Abstract
Sousan Spring emerges from the Keyno Anticline, Zagros Mountains (Iran), and the mean annual discharge is ~24 m3/s. Geological and hydrochemical evaluations suggest that the spring recharge is from the limestone Ilam-Sarvak Formation (Cretaceous) but the Mafaroon Fault, a major thrust feature, influences the regional groundwater flow path by juxtaposing other strata. Geological, geochemical, stable isotope and water balance studies were employed to interpret this behavior. Using the isotope data, the sources and elevations of the recharge area were found. Temporal variations of the isotopic data were compared with variations of electrical conductivity (EC). Unexpectedly, high EC was associated with a relative increase of discharge and depletion of δ18O. Several hypotheses were investigated and approximate water balance studies employed for validation. It was found that an elongated catchment on the Keyno Anticline plus a lesser catchment on a pair of parallel anticlines recharge the aquifer. While the long groundwater flow path along the Keyno Anticline plus guidance by Mafaroon Fault and the adjacent Garou shaly strata lead to increased EC in the Sousan Spring at the end of the dry season, a flow pulse from two adjoining anticlines (Mahalbakh and Shirgoon) arrives at the same time to increase the discharge and deplete the δ18O signal. Apparently the spring did not experience true base flow conditions during the recorded hydrological year. Although the spring response to specific precipitation events was similar to typical karst aquifers, standard interpretation of recession curves and related coefficients will not be practical at Sousan.
Résumé
La Source Sousan naît de l’Anticlinal de Keyno, Monts Zagros (Iran), et son debit moyen annuel est. d’environ 24 m3/s. Les évaluations géologiques et hydrochimiques suggèrent que l’alimentation de la source provient de la Formation des calcaires d’Ilam-Sarvak (Crétacé) mais que la Faille de Mafaroon, trait d’un chevauchement majeur, influence le trajet de l’écoulement souterrain régional par la mise en contact avec d’autres couches. Les études géologiques, géochimiques, des isotopes stables et du bilan hydrologique ont été utilisées pour interpréter ce fonctionnement. Par l’utilization des données isotopiques, les provenances et les altitudes de l’aire d’alimentation ont été déterminées. Les variations dans le temps des données isotopiques ont été comparées aux variations de la conductivité électrique (CE). Contre toute attente, une conductivité électrique (CE) élevée est. associée à une augmentation relative du débit et à une diminution de δ18O. Plusieurs hypothèses ont été examinées et des études approximatives du bilan hydrique ont été utilisées pour leur validation. Il a été trouvé que c’est. un bassin versant allongé le long de l’Anticlinal de Keyno ainsi qu’un bassin versant couvrant un couple d’anticlinaux parallèles dans une moindre mesure, qui rechargent l’aquifère. Tandis que la longue trajectoire de l’écoulement d’eaux souterraines le long de l’Anticlinal de Keyno, de la faille de Mafaroon et des couches schisteuses adjacentes de Garou conduisent à une augmentation de la CE de la source de Sousan à la fin de la période d’étiage, l’injection d’un flux provenant des deux anticlinaux adjacents (Mahalbakh et Shirgoon) occasionne simultanément une augmentation du débit et une diminution du signal δ18O. Apparemment, la source n’a pas connu les conditions réelles d’un écoulement de base au cours de l’année hydrologique enregistrée. Bien que la réponse de la source à des événements pluvieux spécifiques soit similaire à celle des aquifères karstiques typiques, l’interprétation classique des courbes de récession et des coefficients associés ne seront pas applicables en pratique pour la source de Sousan.
Resumen
El manantial Sousan emerge a partir del anticlinal Keyno, Zagros Mountains (Irán), y la descarga anual promedio es ~24 m3/s. Las evaluaciones geológicas e hidroquímicas sugieren que la recarga de los manantiales es a partir de las calizas de la Formación Ilam-Sarvak (Cretácico), pero la falla de Mafaroon, una características falla mayor de empuje, influye en la trayectoria del flujo regional de agua subterránea al yuxtaponer otros estratos. Se utilizaron estudios geológicos, geoquímicos, de isótopos estables y de balance hídrico para interpretar este comportamiento. Usando los datos de isótopos, se encontraron las fuentes y las elevaciones del área de recarga. Las variaciones temporales de los datos isotópicos se compararon con las variaciones de la conductividad eléctrica (EC). Sorpresivamente, la alta CE y el empobrecimiento de δ18O se asoció con un aumento relativo de la descarga. Se investigaron varias hipótesis y se usaron estudios aproximados de balance hídricos para la validación. Se encontró que una cuenca alargada en el anticlinal Keyno más una cuenca menor en un par de anticlinales paralelos recargan el acuífero. Mientras que el extenso flujo de agua subterránea a través del anticlinal Keyno más la orientación de la falla Mafaroon y los estratos arcillosos adyacentes de Garou conducen a un aumento de CE en el manantial Sousan al finalizar la estación seca, llega un flujo de dos anticlinales adyacentes (Mahalbakh y Shirgoon) al mismo tiempo para aumentar la descarga y empobrecer la señal del δ18O. Aparentemente, el manantial no experimentó condiciones de flujo de base verdaderas durante el año hidrológico registrado. Aunque la respuesta del manantial a los eventos de precipitación específicos fue similar a los acuíferos cársticos típicos, la interpretación estándar de las curvas de recesión y los coeficientes relacionados no serán prácticos en el Sousan.
