Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 743–754 | Cite as

The availability of hydrogeologic data associated with areas identified by the US Geological Survey as experiencing potentially induced seismicity resulting from subsurface injection

  • Caitlin BarnesEmail author
  • Todd Halihan
Report

Abstract

A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.

Keywords

Earthquake Hydraulic testing Pressure migration Injection wells USA 

La disponibilité des données hydrogéologiques associées aux zones identifies par le service géologique des Etats-Unis d’Amérique comme présentant une sismicité potentiellement induite résultant d’injection dans le sous-sol

Résumé

Il existe un besoin critique de données hydrogéologiques spécifiques à des sites afin de déterminer les risques potentiels de sismicité induite et de gérer le risque. En 2015, le service géologique des Etats-Unis d’Amérique (USGS) avait identifié 17 sites aux Etats-Unis d’Amérique qui connaissent une augmentation de sismicité, qui pourrait être induite par l’injection industrielle dans le sous-sol. Ces emplacements couvrent sept Etats, qui varient selon le contexte géologique, l’exposition industrielle et l’histoire sismique. La comparaison des études concernant ces 17 emplacements a révélé des modalités de traitement des problèmes de sismicité induite similaires, malgré les différences de contexte géographique. La plupart des études de sismicité induite évalue la structure géologique et les données sismiques des zones pour lesquelles des changements de niveaux d’activité sismique existent, mais le mécanisme de déclenchement inhérent est. la transmission des impulsions de pression hydraulique. Cette étude a consisté en une revue systématique de la disponibilité des données pour ces sites afin de générer des prévisions hydrogéologiques précises, ce qui pourrait aider à la gestion de la sismicité. Après avoir analysé des recherches évaluées par des pairs pour les 17 sites, l’étude confirme un manque de données hydrogéologiques spécifiques au site pour les zones à risque. Habituellement, les données concernant les formations géologiques sont disponibles pour ces sites, mais les chercheurs qui effectuent des recherches évaluées par des pairs ne disposent pas des paramètres hydrauliques pour les zones d’injection active sismiquement et du sous-sol. L’obtention de données hydrogéologiques conduirait à une meilleure gestion des risques pour les zones d’injection et fournirait un soutien scientifique supplémentaire pour déterminer la zone sismique potentiellement induite.

La disponibilidad de datos hidrogeológicos asociados con áreas identificadas por el US Geological Survey como que experimentan sismicidad potencialmente inducida a partir de inyección subsuperficial

Resumen

Existe una necesidad crítica de datos hidrogeológicos en sitios específicos para determinar los peligros potenciales y para gestionar el riesgo de la sismicidad inducida. Para 2015, el United States Geological Survey (USGS) había identificado 17 ubicaciones en los EEUU que están experimentando un aumento en la sismicidad, la cual puede ser potencialmente inducida debido a la inyección industrial subsuperficial. Estas ubicaciones abarcan siete estados, que varían en entornos geológicos, exposición industrial e historia sísmica. La comparación de la investigación en las 17 ubicaciones reveló patrones para abordar los problemas de sismicidad inducida, a pesar de las diferencias entre las ubicaciones geográficas. La mayoría de los estudios de sismicidad inducida evalúan la estructura geológica y los datos sísmicos de las áreas que experimentan cambios en los niveles de actividad sísmica, pero el mecanismo desencadenante inherente es la transmisión de pulsos de la presión hidráulica. Esta investigación llevó a cabo una revisión sistemática de si los datos están disponibles en estas ubicaciones para generar predicciones hidrogeológicas precisas, que podrían ayudar a controlar la sismicidad. Después de analizar la investigación revisada por pares dentro de las 17 ubicaciones se confirmó la falta de disponibilidad de datos hidrogeológicos de los sitios específicos en las áreas en riesgo. Comúnmente, los datos geológicos están disponibles en estos sitios, pero los parámetros hidráulicos para la inyección en las zonas de basamento sísmicamente activas no están disponibles para los investigadores que realizan los estudios. La obtención de datos hidrogeológicos conduciría a una mejor gestión de riesgos para las áreas de inyección y proporcionaría un apoyo científico adicional para determinar el área sísmica potencialmente inducida.

