Skip to main content

Advertisement

Log in

Multi-approach assessment of the spatial distribution of the specific yield: application to the Crau plain aquifer, France

Evaluation multi-approche de la distribution spatiale du porosité efficace: application à l’aquifère de la plaine de la Crau, France

Evaluación por múltiples aproximaciones de la distribución espacial del rendimiento específico: aplicación al acuífero de la llanura de Crau, Francia

单位出水量空间分布的多种方法评价:在法国Crau平原含水层的应用

Avaliação de multiabordagem da distribuição espacial do rendimento específico: aplicação no aquífero da planície do Crau, França

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards’ equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9– 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.

Résumé

La répartition spatiale de la porosité efficace, paramètre fondamental pour le calcul de bilans des eaux souterraines en régime transitoire, ont été obtenues pour la plaine de la Crau (France) à partir de trois méthodes indépendantes. Contrairement à son utilisation traditionnelle pour évaluer la recharge à partir d'une porosité efficace donnée, la méthode de fluctuation de la nappe phréatique (FNP), appliquée à des événements de recharge majeurs, a donné un premier ensemble de valeurs de référence. Ensuite, de grands processus d’infiltration enregistrés par des forages surveillés et provoqués par des événements pluvieux majeurs ont été interprétés en termes de porosité efficace au moyen d’un modèle numérique vertical unidimensionnel résolvant les équations de Richards au sein de la zone-non-saturée. Enfin, deux campagnes de mesures gravimétriques, à des niveaux piézométriques de basses et hautes eaux, ont été réalisées pour évaluer la variation de masse des eaux souterraines et donc des valeurs alternatives de porosité efficace. La gamme obtenue par la méthode FNP pour cet aquifère constitué de matériaux détritiques alluviaux était de 2.9–26%, en accord avec les rares données disponibles jusqu’à présent. La valeur spatiale moyenne du rendement spécifique par la méthode FNP (9.1%) est conforme à la valeur à l’échelle de l’aquifère par approche hydro-gravimétrique. Jusque-là inconnue, une estimation de la distribution spatiale de la porosité efficace a été obtenue pour l’ensemble de la plaine de la Crau en utilisant la méthode la plus fiable (la méthode FNP). En utilisant cette distribution, le calcul du bilan de masse des eaux souterraines pour le domaine a donné des résultats similaires à une quantification indépendante basée sur un modèle de mélange des isotopes stables de l'eau. Cette cohérence plaide en faveur de la pertinence de ces estimations, qui peuvent être utilisées pour élaborer un modèle hydrogéologique en régime transitoire plus précis.

Resumen

Se obtuvieron los valores espacialmente distribuidos del rendimiento específico, un parámetro fundamental para los cálculos del balance transitorio de masas del agua subterránea, por medio de tres métodos independientes en la llanura de Crau, Francia. A diferencia de su uso tradicional para evaluar la recarga en función de un rendimiento específico dado, el método de fluctuación de la capa freática (WTF), aplicado a eventos de recarga importantes, dio un primer conjunto de valores de referencia. Luego, los grandes procesos de infiltración registrados en las perforaciones monitoreadas y causados por los eventos de mayor precipitación fueron interpretados en términos de rendimiento específico por medio de un modelo numérico vertical unidimensional que resolvió las ecuaciones de Richards dentro de la zona no saturada. Finalmente, se llevaron a cabo dos campañas de mediciones del campo de gravedad, con niveles piezométricos altos y bajos, para evaluar la variación de la masa de agua subterránea y, por lo tanto, los valores alternativos de rendimiento específicos. El rango obtenido por el método WTF para este acuífero constituido por material detrítico aluvial fue de 2.9–26%, en línea con los escasos datos disponibles hasta el momento. El valor espacial promedio del rendimiento específico por el método WTF (9.1%) es consistente con el valor de escala del acuífero con un enfoque hidrogravimétrico. En esta investigación, se obtuvo una estimación de la distribución espacial hasta ahora desconocida del rendimiento específico sobre la llanura de Crau utilizando el método más confiable (el método WTF). Un cálculo de balance de masa del agua subterránea sobre el dominio utilizando esta distribución arrojó resultados similares a una cuantificación independiente basada en un modelo de mezcla de isótopos estables. Este acuerdo refuerza la relevancia de tales estimaciones, que pueden usarse para construir un modelo hidrogeológico transitorio más preciso.

摘要

单位出水量空间分布的值是瞬时地下水质量平衡计算中的基本参数,在法国Crau平原,这个数值通过三个独立的方法获取。与传统的采用基于特定的单位出水量评价补给相比,采用主要补给事件应用到水位波动法中,该方法首先给出了一套参考值。然后,通过一维垂直数值模型对监测井记录的以及主要降水事件导致的大的入渗过程中单位出水量进行解译以求解非饱和带内的Richards’方程。最终,在高、低两个测压水位进行了两个重力野外测试,以评价地下水质量变化以及替代的单位出水量值。对冲积碎屑物质组成的本含水层通过水位波动法获取的范围为2.9–26%,与到目前为止可获取的匮乏数据相一致。通过水位波动法获取的单位出水量平均空间值(9.1%)与水文重力方法获取的含水层匮乏值一致。在本研究中, Crau平原迄今为止未知的单位出水量空间分布采用最可靠的方法(水位波动法)获得。采用这个分布进行的整个域的地下水质量平衡计算得出结果与基于稳定同位素混合模型的独立定量法得出的结果类似。这样的一致增强了如此估算值关联性,可用来构建更加精确的瞬时水文地质模型。

Resumo

Valores distribuídos espacialmente de rendimento especifico, um parâmetro fundamental para os cálculos de balanço de massa das águas subterrâneas transientes, foram obtidos por meio de 3 métodos independentes para a planície do Crau, França. Em contraste ao seu uso tradicional para avaliar recarga baseado em um rendimento especifico dado, o método da variação da superfície livre (WTF), aplicado utilizando os maiores eventos de recarga, mostrou um primeiro conjunto de valores de referência. Então, grandes processos de infiltração causados pelos maiores eventos de precipitação foram registrados pelos poços de monitoramento e foram interpretados em termos de rendimento específico por meio de um modelo numérico vertical unidimensional resolvendo equações de Richards na zona não saturada. Finalmente, duas campanhas de campo gravitacional, em níveis piezométricos baixos e altos, foram realizadas para avaliar a variação de massa das águas subterrâneas e assim os valores alternativos de rendimento especifico. O alcance obtido pelo método WTF para esse aquífero feito de material detrital aluvial foi de 2.9–26%, alinhado aos dados escassos. O valor espacial médio do rendimento específico para o método WTF (9.1%) é consistente com o valor de escala do aquífero para abordagem hidrogravimétrica. Nessa investigação, uma estimativa da distribuição espacial desconhecida até o momento do rendimento especifico sobre a planície do Crau foi obtida utilizando o método mais confiável (o método WTF). Um cálculo de balanço de massa de águas subterrâneas sobre o domínio utilizando essa distribuição rendeu resultados similares para uma quantificação independente baseada em um modelo de mistura de isótopos estáveis. Essa concordância reforça a relevância de tais estimativas, que podem ser usadas para construir um modelo hidrogeológico transiente mais preciso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albinet M, Bonnet M, Colomb E, Cornet G (1969) Carte hydrogéologique de la France, 993-1019, Istres-Eyguières, Plaine de la Crau [Hydrogeological map of France, 993-1019, Istres-Eyguières, Crau plain]. 1/50000. BRGM, Orleans, France

  • ANTEA (1995) Municipality of Salon de Provence (13) - Application for authorization to use water taken from the natural environment [Commune de Salon de Provence (13) - Demande d’autorisation d’utilisation d’eau prélevée dans le milieu naturel].

  • Bader J-C, Saos J-L, Charron F (2010) Modèle de ruissellement, avancement et infiltration pour l’irrigation à la planche Sur un sol recouvrant un sous-sol très perméable [Runoff, advancement and infiltration model for board irrigation method on a soil covering a highly permeable subsoil]. Hydrol Sci J 55:177–191. https://doi.org/10.1080/02626660903546050

    Article  Google Scholar 

  • Becker M, Meyssignac B, Xavier L, Cazenave A, Alkama R, Decharme B (2011) Past terrestrial water storage (1980–2008) in the Amazon Basin reconstructed from GRACE and in situ river gauging data. Hydrol Earth Syst Sci 15:533–546. https://doi.org/10.5194/hess-15-533-2011

    Article  Google Scholar 

  • Beilin J (2006) Apport de la gravimétrie absolue à la réalisation de la composante gravimétrique du Réseau Géodésique Français [Contribution of absolute gravimetry to the realization of the gravimetric component of the French Geodetic Network]. Inst. Géographique National, Saint-Mandé, France

  • Berard P, Daum JR, Martin JC (1995) “MARTCRAU”: actualisation du modèle de la nappe de la Crau [“MARTCRAU”: updating the Crau aquifer model]. BRGM, Orleans, France

  • Beven K (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Adv Water Resour 16:41–51

    Article  Google Scholar 

  • Boissard G (2009) Geological and hydrogeological synthesis. Quantitative assessment of the impact on the water resource [Synthèse géologique et hydrogéologique. Évaluation quantitative de l’impact sur la ressource en eau], Report F, ICF Environnement.

  • Bonnet M, Clouet D’Orval M, Friedlaender M, Margat J (1972) Etude de l’infiltration dans les nappes libres: essai d’identification automatique par modèles inverses—application à la nappe de la Crau [Study of infiltration in unconfined aquifers: automated identification by inverse models—application to the Crau aquifer]. BRGM, Orleans, France

  • Bonvalot S, Remy D, Deplus C, Diament M, Gabalda G (2008) Insights on the March 1998 eruption at Piton de la Fournaise volcano (La Reunion) from microgravity monitoring. J Geophys Res Solid Earth 113(B5):B05407

  • BRGM (2016a) Portail national d’accès aux données sur les eaux souterraines (ADES) [National portal for access to groundwater data (ADES)]. BRGM, Orleans, France. http://www.ades.eaufrance.fr/. Accessed March 2018

  • BRGM (2016b) Banque de données du Sous-Sol (BSS) [Underground database (BSS)]. BRGM, Orleans, France. http://infoterre.brgm.fr/. Accessed March 2018

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media and their relation to drainage design. Trans ASAE 7:26–28

    Article  Google Scholar 

  • Chapman DS, Sahm E, Gettings P (2008) Monitoring aquifer recharge using repeated high-precision gravity measurements: a pilot study in South Weber, Utah. Geophysics 73:WA83–WA93

    Article  Google Scholar 

  • Christiansen L, Binning PJ, Rosbjerg D, Andersen OB, Bauer-Gottwein P (2011) Using time-lapse gravity for groundwater model calibration: an application to alluvial aquifer storage. Water Resour Res 47:12. https://doi.org/10.1029/2010WR009859

    Article  Google Scholar 

  • Colomb E, Roux MR (1978) La Crau, données nouvelles et interprétations [The Crau plain, new data and interpretations]. Géol Mediterr 5:303–324

    Google Scholar 

  • Courault D, Hadria R, Ruget F, Olioso A, Duchemin B, Hagolle O, Dedieu G (2010) Combined use of FORMOSAT-2 images with a crop model for biomass and water monitoring of permanent grassland in Mediterranean region. Hydrol Earth Syst Sci 14:1731–1744. https://doi.org/10.5194/hess-14-1731-2010

    Article  Google Scholar 

  • Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41:9. https://doi.org/10.1029/2004WR003077

    Article  Google Scholar 

  • Cuthbert MO (2010) An improved time series approach for estimating groundwater recharge from groundwater level fluctuations. Water Resour Res 46:11. https://doi.org/10.1029/2009WR008572

    Article  Google Scholar 

  • Cuthbert MO (2014) Straight thinking about groundwater recession. Water Resour Res 50:2407–2424. https://doi.org/10.1002/2013WR014060

    Article  Google Scholar 

  • De Marsily G (1986) Quantitative hydrogeology. Paris School of Mines, Fontainebleau, France

    Google Scholar 

  • Dean JF, Webb JA, Jacobsen GE, Chisari R, Dresel PE (2015) A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses. Hydrol Earth Syst Sci 19:1107–1123. https://doi.org/10.5194/hess-19-1107-2015

    Article  Google Scholar 

  • Dellery B, Durozoy G, Forkasiewicz J, Gouvernet C, Margat J (1964) Etude hydrogéologique de la Crau [Hydrogeological study of the Crau plain]. BRGM, Orleans, France

  • Deville S (2013) Caractérisation de la zone non saturée des karsts par la gravimétrie et l’hydrogéologie [Characterization of the unsaturated zone of karsts by gravimetry and hydrogeology]. Université Montpellier II-Sciences et Techniques du Languedoc, Montpellier, France

  • Fiedler FR (2003) Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. J Hydrol Eng 8:219–221

    Article  Google Scholar 

  • Forkasiewicz J (1972) Practical workbook of pumping tests interpretation [Cahier des travaux pratiques d’interprétation des pompages d’essai], BRGM.

  • Garnier JL, Syssau A (1976) Final report of hydrogeological monitoring of the drilling of the société Lorraine-Provence in Saint Martin de Crau (Bouches du Rhône) [Rapport final de surveillance hydrogéologique du forage de la société Lorraine-Provence à Saint Martin de Crau (Bouches du Rhône)], BRGM.

  • GO-13 (2009) MNT 2009 5 m - DEPT 13 (DTM 2009 5 m - DEPT 13). CRIGE-PACA, Aix-en-Provence, France. http://www.crige-paca.org/. Accessed March 2018

  • Gonçalvès J, Petersen J, Deschamps P, Hamelin B, Baba-Sy O (2013) Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys Res Lett 40:2673–2678

    Article  Google Scholar 

  • Hall DW, Risser DW (1993) Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County Pennsylvania. J Am Water Resour Assoc 29:55–76. https://doi.org/10.1111/j.1752-1688.1993.tb01504.x

    Article  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. https://doi.org/10.1007/s10040-001-0178-0

    Article  Google Scholar 

  • Hector B, Seguis L, Hinderer J, Descloitres M, Vouillamoz JM, Wubda M, Boy JP, Luck B, Le Moigne N (2013) Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection. Geophys J Int 194:737–750. https://doi.org/10.1093/gji/ggt146

    Article  Google Scholar 

  • Heliotis FD, DeWitt CB (1987) Rapid water table responses to rainfall in a northern peatland ecosystem. J Am Water Resour Assoc 23:1011–1016. https://doi.org/10.1111/j.1752-1688.1987.tb00850.x

    Article  Google Scholar 

  • Howle JF, Phillips SP, Denlinger RP, Metzger LF (2003) Determination of specific yield and water-table changes using temporal microgravity surveys collected during the second injection, storage, and recovery test at Lancaster, Antelope Valley, California, November 1996 through April 1997. US Geological Survey, Reston, VA

  • Hwang C, Wang C-G, Lee L-H (2002) Adjustment of relative gravity measurements using weighted and datum-free constraints. Computers Geosci 28:1005–1015. https://doi.org/10.1016/S0098-3004(02)00005-5

    Article  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Jacob T (2009) Apport de la gravimétrie et de l’inclinométrie à l’hydrologie karstique [Contribution of gravimetry and inclinometry to karst hydrology]. PhD Thesis, Montpellier 2 University, Montpellier, France

  • Jacob T, Bayer R, Chery J, Jourde H, Le Moigne N, Boy JP, Hinderer J, Luck B, Brunet P (2008) Absolute gravity monitoring of water storage variation in a karst aquifer on the Larzac plateau (southern France). J Hydrol 359:105–117

    Article  Google Scholar 

  • Jacob T, Bayer R, Chery J, Le Moigne N (2010) Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. J Geophys Res Solid Earth 115(6):B06402

  • Jie Z, van Heyden J, Bendel D, Barthel R (2011) Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations. Hydrogeol J 19:1487–1502

    Article  Google Scholar 

  • Jourde H, Brunet P (2001) Report on the tracing test carried out on the SNCF railway station in Miramas (13) [Rapport relatif à l’essai de traçage réalisé sur la gare de triage SNCF de Miramas (13)]

  • Kroner C, Jahr T (2006) Hydrological experiments around the superconducting gravimeter at Moxa observatory. J Geodyn 41:268–275

    Article  Google Scholar 

  • Lederer M (2009) Accuracy of the relative gravity measurement. Acta Geodyn Geomater 6:155

    Google Scholar 

  • Maier J (2010) Feasibility study for the management of groundwater pollution by the ANS - Assessment of the natural attenuation potential. 1: Hydrochemical and microbiological investigations [Etude de faisabilité pour la gestion de la pollution des eaux souterraines par l’ANS - Evaluation du potentiel d’atténuation naturelle. 1 : Investigations hydrochimiques et microbiologiques]. Report, ICF Environnement.

  • Mailhol JC, Merot A (2007) SPFC: a tool to improve water management and hay production in the Crau region. Irrig Sci 26:289–302. https://doi.org/10.1007/s00271-007-0099-3

    Article  Google Scholar 

  • Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329:281–293. https://doi.org/10.1016/j.jhydrol.2006.02.022

    Article  Google Scholar 

  • McCulloh TH (1965) A confirmation by gravity measurements of an underground density profile based on core densities. Geophysics 30:1108–1132

    Article  Google Scholar 

  • Melchior P (2008) Gravimetric measuring techniques. Phys Methods Instrum Meas Encycl Life Support Syst EOLSS 2:259–290

    Google Scholar 

  • Merlet S, Kopaev A, Diament M, Geneves G, Landragin A, Dos Santos FP (2008) Micro-gravity investigations for the LNE watt balance project. Metrologia 45:265

    Article  Google Scholar 

  • Météo-France (2016) Données publiques climatiques [Public climate data]. https://donneespubliques.meteofrance.fr/. Accessed March 2018

  • Miller EE, Miller RD (1956) Physical theory for capillary flow phenomena. J Appl Phys 27:324–332. https://doi.org/10.1063/1.1722370

    Article  Google Scholar 

  • Millman KJ, Aivazis M (2011) Python for scientists and engineers. Comput Sci Eng 13:9–12. https://doi.org/10.1109/MCSE.2011.36

    Article  Google Scholar 

  • Montgomery EL (1971) Determination of coefficient of storage by use of gravity measurements. PhD Thesis, University of Arizona, Tucson, AZ

  • Moon S-K, Woo NC, Lee KS (2004) Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J Hydrol 292:198–209

    Article  Google Scholar 

  • NASA (2016) GLDAS data. In: Goddard Earth Sci. Data Inf. Serv. Cent. GES DISC. https://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=GLDAS. Accessed March 2018

  • Naujoks M, Kroner C, Weise A, Jahr T, Krause P, Eisner S (2010) Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model. Geophys J Int 182:233–249

    Google Scholar 

  • Olioso A, Lecerf R, Baillieux A, Chanzy A, Ruget F, Banton O, Lecharpentier P, Trolard F, Cognard-Plancq AL (2013) Modelling of drainage and hay production over the Crau aquifer for analysing impact of global change on aquifer recharge. Procedia Environ Sci 19:691–700. https://doi.org/10.1016/j.proenv.2013.06.078

    Article  Google Scholar 

  • Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–20. https://doi.org/10.1109/MCSE.2007.58

    Article  Google Scholar 

  • Park E, Parker JC (2008) A simple model for water table fluctuations in response to precipitation. J Hydrol 356:344–349

    Article  Google Scholar 

  • Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33:425–432

    Article  Google Scholar 

  • Porchet M (1930) Etude des eaux souterraines de la Crau [Groundwater study of the Crau plain]. Ann Ministère Agric:203–223

  • Ramillien G, Frappart F, Seoane L (2014) Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens 6:7379–7405. https://doi.org/10.3390/rs6087379

    Article  Google Scholar 

  • Rawls WJ, Brakensiek DL, Saxtonn KE (1982) Estimation of soil water properties. Trans ASAE 25:1316–1320

    Article  Google Scholar 

  • Rivière A, Gonçalvès J, Jost A, Font M (2014) Experimental and numerical assessment of transient stream–aquifer exchange during disconnection. J Hydrol 517:574–583. https://doi.org/10.1016/j.jhydrol.2014.05.040

    Article  Google Scholar 

  • Rodell M, Beaudoing HK (2013) NASA/GSFC/HSL (2013), GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree Version 2.0, version 020, Greenbelt, Maryland, USA. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD

  • Scintrex Ltd. (2006) CG-5 Scintrex Autograv system operation manual. Scintrex, Concord, ON

    Google Scholar 

  • Seraphin P (2016) Contribution du traçage isotopique (δ18O et δD) à la compréhension et à la modélisation hydrogéologique de la nappe de la Crau [Contribution of isotopic tracing (δ18O and δD) for understanding and hydrogeological modeling of the groundwater of the Crau aquifer]. PhD Thesis, Aix-Marseille Université, Marseille, France. https://doi.org/10.13140/RG.2.2.31645.41444

  • Seraphin P, Vallet-Coulomb C, Gonçalvès J (2016) Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: the Crau aquifer, France. J Hydrol. https://doi.org/10.1016/j.jhydrol.2016.09.005

  • Simunek J, Sejna M, Van Genuchten MT (1998) The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 2.0, IGWMC - TPS - 70, International Ground Water Modeling Center, Colorado School of Mines, Littleton, CO

  • Sophocleous MA (1991) Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J Hydrol 124:229–241. https://doi.org/10.1016/0022-1694(91)90016-B

    Article  Google Scholar 

  • Vallet-Coulomb C, Seraphin P, Gonçalvès J, Radakovitch O, Cognard-Plancq AL, Crespy A, Babic M, Charron F (2017) Multi-approach quantification of groundwater recharge in the Crau Plain, France. J Hydrol. https://doi.org/10.1016/j.apgeochem.2017.10.001

  • Vereecken H, Kasteel R, Vanderborght J, Harter T (2007) Upscaling hydraulic properties and soil water flow processes in heterogeneous soils. Vadose Zone J 6:1–28. https://doi.org/10.2136/vzj2006.0055

    Article  Google Scholar 

  • Vogel T, Huang K, Zhang R, Van Genuchten MT (1996) The HYDRUS code for simulating one-dimensional water flow, solute transport, and heat movement in variably-saturated media. US Salinity Lab, Riverside, CA

  • Warrick AW, Hussen AA (1993) Scaling of Richards’ equation for infiltration and drainage. Soil Sci Soc Am J 57:15. https://doi.org/10.2136/sssaj1993.03615995005700010004x

    Article  Google Scholar 

  • Weeks EP (2002) The Lisse effect revisited. Ground Water 40:652–656. https://doi.org/10.1111/j.1745-6584.2002.tb02552.x

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of a PhD funded by the SYMCRAU and the PACA region. It has been supported by CNRS-INSU, through the SICMED-CRAU research project. We thank the CNRS-INSU national facility RESIF-GMOB for providing the Scintrex CG5 gravimeters. We thank M. Peeters and the three other reviewers for their constructive comments which helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Seraphin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seraphin, P., Gonçalvès, J., Vallet-Coulomb, C. et al. Multi-approach assessment of the spatial distribution of the specific yield: application to the Crau plain aquifer, France. Hydrogeol J 26, 1221–1238 (2018). https://doi.org/10.1007/s10040-018-1753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1753-y

Keywords

Navigation