摘要
苏桑泉发源于(伊朗)扎格罗斯山脉Keyno背斜,平均年排泄量大约24 m3/s。地质和水化学评价结果表明,补给主要来自(白垩纪)石灰岩Ilam-Sarvak地层,但具有主要推挤特色的Mafaroon断层通过并置其它地层影响区域地下水流通道。采用地质、地球化学、稳定同位素和水平衡研究方法解译这种行为。利用同位素数据找到了补给区的补给区的源和高程。同位素数据的时间上的变化与电导率的变化进行了对比。出乎意料的是,很高的电导率与补给的相对增加和δ18O消耗相关联。研究了几种假设,采用近似水平衡研究方法进行了验证。发现,Keyno背斜上的拉长的汇水区加上一对平行背斜上较小的汇水区补给含水层。当沿着Keyno背斜长的地下水流通道加上Mafaroon断层和毗邻引导Garou砂岩层导致旱季末苏桑泉电导率增加时,来自两个毗邻的背斜(Mahalbakh 别背斜和 Shirgoon背斜)的水流脉冲同时到达,增加了排泄及消耗了δ18O信号。显然,在记录的水文年中,泉没有经历真正的基流条件。尽管泉对特定降水事件的响应与典型岩溶含水层相似,但衰退曲线和相关系数的标准的解译在苏桑泉这里不实用。
Resumo
A nascente Sousan surge do anticlinal de Keyno, nas montanhas de Zagros (Irã), e a descarga anual média é de ~24 m3/s. As avaliações geológicas e hidrogeológicas sugerem que a recarga da nascente é do calcário da formação Ilam-Sarvak (Cretácea), porém a Falha de Mafaroon, uma feição inversa principal, influencia a tendência do fluxo das águas subterrâneas regional pela justaposição de outro estrato. Para interpretar este comportamento foram utilizados estudos geológicos, geoquímicos, de estabilidade isotópica e de balanço hídrico. Mediante o uso de dados isotópicos, as fontes e as elevações da área de recarga foram encontrados. Variações temporais dos dados isotópicos foram comparados com as variações condutividade elétrica (CE). De forma inesperada a alta CE foi associada com o incremento relativo da descarga e a redução de δ18O. Foram investigadas diversas hipóteses e feitas aproximações de balanço hídrico para validação. Descobriu-se que uma captação alongada no Anticlinal de Keyno somada a uma menor captação em um par paralelo de anticlinais recarregam o aquífero. Enquanto o longo percurso do fluxo das águas subterrâneas ao longo do Anticlinal de Keyno encontra orientação pela falha de Mafaroon e o estrato xistoso adjacente de Garou comandam o incrementado da CE na nascente de Sousan no fim da época seca, um pulso de fluxo na junção de dois anticlinais (Mahalbakh e Shirgoon) chega ao mesmo tempo para aumentar a descarga e reduz o sinal do δ18O. Aparentemente a nascente não sofre condições verdadeiras de fluxo de base durante os registros do ano hidrogeológico. Embora a resposta da nascente a eventos específicos de precipitação foi similar ao de aquíferos cársticos típicos, a interpretação das curvas de recessão e seus coeficientes não serão práticos em Sousan.












