Abstract
This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.
Résumé
Cette étude étudie l’impact de la complexité du modèle et des données hydrogéologiques préalables multi-échelles sur l’interprétation des données de pompage d’essai dans un aquifère à double porosité (l’aquifère de la craie en Angleterre, Royaume -Uni). Afin de caractériser les propriétés hydrogéologiques, différentes approches s’étendant d’une solution analytique traditionnelle (approche de Theis) à des modèles numériques plus sophistiqués avec des paramètres d’entrées automatiquement calibrés sont appliquées. Les comparaisons des résultats des différentes approches prouvent que ni les solutions analytiques traditionnelles ni un modèle numérique supposant une couche aquifère homogène et isotrope ne peuvent expliquer convenablement les rabattements observés. Au contraire, une meilleure reproduction des rabattements observés dans chacun des sept endroits de suivi est obtenue quand le milieu et des informations préalables à l’échelle locale sur la distribution de la conductivité hydraulique verticale (K) sont employées pour contraindre le procédé de calage du modèle. En particulier, l’intégration des variations verticales de K à une échelle moyenne basées sur des mesures de débitmètre mène à une amélioration de la qualité de l’ajustement des rabattements simulés d’environ 30%. On a observé d’autres améliorations (jusqu’à 70%) quand une approche de mise à l’échelle (upscaling) simple a été employée pour intégrer des données de K à petite échelle pour contraindre le procédé automatique de calage du modèle numérique. Bien que l’analyze se concentre sur une étude de cas spécifique, ces résultats fournissent un éclairage sur la représentativité des évaluations des propriétés hydrogéologiques basées sur différentes interprétations des données de pompage d’essai, et favorisent l’intégration de données multi-échelles pour la caractérisation des aquifères hétérogènes dans les systèmes hydrogéologiques complexes.
Resumen
Este estudio investiga el impacto de la complejidad del modelo y de los datos hidrogeológicos previos de múltiples escalas en la interpretación de los datos de ensayos de bombeo en un acuífero de doble porosidad (el acuífero Chalk en Inglaterra, Reino Unido). Para caracterizar las propiedades hidrogeológicas, se aplican diferentes enfoques que van desde una solución analítica tradicional (enfoque de Theis) hasta modelos numéricos más sofisticados con parámetros de entrada calibrados automáticamente. Las comparaciones de los resultados de los diferentes enfoques muestran que ni las soluciones analíticas tradicionales ni un modelo numérico que asuma un acuífero homogéneo e isotrópico pueden explicar adecuadamente las depresiones observadas. En cambio, se logra una mejor reproducción de las depresiones observadas en las siete ubicaciones de monitoreo cuando se usa información previa a escala local y media sobre la distribución vertical de conductividad hidráulica (K) para restringir el proceso de calibración del modelo. En particular, la integración de las variaciones verticales de K a escala media basadas en mediciones de flujo conduce a una mejora en la bondad de ajuste de las depresiones simuladas de aproximadamente 30%. Se observaron mejoras adicionales (hasta 70%) cuando se utilizó un enfoque de escalamiento simple para integrar datos de K a pequeña escala para restringir el proceso de calibración automática del modelo numérico. Aunque el análisis se centra en un estudio de caso específico, estos resultados proporcionan información sobre la representatividad de las estimaciones de propiedades hidrogeológicas basadas en diferentes interpretaciones de los datos de ensayos de bombeo y promueven la integración de datos a múltiples escalas para la caracterización de acuíferos heterogéneos en configuraciones hidrogeológicas complejas.