美国地质调查局确定的经历地表以下注水引起的可能地震活动的区域水文地质数据的可用性

摘要

对特定场地水文地质数据有急迫的需求以便确定诱发地震活动的可能危害、及管理风险。到2015年,美国地质调查局确定了全国17处地震活动增加的区域,这些区域地震活动的增加可能是由于工业上地表以下注入引起的。这些区域横跨地质背景、工业布局及地震历史各异的7个州。这17处区域尽管地理上存在差异,但对比研究揭示了论述诱发地震关注的模式。大多数诱发地震研究评估了经历地震活动区域的地质结构和地震数据,但固有的诱发机理是水力压力脉冲的传播。本研究系统回顾了这些区域数据是否可用,以得到准确的水文地质预测结果,这些预测结果可以在管理地震活动中提供帮助。在分析了17个区域内同行评议研究之后,本研究确认,处于风险中种的区域缺少特定场地水文地质数据点可用性。通常,对进行同行评议研究的研究人员来说,具有这些区域的地层地质数据,但没有地震上活跃注入带和基岩带的水力参数。获取水文地质数据可对注入区进行更好的风险管理、为确定可能的诱发地震区提供额外的科学证据支持。

A disponibilidade de dados hidrogeológicos associados com áreas identificadas pelo Serviço Geológico dos Estados Unidos como vivenciando sismicidade potencialmente induzida resultante de injeção em subsuperfície

Resumo

Uma necessidade fundamental existe para dados hidrogeológicos específicos em local para se determinar danos potenciais de sismicidade induzida e gerenciar riscos. Em 2015, o Serviço Geológico dos Estados Unidos (USGS) identificou 17 locais nos EUA que passaram por um aumento na sismicidade, que podem ter sido induzidas potencialmente através de injeções industriais em subsuperfície. Esses locais se expandiram por sete estados, que podem variar suas configurações geológicas, exposição às indústrias e em história sísmica. Comparar a pesquisa pelos 17 locais revelou padrões para preocupações no endereçamento na sismicidade induzida, mesmo com as diferenças entre as localizações geográficas. A maior parte dos estudos sobre sismicidade induzida avaliam estrutura geológica e dados sísmicos de áreas que experimentam mudanças nos níveis sísmicos ativos, mas o mecanismo-gatilho inerente é a transmissão de pulsos de pressão hidráulica. Essa pesquisa conduziu uma revisão sistemática de dados climatológicos que estão disponíveis nesses locais para gerar previsões hidrogeológicas com acurácia, que poderiam auxiliar no gerenciamento da sismicidade. Depois de analisar a pesquisa revisada nos 17 locais, esse trabalho confirma a falta de disponibilidade de dados hidrogeológicos específicos no local para áreas em risco. Normalmente, dados de formações geológicas estão disponíveis para esses locais, mas os parâmetros hidráulicos para a injeções ativa de sismicidade e zonas-base não estão disponíveis para os pesquisadores conduzirem uma pesquisa de revisão. Obter dados hidrogeológicos levaria a um melhor gerenciamento de risco para áreas de injeção e forneceria um auxílio evidencial cientifico adicional para determinar uma área sísmica induzida potencialmente.

Notes

Acknowledgements

The authors would like to thank Mark Person and one anonymous reviewer for their thoughtful comments, which improved the quality of this manuscript.

References

  1. Ake J, Mahrer K, O’Connell D, Block L (2005) Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado. Bull Seismol Soc Am 95(2):664–683CrossRefGoogle Scholar
  2. Bachmann CE, Wiemer S, Woessner J, Hainzl S (2011) Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for enhanced geothermal systems. Geophys J Int 186(2):793–807CrossRefGoogle Scholar
  3. Block LV, Wood CK, Yeck WL, King VM (2014) The 24 January 2013 ML 4.4 earthquake near Paradox, Colorado, and its relation to deep well injection. Seismol Res Lett 85(3):609–624CrossRefGoogle Scholar
  4. Brown WA, Frohlich C (2013) Investigating the cause of the 17 May 2012 M 4.8 earthquake near Timpson, east Texas. Seismol Res Lett 84:374Google Scholar
  5. Cihan A, Zhou Q, Birkholzer JT (2011) Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in multilayered-aquifer systems. Water Resour Res 47(10)Google Scholar
  6. