Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 789–802 | Cite as

Land subsidence due to groundwater pumping and recharge: considering the particle-deposition effect in ground-source heat-pump engineering

  • Xianze CuiEmail author
  • Quansheng Liu
  • Chengyuan Zhang
  • Yisheng Huang
  • Yong Fan
  • Hongxing Wang
Paper

Abstract

With the rapid development and use of ground-source heat-pump (GSHP) systems in China, it has become imperative to research the effects of associated long-term pumping and recharge processes on ground deformation. During groundwater GSHP operation, small particles can be transported and deposited, or they can become detached in the grain skeleton and undergo recombination, possibly causing a change in the ground structure and characteristics. This paper presents a mathematical ground-deformation model that considers particle transportation and deposition in porous media based on the geological characteristics of a dual-structure stratum in Wuhan, eastern China. Thermal effects were taken into consideration because the GSHP technology used involves a device that uses heat from a shallow layer of the ground. The results reveal that particle deposition during the long-term pumping and recharge process has had an impact on ground deformation that has significantly increased over time. In addition, there is a strong correlation between the deformation change (%) and the amount of particle deposition. The position of the maximum deformation change is also the location where most of the particles are deposited, with the deformation change being as high as 43.3%. The analyses also show that flow of groundwater can have an effect on the ground deformation process, but the effect is very weak.

Keywords

Subsidence Ground deformation Particle deposition Artificial recharge China 

Subsidence due au pompage et à la recharge des eaux souterraines: incidence de l’effet des dépôts de particules dans l’ingénierie des pompes à chaleur

Résumé

Avec le développement rapide et l’utilisation des systèmes de pompe à chaleur en Chine, il est devenu impératif de rechercher les effets associés au pompage de longue durée et à la recharge sur la déformation des terrains. Durant le pompage, de petites particules peuvent être transportées et déposées, ou ils peuvent se détacher en des squelettes de granules puis se recombiner, causant d’éventuelles modifications de la structure et des caractéristiques du sol. Cet article présente un modèle mathématique de déformation du sol considérant le transport de particules et leur dépôt dans un milieu poreux basé sur les caractéristiques géologiques d’une formation bicouches dans le Wuhan, Chine de l’Est. Les effets thermiques ont été pris en considération car la technologie de pompage utilisée met en jeu un dispositif utilisant la chaleur d’une couche peu profonde du sol. Les résultats révèlent que le dépôt de particules durant le pompage de longue durée et la recharge avaient eu un impact sur la déformation du sol qui a considérablement augmenté avec le temps. De plus, il y a une forte corrélation ente le changement de déformation (%) et la quantité de dépôt de particules. L’emplacement du changement de la déformation maximale est aussi la localisation où la plus grande partie des particules a été déposée, avec un changement de déformation atteignant 43.3%. Les analyses montrent aussi que l’écoulement d’eaux souterraines peut avoir un effet sur le processus de déformation du sol, mais l’effet est très faible.

Subsidencia del terreno debido al bombeo y recarga de agua subterránea: considerando el efecto de depositación de partículas en la ingeniería de bombas de calor de fuente terrestre

Resumen

Con el rápido desarrollo y uso de los sistemas de bomba de calor de fuente terrestre (GSHP) en China, se ha vuelto imperativo investigar los efectos de los procesos asociados de bombeo y recarga a largo plazo en la deformación del terreno. Durante el funcionamiento de GSHP en agua subterránea, las partículas pequeñas pueden transportarse y depositarse, o pueden separarse en el esqueleto del grano y someterse a recombinación, posiblemente causando un cambio en la estructura y las características del terreno. Este artículo presenta un modelo matemático de deformación del terreno que considera el transporte y la deposición de partículas en medios porosos en función de las características geológicas de un estrato de doble estructura en Wuhan, este de China. Los efectos térmicos se tuvieron en cuenta debido a que la tecnología GSHP utilizada involucra un dispositivo que usa el calor de una capa somera del suelo. Los resultados revelan que la deposición de partículas durante el proceso de bombeo y recarga a largo plazo ha tenido un impacto en la deformación del terreno que se ha incrementado significativamente a lo largo del tiempo. Además, existe una fuerte correlación entre el cambio de deformación (%) y la cantidad de deposición de partículas. La posición del cambio máximo de deformación también es la ubicación donde se depositan la mayoría de las partículas, con un cambio de deformación tan alto como 43.3%. Los análisis también muestran que el flujo de agua subterránea puede tener un efecto en el proceso de deformación del terreno, pero el efecto es muy débil.