摘要
本研究调查了模型复杂性及先前多尺度水文地质数据对(英国英格兰白垩含水层)双重孔隙介质含水层抽水试验数据解译的影响。为了描述水文地质特性,应用了从传统解析方法(Theis方法)到更复杂的具有自动校准输入参数的数值模型等不同方法。不同方法的比较结果显示,假定是均质及各向同性含水层,无论是传统解析方法还是数值模型都不能充分解释观测到的水位下降。当采用有关垂直水力传导率(K)分布的介质及局部尺度的先前信息约束模型校准过程时,反而在七个观测点能够再现观测到的水位下降。特别是,基于流量计测量结果的介质尺度垂直K变化的整合可提高模拟水位下降的拟合优度大约30%。当采用简单粗化方法综合小尺度K数据约束数值模型的自动校准过程时,可观测到进一步的提高(达70%)。尽管分析集中在一个特殊的研究实例,但这些结果有助于人们根据抽水试验数据的解译深入了解水文地质特性估算值代表性,促进多尺度数据的整合以描述复杂水文地质背景下异质含水层的特征。
Resumo
Esse estudo investiga o impacto da complexidade do modelo e dados hidrogeológicos anteriores multiescala na interpretação dos dados do teste de bombeamento em aquífero de porosidade dual (o aquífero Chalk na Inglaterra, Reino Unido). Para caracterizar as propriedades hidrogeológicas, são aplicadas diferentes abordagens variando de uma solução analítica tradicional (abordagem de Theis) a modelos numéricos mais sofisticados com parâmetros de entrada calibrada automaticamente. Comparações dos resultados das abordagens diferentes mostram que nem soluções analíticas tradicionais nem modelos numéricos assumindo um aquífero isotrópico e homogêneo podem explicar adequadamente os rebaixamentos observados. Uma melhor reprodução dos rebaixamentos observados em todos os sete locais de monitoramento é ao invés atingido quando informações anteriores em escala local e média escala sobre a distribuição da condutividade hidráulica vertical (K) são utilizadas para restringir o processo de calibração do modelo. Em particular, a integração de variações K verticais em média escala baseadas nas medidas do medidor de fluxo levaram à melhora na qualidade dos ajustes dos rebaixamentos simulados em torno de 30%. Melhoramentos futuros (acima de 70%) foram observados quando uma abordagem refinada foi utilizada para integrar dados K de pequena escala para restringir o processo de calibração automática do modelo numérico. Embora o foco da análise seja em um estudo de caso especifico, esses resultados trazem compreensões sobre a representatividade das estimativas de propriedades hidrogeológicas baseadas nas diferentes interpretações de dados de teste de bombeamento, e promovem a integração de dados de em multiescala para a caracterização de aquíferos heterogêneos em configurações hidrogeológicas complexas.










Similar content being viewed by others
References
Allen DJ, Brewerton LJ, Coleby, LM, Gibbs BR, Lewis MA, MacDonald AM, Wagstaff SJ, Williams AT (1997) The physical properties of major aquifers in England and Wales. BGS technical report no. WD/97/34, British Geological Survey, Keyworth, UK
Barrash W, Dougherty ME (1997) Modeling axially symmetric and nonsymmetric flow to a well with MODFLOW, and application to Goddard2 well test, Boise, Idaho. Ground Water 35:602–611. https://doi.org/10.1111/j.1745-6584.1997.tb00125.x
Bear J (2007) Hydraulics of groundwater. Dover, Mineola, NY
Beckie R, Harvey CF (2002) What does a slug test measure: an investigation of instrument response and the effects of heterogeneity. Water Resour Res 38:1290. https://doi.org/10.1029/2001WR001072
Bennett GD, Reilly TE, Hill MC (1990) Technical training notes in ground-water hydrology: radial flow to a well. US Geological Survey, Reston, VA
Bianchi M (2017) Validity of flowmeter data in heterogeneous alluvial aquifers. Adv Water Resour 102:29–44. https://doi.org/10.1016/j.advwatres.2017.01.003
Bloomfield J (1996) Characterisation of hydrogeologically significant fracture distributions in the chalk: an example from the Upper Chalk of southern England. J Hydrol 184:355–379. https://doi.org/10.1016/0022-1694(95)02954-0
Bloomfield JP, Brewerton LJ, Allen DJ (1995) Regional trends in matrix porosity and dry density of the Chalk of England. Quarterly Journal of Engineering Geology and Hydrogeology, 28:S131–S142. https://doi.org/10.1144/GSL.QJEGH.1995.028.S2.04
Bohling GC, Liu G, Dietrich P, Butler JJ (2016) Reassessing the MADE direct-push hydraulic conductivity data using a revised calibration procedure. Water Resour Res 52:8970–8985. https://doi.org/10.1002/2016WR019008
Butler AP, Mathias SA, Gallagher AJ, Peach DW, Williams AT (2009) Analysis of flow processes in fractured chalk under pumped and ambient conditions (UK). Hydrogeol J 17:1849–1858. https://doi.org/10.1007/s10040-009-0477-4
Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222. https://doi.org/10.1007/s10040-004-0404-7
Chen C, Jiao JJ (1999) Numerical simulation of pumping tests in multilayer wells with non-Darcian flow in the wellbore. Ground Water 37:465–474. https://doi.org/10.1111/j.1745-6584.1999.tb01126.x
Cheng C, Chen X (2007) Evaluation of methods for determination of hydraulic properties in an aquifer–aquitard system hydrologically connected to a river. Hydrogeol J 15:669–678. https://doi.org/10.1007/s10040-006-0135-z
Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans Am Geophys Union 27:526. https://doi.org/10.1029/TR027i004p00526
Doherty J (2015) Calibration and uncertainty analysis for complex environmental models. Watermark, Brisbane, Australia
Domenico PA, Schwartz FW (1997) Physical and chemical hydrogeology, 2nd edn. Wiley, New York, NY
Fetter CW (2000) Applied hydrogeology, 4th edn. Pearson, Upper Saddle River, NJ
Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6:131–143. https://doi.org/10.1007/s100400050139
Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180. https://doi.org/10.1029/WR019i001p00161
Halford KJ, Yobbi D (2006) Estimating hydraulic properties using a moving-model approach and multiple aquifer tests. Ground Water 44:284–291. https://doi.org/10.1111/j.1745-6584.2005.00109.x
Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model: the ground-water flow process. US Geol Surv Techniques Methods 6-A16
Ireson AM, Mathias SA, Wheater HS, Butler AP, Finch J (2009) A model for flow in the chalk unsaturated zone incorporating progressive weathering. J Hydrol 365:244–260. https://doi.org/10.1016/j.jhydrol.2008.11.043
Jackson CR, Spink AEF (2004) User’s manual for the groundwater flow model ZOOMQ3D. BGS internal report no. IR/04/140, British Geological Survey, Keyworth, UK
Kaleris V, Hadjitheodorou C, Demetracopoulos AC (1995) Numerical simulation of field methods for estimating hydraulic conductivity and concentration profiles. J Hydrol 171:319–353. https://doi.org/10.1016/0022-1694(94)06012-T
Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31:2411–2419. https://doi.org/10.1029/95WR01945
Koltermann CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32:2617–2658. https://doi.org/10.1029/96WR00025
Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data, 2nd edn. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands
Lebbe L, Mahauden M, Breuck WD (1992) Execution of a triple pumping test and interpretation by an inverse numerical model. HYJO 1:20–34. https://doi.org/10.1007/PL00010967
Lee S-Y, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv Water Resour 30:1914–1932. https://doi.org/10.1016/j.advwatres.2007.03.005
Leven C, Dietrich P (2006) What information can we get from pumping tests? Comparing pumping test configurations using sensitivity coefficients. J Hydrol 319:199–215. https://doi.org/10.1016/j.jhydrol.2005.06.030
Li L, Zhou H, Hendricks Franssen H-J, Gómez-Hernández JJ (2012) Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling. Water Resour Res 48:W01537. https://doi.org/10.1029/2010WR010214
Li W, Nowak W, Cirpka OA (2005) Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown. Water Resour Res 41:W08403. https://doi.org/10.1029/2004WR003874
MacDonald AM, Allen DJ (2001) Aquifer properties of the Chalk of England. Q J Eng Geol Hydrogeol 34:371–384. https://doi.org/10.1144/qjegh.34.4.371
Mansour M, Hughe AG, Spink AEF (2007) User manual for the layered R-theta numerical model. BGS report no. OR/07/029. British Geological Survey, Keyworth, UK
Mansour MM, Hughes AG, Spink AEF, Riches J (2011) Pumping test analysis using a layered cylindrical grid numerical model in a complex, heterogeneous chalk aquifer. J Hydrol 401:14–21. https://doi.org/10.1016/j.jhydrol.2011.02.005
Martinez-Landa L, Carrera J (2005) An analysis of hydraulic conductivity scale effects in granite (full-scale engineered barrier experiment (FEBEX), Grimsel, Switzerland). Water Resour Res 41:W03006. https://doi.org/10.1029/2004WR003458
Mathias SA, Butler AP (2006) Linearized Richards’ equation approach to pumping test analysis in compressible aquifers. Water Resour Res 42:W06408. https://doi.org/10.1029/2005WR004680
Mathias SA, Butler AP, Peach DW, Williams AT (2007) Recovering tracer test input functions from fluid electrical conductivity logging in fractured porous rocks. Water Resour Res 43:W07443. https://doi.org/10.1029/2006WR005455
Maurice LD, Atkinson TC, Barker JA, Williams AT, Gallagher AJ (2012) The nature and distribution of flowing features in a weakly karstified porous limestone aquifer. J Hydrol 438–439:3–15. https://doi.org/10.1016/j.jhydrol.2011.11.050
Meier PM, Carrera J, Sánchez-Vila X (1998) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34:1011–1025. https://doi.org/10.1029/98WR00008
Moench AF (2003) Estimation of hectare-scale soil-moisture characteristics from aquifer-test data. J Hydrol 281:82–95. https://doi.org/10.1016/S0022-1694(03)00202-6
Mohamed A, Rushton K (2006) Horizontal wells in shallow aquifers: field experiment and numerical model. J Hydrol 329:98–109. https://doi.org/10.1016/j.jhydrol.2006.02.006
Nativ R, Adar E, Assaf L, Nygaard E (2003) Characterization of the hydraulic properties of fractures in chalk. Ground Water 41:532–543. https://doi.org/10.1111/j.1745-6584.2003.tb02387.x
Neuman SP (1972) Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resour Res 8:1031–1045. https://doi.org/10.1029/WR008i004p01031
Neuman SP, Di Federico V (2003) Multifaceted nature of hydrogeologic scaling and its interpretation. Rev Geophys 41:1014. https://doi.org/10.1029/2003RG000130
Odén M, Niemi A (2006) From well-test data to input to stochastic continuum models: effect of the variable support scale of the hydraulic data. Hydrogeol J 14:1409–1422. https://doi.org/10.1007/s10040-006-0063-y
Oehlmann S, Geyer T, Licha T, Birk S (2013) Influence of aquifer heterogeneity on karst hydraulics and catchment delineation employing distributive modeling approaches. Hydrol Earth Syst Sci 17:4729–4742. https://doi.org/10.5194/hess-17-4729-2013
Oliver DS, Chen Y (2011) Recent progress on reservoir history matching: a review. Comput Geosci 15:185–221. https://doi.org/10.1007/s10596-010-9194-2
Owen M, Robinson VK (1978) Characteristics and yield in fissured chalk. In: Thames groundwater scheme. Thomas, London, pp 33–49. https://doi.org/10.1680/tgs.00605.0003
Poeter E, Gaylord DR (1990) Influence of aquifer heterogeneity on contaminant transport at the Hanford site. Ground Water 28:900–909. https://doi.org/10.1111/j.1745-6584.1990.tb01726.x
Price M (1987) Fluid flow in the Chalk of England. Geol Soc Lond Spec Publ 34:141–156
Price M, Williams A (1993) A pumped double-packer system for use in aquifer evaluation and groundwater sampling. Proc Inst Civil Eng Water Marit Energy 101:85–92. https://doi.org/10.1680/iwtme.1993.23589
Raghavan R (2004) A review of applications to constrain pumping test responses to improve on geological description and uncertainty. Rev Geophys 42:RG4001. https://doi.org/10.1029/2003RG000142
Raghavan R (2006) Some observations on the scale dependence of permeability by pumping tests. Water Resour Res 42(7):W07402 . https://doi.org/10.1029/2005WR004166
Raghavan R (2009) Complex geology and pressure tests. J Pet Sci Eng 69:181–188. https://doi.org/10.1016/j.petrol.2009.08.010
Raghavan R, Dixon TN, Thomas OO (2002) Effect of scale up and aggregation on the use of well tests to identify geological properties. Soc Pet Eng. https://doi.org/10.2118/77452-MS
Rovey CW, Cherkauer DS (1995) Scale dependency of hydraulic conductivity measurements. Ground Water 33:769–780. https://doi.org/10.1111/j.1745-6584.1995.tb00023.x
Rushton KR (2003) Groundwater hydrology: conceptual and computational models, 1st edn. Wiley-Blackwell, Chichester, UK
Rushton KR, Chan YK (1976) Pumping test analysis when parameters vary with depth. Ground Water 14:82–87. https://doi.org/10.1111/j.1745-6584.1976.tb03637.x
Rushton KR, Redshaw SC (1979) Seepage and groundwater flow, numerical analysis by analog and digital methods. Wiley, New York
Sánchez-Vila X, Meier PM, Carrera J (1999) Pumping tests in heterogeneous aquifers: an analytical study of what can be obtained from their interpretation using Jacob’s method. Water Resour Res 35:943–952. https://doi.org/10.1029/1999WR900007
Sanchez-Vila X, Guadagnin A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44. https://doi.org/10.1029/2005RG000169
Schad H, Teutsch G (1994) Effects of the investigation scale on pumping test results in heterogeneous porous aquifers. J Hydrol 159:61–77. https://doi.org/10.1016/0022-1694(94)90249-6
Schroth B, Narasimhan TN (1997) Application of a numerical model in the interpretation of a leaky aquifer test. Ground Water 35:371–375. https://doi.org/10.1111/j.1745-6584.1997.tb00096.x
Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37:904–919. https://doi.org/10.1111/j.1745-6584.1999.tb01190.x
Singh VS (2000) Well storage effect during pumping tests in an aquifer of low permeability. Hydrol Sci J 45:589–594. https://doi.org/10.1080/02626660009492359
Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Philadelphia, PA
Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans Am Geophys Union 16:519–524. https://doi.org/10.1029/TR016i002p00519
Thorbjarnarson KW, Huntley D, McCarty JJ (1998) Absolute hydraulic conductivity estimates from aquifer pumping and tracer tests in a stratified aquifer. Ground Water 36:87–97. https://doi.org/10.1111/j.1745-6584.1998.tb01068.x
Todsen M (1971) On the solution of transient free-surface flow problems in porous media by finite-difference methods. J Hydrol 12:177–210. https://doi.org/10.1016/0022-1694(71)90005-9
Wheater HS, Peach D (2004) Developing interdisciplinary science for integrated catchment management: the UK lowland catchment research (LOCAR) programme. Int J Water Resour Dev 20:369–385. https://doi.org/10.1080/0790062042000248565
Williams A, Bloomfield J, Griffiths K, Butler A (2006) Characterising the vertical variations in hydraulic conductivity within the Chalk aquifer. J Hydrol 330:53–62. https://doi.org/10.1016/j.jhydrol.2006.04.036
Woods MA, Newell AJ, Haslam RB, Farrant AR, Smith H (2015) A physical property model of the Chalk of southern England. http://nora.nerc.ac.uk/510117/. Accessed 9 March 2017
Yeh H-D, Chang Y-C (2013) Recent advances in modeling of well hydraulics. Adv Water Resour 51:27–51. https://doi.org/10.1016/j.advwatres.2012.03.006
Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37. https://doi.org/10.1016/j.advwatres.2013.10.014
Zimmerman DA, de Marsily G, Gotway CA, Marietta MG, Axness CL, Beauheim RL, Bras RL, Carrera J, Dagan G, Davies PB, Gallegos DP, Galli A, Gómez-Hernández J, Grindrod P, Gutjahr AL, Kitanidis PK, Lavenue AM, McLaughlin D, Neuman SP, RamaRao BS, Ravenne C, Rubin Y (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34:1373–1413. https://doi.org/10.1029/98WR00003
Acknowledgments
The authors would like to thank the reviewers for their valuable comments to improve the manuscript. This paper is published by permission of the executive director of the British Geological Survey.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tamayo-Mas, E., Bianchi, M. & Mansour, M. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer. Hydrogeol J 26, 1917–1933 (2018). https://doi.org/10.1007/s10040-018-1745-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-018-1745-y


