, Ismailia, EgyptGoogle Scholar
  55. Gonzalez E, Rodriguez J, Cordero T, Koussis A, Rodriguez J (2005) Cost of reclaimed municipal wastewater for applications in seasonally stressed semi-arid regions. J Water Supply Res Technol AQUA 54(6):355–369Google Scholar
  56. Gowing JW, Mahoo HF, Mzirai OB, Hatibu N (1999) Review of rainwater harvesting techniques and evidence for their use in semi-arid Tanzania. Tanzania J Agric Sc 2(2):171-180Google Scholar
  57. Grainger J (2003) ‘People are living in the park’: linking biodiversity conservation to community development in the Middle East region—a case study from the Saint Katherine protectorate, southern Sinai. J Arid Environ 54:29–38CrossRefGoogle Scholar
  58. GSE (Geological Survey of Egypt) (1994) Geological map of Sinai, sheet no. 1, scale 1:25000. GSE, Cairo, EgyptGoogle Scholar
  59. Handia L, Tembo JM, Mwiindwa C (2003) Potential of rainwater harvesting in urban Zambia. Phys Chem Earth Parts A/B/C 28(20):893–896CrossRefGoogle Scholar
  60. Hassan EA (1997) Geomorphology and hydrogeology of Wadi Feiran area and its surroundings, Sinai-Egypt; MSc Thesis, Cairo Univ., Beni Suef, Egypt, 242 ppGoogle Scholar
  61. JICA (Japan International Cooperation Agency) (2000) The study on tourism development projects in the Arab Republic of Egypt. Final report, vol 2, main report, Pacific Consultants, Yachiyo, Japan, 270 ppGoogle Scholar
  62. Kabesh M, Asran MA, Abdel Rahman E (2013) Mineral chemistry of banded migmatites from Hafafit and Feiran areas, Egypt. Arab J Geosci 6:3669–3681CrossRefGoogle Scholar
  63. Kadam AK, Kale SS, Pande NN, Pawar N, Sankhua R (2012) Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of western India, using SCS-CN method. Water Resour Manag 26(9):2537–2554CrossRefGoogle Scholar
  64. Kandiah A, Ramaswamy K, Sampathrajan A (2008) Water harvesting: bringing green revolution to rainfed areas. Proc. of the Int. Symposium, Coimbatore, India, 23–25 June 2008, UNESCO, New DelhiGoogle Scholar
  65. Kassem M (1981) Hydrogeological studies in Wadi Feiran, South Western Sinai. MSc Thesis, Suez Canal University, Egypt, 181 ppGoogle Scholar
  66. Khafagi OA, Abdullah A (2016) Assessment of environmental influences on the vegetation of Taba protected area, South Sinai, Egypt. IOSR J Environ Sci Toxicol Food Technol 10(11 Ver. II):45–54.  https://doi.org/10.9790/2402-1011024554 Google Scholar
  67. Kumar MD, Ghosh S, Patel A, Singh OP, Ravindranath R (2006) Rainwater harvesting in India: some critical issues for basin planning and research. Land Use Water Resour Res 6(1):1–17Google Scholar
  68. Lamei A (2007) Need and potential for aquifer storage recovery in Egypt. 11th Int. Water Technology Conference, IWTC11 2007 Sharm El-Sheikh, Egypt, pp 663–667Google Scholar
  69. Lamei A (2009) A technical economic model for integrated water resources management in tourism dependent arid coastal regions: the case of Sharm El Sheikh, Egypt. PhD Thesis, Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  70. Lee MD, Visscher JT (1990) Water harvesting in five African countries. IRC occasional paper no. 14, IRC International Water and Sanitation Centre, The Hague, The NetherlandsGoogle Scholar
  71. Lee MD, JT Visscher (1992) Water harvesting: a guide for planners/project managers. IRC Tech. Paper series no. 30, IRC International Water and Sanitation Centre, The Hague, The NetherlandsGoogle Scholar
  72. Mahran TM, El Haddad AA, Hassan AM (2001) The impact of rift tectonics, paleoclimate and provenance on textural and mineralogical characteristics of syn-rift Miocene sediments of Sidri-Feiran area, southwestern Sinai, Egypt. 39th annual meeting of the Geol. Soc. Egypt, Cairo, Egypt, 3–4 Nov 2001Google Scholar
  73. Maidment DR (1993) Handbook of hydrology. McGraw-Hill, New YorkGoogle Scholar