References
Ashjari J, Raeisi E (2006) Anticlinal structure influences on regional flow, Zagros, Iran. J Cave Karst Stud 68(3):119–127
Atkinson TC (1977) Diffuse flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–100
Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci 38:51–62
Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewsi, New York
Darcy H (1856) Les fontaines publiques de le ville de Dijon [The public fountains of the city of Dijon]. Dalmont, Paris
Falcon NL (1974) Southern Iran: Zagros Mountain. In: Sphencer A (ed) Mesozoic-Cenozoic Orogenic Belt. Geol Soc Lond Spec Publ 4:199–211
Ford DC (2000) Deep phreatic caves and groundwater systems of the Sierra del Abra, Mexico. In: Klimchouk AV, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society of America, Huntsville, AL, pp 325–331
Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK
Fish JE (1977) Karst hydrogeology and geomorphology of the Sierra de El Abra and the Valles-San Luis Potosi Region, Mexico. PhD Thesis, McMaster University, Hamilton, ON 469 pp
Fish JE (2004) Karst hydrology of the Sierra de El Abra, Mexico. Assoc Mexican Cave Studies Bull 14, 186 pp
Hunkeler D, Mudry J (2007) Hydrochemical methods: methods in karst hydrogeology. In: Goldscheider N, Drew D (eds) International Contributions to Hydrogeology, vol 26. Taylor and Francis, London, pp 93–121
Jamalian M, Adabi M, Mousavi M, Sadeghi A (2011) Geochemistry and petrography of Garou formation at Kabirkooh, Ilam. J Stratigr Sedimentol Res 43:1–26
James GA, Wynd JG (1965) Stratigraphic nomenclature of Iranian oil consortium, agreement area. Am Assoc Petrol Geol Bull 49(12):2182–2245
Kalantari N, Charchi A, Mohammadi-Behzad HR, Keshavarzi MR, Shaban M, Ghafari HR (2013) Assessment of Karst water resources and hydraulic relationship in the area of Kaveshk, Shimbar and Bibitalkhone spring in the north-east of Khuzestan Province (in Persian). KWPA sponsored project by Ab Pazhuhan Consulting Engineering, Ahvaz, Iran
Karimi H, Raeisi E, Zare M (2001) Determination of catchment area of aquifer bearing Tangab dam site using water balance method. Proceedings of The Second National Conference on Engineering Geology and the Environment, Tehran, 16–18 Oct. 2001, vol 2, pp 773–755
Karimi H (2003) Hydrogeological behavior of Alvand karst aquifers, Kermanshah (in English). PhD Thesis, University of Shiraz, Iran
Karimi Vardanjani H (2009) Karst hydrogeology, concepts and methods. Eram Shiraz Publication, Tehran, Iran
Krawczyk WE (1996) Manual for karst water analysis, handbook 1: physical speleology. International Union of Speleology, Pennsylvania State University, State College, PA, 51 pp
Krawczyk WE, Ford DC (2006) Correlating specific conductivity with total hardness in limestone karst waters. Earth Surf Process Landf 31:221–234
Milanovic P (2001) Karst hydrogeology. Water Resources, Littleton, CO
Motiei H (1993) Stratigraphy of Zagros: treatise of geology of Iran. Geological Survey of Iran, Tehran, pp 281–289
Mudarra B, Mudry A (2010) Hydrochemical heterogeneity in the discharge zone of a karstic aquifer. Environmental Earth Sciences, Springer, Heidelberg, Germany, pp 163–168
Parkhurst DL, Appelo CAJ (1999) User‘s Guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259
Pourab Co. (2015) Climatology studies of the Keyno Mountains (in Farsi). Consulting report, Pourab, Shiraz, Iran
Raeisi E (1999) Calculation method of karst water balance in Zagros simple folded zone. Proceedings of the First Regional Conference on Water Balance, Ahwaz, Iran, 1999, pp 39–49
Raeisi E, Karami G (1997) Hydrochemographs of Berghan karst spring as indicators of aquifer characteristics. J Cave Karst Stud 59(3):112–118
Rahnemaaie M (1994) Evaluation of infiltration and runoff in the karstified carbonatic rocks. MSc Thesis, Shiraz University, Shiraz, Iran
Ravbar N, Engelhardt I, Goldscheider N (2011) Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: the case of the Podstenjˇsek Spring, Slovenia. Hydrol Process 25:2130–2140
Reisch CE, Toran L (2014) Characterizing snowmelt anomalies in hydrochemographs of a karst spring, Cumberland Valley, Pennsylvania (USA): evidence for a changing recharge pathways. Environ Earth Sci 72(1):47–58 T
Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation: climate change in continental isotopic records. AGU Monograph 78, American Geophysical Union, Washington, DC, pp 1–36
Scanlon BR, Thrailkill J (1987) Chemical similarity among physically distinct spring types in a karst terrain. J Hydrol 89:259–279
Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing aquifers. J Hydrol 14:93–128
Stocklin J, Setudehnia A (1977) Stratigraphic lexicon of Iran. Geological Survey of Iran, Tehran, 409 pp
Taylor CJ, Green EA (2008) Hydrogeologic characterization and methods used in the investigation of karst hydrology. In: Rosenberry DO, LaBaugh JW (eds) Field techniques for estimating water fluxes between surface water and ground water. USGS, Reston, VA, pp 75–111
Water Resources Investigation and Planning Bureau (1993) Comprehensive study and research in water resources of the Maharlu karst basin (Fars). Water Resources Investigation and Planning Bureau, Tehran, pp 1–4
Worthington SRH, Ford DC (1995) High sulfate concentrations in limestone springs: an important factor in conduit initiation? Environmental 25:9–15
Acknowledgements
Data collection for this report has been supported by the Khouzestan Water & Power Co and Shahid Chamran University. We thank Dr. W. E. Krawczyk, Professor of Geography, University of Silesia, for her comments. We also thank Mr. M. Zarepoor for essential field assistance and two anonymous reviewers who offered many helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(PDF 1063 kb)
Rights and permissions
About this article
Cite this article
Karimi Vardanjani, H., Chitsazan, M., Ford, D. et al. Initial assessment of recharge areas for large karst springs: a case study from the central Zagros Mountains, Iran. Hydrogeol J 26, 57–70 (2018). https://doi.org/10.1007/s10040-017-1703-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-017-1703-0