地下水抽采对地面沉降的影响:以考虑颗粒沉积效应的地下水源热泵工程为例

摘要

随着地下水源热泵工程在中国的快速发展和应用,研究地下水长期抽采对地面变形的影响已成为当务之急。在地下水源热泵工程运行时,地下水和地层中的细小颗粒会随着水流迁移和沉积,也会从砂层骨架表面脱离后重新分布,这些因素将可能引起地层结构和特性发生改变。本文基于中国武汉地区双层地层的地质特点,提出了一种考虑多孔介质中颗粒迁移和沉积效应的地层变形数学模型。由于地下水源热泵工程运行中与浅部地层进行热交换,因此该数学模型中考虑了温度效应。研究结果显示,地下水长期抽采中颗粒沉积过程对地面变形的影响将随着时间增加日益显著。另外,沉降变化率和颗粒沉积量呈现出强烈的相关性。最大沉降变化率的位置与颗粒最多沉积的位置相同,其沉降变化率可高达43.3%。另外,研究表明地下水横流对地层变形过程有一定的影响,但该影响非常小.

Subsidência da terreno devido ao bombeamento e recarga das águas subterrâneas: considerando o efeito de deposição de partículas na engenharia de bomba de calor terrestre

Resumo

Com o rápido desenvolvimento e uso de sistemas de bomba de calor de fonte terrestre (BCFT) na China, tornou-se imperativo pesquisar os efeitos dos processos associados de bombeamento e recarga em longo prazo na deformação no solo. Durante a operação de BCFT das águas subterrâneas, pequenas partículas podem ser transportadas e depositadas, ou podem se desprender do esqueleto de grãos e sofrer uma recombinação, possivelmente causando uma alteração na estrutura e características do solo. Este artigo apresenta um modelo matemático de deformação do terreno que considera o transporte de partículas e a deposição em meios porosos com base nas características geológicas de um estrato de estrutura dupla em Wuhan, no leste da China. Os efeitos térmicos foram levados em consideração porque a tecnologia de BCFT utilizada envolve um dispositivo que utiliza calor de uma camada rasa do terreno. Os resultados revelam que a deposição de partículas durante o processo de bombeamento e recarga em longo prazo tivera impacto na deformação do terreno que aumentou significativamente ao longo do tempo. Além disso, existe uma forte correlação entre a mudança de deformação (%) e a quantidade de deposição de partículas. A posição da mudança de deformação máxima é também o local onde a maioria das partículas está depositada, sendo a mudança de deformação tão alta quanto 43.3%. As análises também mostram que o fluxo de águas subterrâneas pode afetar o processo de deformação do terreno, mas o efeito é muito fraco.

Notes

Funding Information

This research was supported by the National Natural Science Foundation of China (Grant no. 41702254, 51609127) and Hubei Provincial Natural Science Foundation of China (Grant no. 2015CFB545, 2016CFB237).

References

  1. Bedrikovetsky P, Siqueira FD, Furtado CA, Souza ALS (2011) Modified particle detachment model for colloidal transport in porous media. Transp Porous Media 86(2):353–383CrossRefGoogle Scholar
  2. Bergman TL, Incropera FP (2011).Fundamentals of heat and mass transfer. Wiley, Chichester, UKGoogle Scholar
  3. Bo C, Ning L, Ruihua Z (2001) Finite element analysis of fully coupled thermo-hydro-mechanic behavior of porous media (in Chinese). Chin J Rock Mech Eng 20(4):467–472Google Scholar
  4. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10(1):121–142CrossRefGoogle Scholar
  5. Burbey TJ (2003) Use of time-subsidence data during pumping to characterize specific storage and hydraulic conductivity of semi-confining units. J Hydrol 281(1):3–22CrossRefGoogle Scholar
  6. Chen CX, Yuan SP, Wang BH (2001) Research on groundwater exploitation: land subsidence model (in Chinese). Hydrogeol Eng Geol 28(2):5–8Google Scholar
  7. Chen C, Pei S, Jiao J (2003) Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeol J 11(2):275–287CrossRefGoogle Scholar
  8. Conway BD (2016) Land subsidence and earth fissures in south-central and southern Arizona, USA. Hydrogeol J 24(3):649–655CrossRefGoogle Scholar
  9. Cui ZD, Tang YQ (2010) Land subsidence and pore structure of soils caused by the high-rise building group through centrifuge model test. Eng Geol 113(1):44–52CrossRefGoogle Scholar
  10. Erban LE, Gorelick SM, Zebker HA (2014) Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ Res Lett 9(8):084010CrossRefGoogle Scholar
  11. Gong SL, Li C, Yang SL (2009) The microscopic characteristics of shanghai soft clay and its effect on soil body deformation and land subsidence. Environ Geol 56(6):1051–1056CrossRefGoogle Scholar
  12. Hochmuth DP, Sunada DK (1985) Ground-water model of two-phase immiscible flow in coarse material. Groundwater 23(5):617–626CrossRefGoogle Scholar
  13. Li Y (2010) Foundation pit dewatering and ground subsidence in binary structural stratum of Wuhan (in Chinese). PhD Thesis, China University of Geosciences, Wuhan, ChinaGoogle Scholar
  14. Liu B, Zhang G, Jiang YH (2014) Settlement research on single pumping well of foundation pit using changeable permeability coefficient model (in Chinese). Hydrogeol Eng Geol 22(6):1123–1127Google Scholar
  15. Liu QS, Cui XZ, Zhang CY (2016a) Permeability reduction model of particles deposit in porous medium considering changeable porosity (in Chinese). Chin J Rock Mech Eng 35(A01):3308–3314Google Scholar
  16. Liu QS, Cui XZ, Zhang CY, Huang SB (2016b) Experimental investigation of suspended particles transport through porous media: particle and grain size effect. Environ Technol 37(7):854–864CrossRefGoogle Scholar
  17. Liu Y, Huang HJ (2013) Characterization and mechanism of regional land subsidence in the Yellow River Delta, China. Nat Hazards 68(2):687–709CrossRefGoogle Scholar
  18. Li Y, He ZZ, Yan GH, Liao ZY, Liang SY (2012) Excavation dewatering and ground subsidence in dual structural stratum of Wuhan (in Chinese). Chin J Geotech Eng 34:S1Google Scholar
  19. Low HE, Phoon KK, Tan TS, Leroueil S (2008) Effect of soil microstructure on the compressibility of natural Singapore marine clay. Can Geotech J 45(2):161–176CrossRefGoogle Scholar
  20. Luo ZJ, Zhang YP, Liu JB (2007) Three-dimensional seepage numerical simulation of deep foundation pit dewatering in complicated quaternary loose sediments with great thickness-a case study of dewatering reconstructed foundation pit at Dongjiadu subway of the 4th line in Shanghai (in Chinese). Chin J Rock Mech Eng 26(A01):2927–2934Google Scholar
  21. Rupp DE, Selker JS (2006) On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers. Water Resour Res 42(12):W12421Google Scholar
  22. Serrano SE, Workman SR (1998) Modeling transient stream/aquifer interaction with the non-linear Boussinesq equation and its analytical solution. J Hydrol 206(3–4):245–255CrossRefGoogle Scholar
  23. Serrano SE (1995) Analytical solutions of the nonlinear groundwater flow equation in unconfined aquifers and the effect of heterogeneity. Water Resour Res 31(11):2733–2742CrossRefGoogle Scholar
  24. Shi XQ, Wu JC, Ye SJ, Zhang Y, Xue YQ, Wei ZX, Li QF, Yu J (2008) Regional land subsidence simulation in Su-xi-Chang area and Shanghai City, China. Eng Geol 100(1):27–42CrossRefGoogle Scholar
  25. Wang J, Hu L, Wu L, Tang Y, Zhu Y, Yang P (2009) Hydraulic barrier function of the underground continuous concrete wall in the pit of subway station and its optimization. Environ Geol 57(2):447–453CrossRefGoogle Scholar
  26. Wang Y, Wong KK, Liu QH, Jin YT, Tu J (2012) Improvement of energy efficiency for an open-loop surface water source heat pump system via optimal design of water-intake. Energ Buildings 51:93–100CrossRefGoogle Scholar
  27. Xu YS, Shen SL, Cai ZY, Zhou GY (2008) The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat Hazards 45(1):123–135CrossRefGoogle Scholar
  28. Xu YS, Ma L, Shen SL, Sun WJ (2012) Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeol J 20(8):1623–1634CrossRefGoogle Scholar
  29. Xu YS, Shen SL, Ren DJ, Wu HN (2016) Factor analysis of land subsidence in Shanghai: a view based on strategic environmental assessment. Sustainability 8(6):573 (1–12)CrossRefGoogle Scholar
  30. Xu P, Yu B (2008) Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31(1):74–81CrossRefGoogle Scholar
  31. Zeitoun DG, Wakshal E (2013) The subsidence phenomenon throughout the world. In: Land subsidence analysis in urban areas. Springer, Dordrecht, The Netherlands, pp 9–23Google Scholar
  32. Zhang JZ, Huang H, Bi H (2015) Land subsidence in the modern Yellow River Delta based on inSAR time series analysis. Nat Hazards 75(3):2385–2397CrossRefGoogle Scholar
  33. Zhang Y, Wei J, Wang G (2006) Impact of regional groundwater flow on geological temperature field with energy abstraction from the aquifer (in Chinese). J Tsinghua Univ 46(9):1518Google Scholar
  34. Zheng K, Fang H, Wang L (2005) Bacterial growth in a groundwater source heat pump system. J Tsinghua Univ 45(12):1608–1612Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xianze Cui
    • 1
    Email author
  • Quansheng Liu
    • 2
  • Chengyuan Zhang
    • 2
  • Yisheng Huang
    • 1
  • Yong Fan
    • 1
  • Hongxing Wang
    • 3
  1. 1.College of Hydraulic & Environmental EngineeringChina Three Gorges UniversityYichangChina
  2. 2.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina
  3. 3.Hubei Key Laboratory of Disaster Prevention and Mitigation (China Three Gorges University)YichangChina

Personalised recommendations