  74. Masoud AA (2011) Runoff modeling of the Wadi systems for estimating flash flood and groundwater recharge potential in southern Sinai, Egypt. Arab J Geosci 4:785–801CrossRefGoogle Scholar
  75. Masoud M, Schumann S, Abdel Mogheeth S (2012) Estimation of groundwater recharge in arid, data scarce regions; an approach as applied in the El Hawashyia basin and Ghazala sub-basin (Gulf of Suez, Egypt). Environ Earth Sci.  https://doi.org/10.1007/s12665-012-1938-y
  76. Massoud U, Santos F, El Qady G, Atya M, Soliman M (2010) Identification of the shallow subsurface succession and investigation of the seawater invasion to the Quaternary aquifer at the northern part of El Qaa Plain, southern Sinai, Egypt by transient electromagnetic data. Geophys Prospect J 58:267–277CrossRefGoogle Scholar
  77. McClay KR, Nichols GJ, Khalil SM, Darwish M, Bosworth W (1998) Extensional tectonics and sedimentation, eastern Gulf of Suez, Egypt. In: Sedimentation and tectonics in Rift Basins Red Sea-Gulf of Aden. Springer, Heidelberg, Germany, pp 223–238Google Scholar
  78. Misak RF, Atwa SM, Sallouma MK, Hassanein AH (1995) Geology and water quality of the groundwater supplies in Sudr-Gharandal area, Gulf of Suez, Egypt. Bull Fac Sci Assiut Univ 24(2-F):1–21Google Scholar
  79. Moawad MB (2013) Analysis of the flash flood occurred on 18 January (2010) in Wadi El Arish, Egypt: a case study. Geomat Nat Haz Risk 4(3):254–274CrossRefGoogle Scholar
  80. Mohamed L, Sultan M, Ahmed M, Zaki A, Sauck W, Soliman F, Yan E, Elkadiri R, Abouelmaged A (2015) Structural controls on groundwater flow in basement terrains: geophysical, remote sensing, and field investigations in Sinai. Surv Geophys.  https://doi.org/10.1007/s10712-015-9331-5
  81. Motsi KE, Chuma E, Mukamuri BB (2004) Rainwater harvesting for sustainable agriculture in communal lands of Zimbabwe. Phys Chem Earth Parts A/B/C 29(15):1069–1073CrossRefGoogle Scholar
  82. MPWWR (Ministry of Public Works and Water Resources), CEC (Commission of European Community) (1993) Sinai Water Resources Study, phase II, final report, Commission of European Community, BrusselsGoogle Scholar
  83. Murthy GS, Murthy KG, Raghupathy G (2013) Designing earth dams optimally. 40th anniversary volume, IAPQR, Kolkata, pp 91–126Google Scholar
  84. Norfolk O, Eichhorn MP, Gilbert F (2013) Traditional agricultural gardens conserve wild plants and functional richness in arid South Sinai. Basic Appl Ecol 14:659–669CrossRefGoogle Scholar
  85. NRCS (USDA Natural Resources Conservation Service) (1986) Urban hydrology for small watersheds. Technical release no. 55, USDA, Washington, DCGoogle Scholar
  86. Omar KA (2014) Evaluating the effectiveness of in-situ conservation on some endemic plant species in South Sinai, Egypt. Am J Life Sci 2(3):164–175.  https://doi.org/10.11648/j.ajls.20140203.16 CrossRefGoogle Scholar
  87. PA Consulting Group (2008) Sustainable tourism development plan for South Sinai 2007–2017 executive summary. Consulting Services for Sustainable Tourism Development of South Sinai EuropeAid/122290/D/SV/EG, Version 2, PA Consult. Group, London, 61 ppGoogle Scholar
  88. Polyakov VO, Nichols MH, McClaran MP, Nearing MA (2014) Effect of check dams on runoff, sediment yield, and retention on small semiarid watersheds. J Soil Water Conserv 69(5):414–421.  https://doi.org/10.2489/jswc.69.5.414 CrossRefGoogle Scholar
  89. Prinz D, Singh A (2000) Technological potential for improvements of water harvesting. Gutachten für die World Commission on Dams, technical papers 126, UNEP, Nairobi, KenyaGoogle Scholar
  90. Rizk ZH (2016) The climate and environmental impacts in Southern Sinai: a study in applied climatology. MA Thesis, Cairo University, Cairo, EgyptGoogle Scholar
  91. Said R (1990) Geology of Egypt. Balkema, Rotterdam, The Netherlands, 722 ppGoogle Scholar
  92. Salem SA (2014) Assessment and modeling of Wadi Feiran at southern Sinai using the geographical information systems and remote sensing. PhD Thesis, Zagazig University, Zagazig, Egypt, 275 ppGoogle Scholar
  93. Sivanappan R (2006) Rain water harvesting, conservation and management strategies for urban and rural sectors. National Seminar on Rainwater Harvesting and Water Management, November 2006, Inst. of Eng., Nagpur, IndiaGoogle Scholar
  94. STDF (Science and Technology Development Fund) (2013) STDF grants, sustainable development of Sinai. Call for proposals, TC/4/April/2013/DS, Science and Technology Development Fund, CairoGoogle Scholar
  95. Sturchio NC, Arehart GB, Sultan M, Sano Y, AboKamar Y, Sayed M (1996) Composition and origin of thermal waters in the Gulf of Suez area, Egypt. Appl Geochem 11:471–479CrossRefGoogle Scholar
  96. Sturchio NC, Du X, Purtschert R, Lehmann BE, Sultan M, Patterson LJ, Lu ZT, Muller P, Bigler T, Bailey K, O’Connor TP, Young L, Lorenzo R, Becker R, El Alfy Z, El Kaliouby B, Dawood Y, Abdallah AMA (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31:L05503CrossRefGoogle Scholar
  97. Sultan M, Yan E, Sturchio N, Wagdy A, Milewski A, Abdel Gelil K, Manocha N, Becker R (2007) Natural discharge: a key to sustainable utilization of fossil groundwater. J Hydrol 335:25–36CrossRefGoogle Scholar
  98. Sultan SA, Mohameden MI, Santos FM (2009) Hydrogeophysical study of the El Qaa Plain, Sinai, Egypt. Bull Eng Geol Environ 68:525–537CrossRefGoogle Scholar
  99. Sultan M, Metwally S, Milewski A, Becker D, Ahmed M, Sauck W, Soliman F, Sturchio N, Yan E, Rashed M, Wagdy A, Becker R, Welton B (2011) Modern recharge to fossil aquifers: geochemical, geophysical, and modeling constraints. J Hydrol 403:14–24CrossRefGoogle Scholar
  100. TCEHI (The Caribbean Environmental Health Institute) (2009) Rainwater, catch it while you can: a handbook on rainwater harvesting in the Caribbean. UNEP, Nairobi, Kenya, 55 ppGoogle Scholar
  101. Thornton J (1998) Source book of alternative technologies for freshwater augmentation in Africa. UNEP, Nairobi, KenyaGoogle Scholar
  102. USACE (US Corps Army of Engineers) (2016) Hydrologic modeling system HEC-HMS user’s manual. CPD-74A, USACE, Washington, DC, 614 ppGoogle Scholar
  103. USACE (US Corps Army of Engineers) (2017) Hydrologic modeling system HEC-HMS, release notes version 4.2.1, USACE, Washington, DCGoogle Scholar
  104. Walpole RE, Myers RH, Myers SL, Ye K (2007) Probability and statistics for engineers and scientists, 8th edn. Pearson, LondonGoogle Scholar
  105. Ward S (2010) Rainwater harvesting in the UK: a strategic framework to enable transition from novel to mainstream. PhD Thesis, Exeter University, Exeter, UKGoogle Scholar
  106. Ward S, Memon F, Butler D (2008) Rainwater harvesting: model-based design evaluation. 11th Int. Conf. on Urban Drainage, Edinburgh, 31 August–5 September 2008 Google Scholar
  107. WHO (1996) Guidelines for drinking water quality, 2nd edn. Volume 2, Health criteria and other supporting information, 2nd edn. World Health Organization, GenevaGoogle Scholar
  108. WHO (1998) Guideline for drinking water quality, 2nd edn. Addendum to Volume 2, Health criteria and other supporting information. World Health Organization, GenevaGoogle Scholar
  109. Worm J, Van Hattum T (2006) Rainwater harvesting for domestic use, Agrodok 43. Agromisa Foundation and CTA, Wageningen, The Netherlands, 84 ppGoogle Scholar
  110. Youssef YS (2008) Flash floods and their effects on the development in El-Qaa plain area in South Sinai, Egypt: a study in applied geomorphology using GIS and remote sensing. PhD Thesis, Universität Mainz, Mainz, GermanyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geology Department, Faculty of ScienceSohag UniversitySohagEgypt
  2. 2.Geology Department, Faculty of ScienceMenoufia UniversityMenoufiaEgypt

Personalised recommendations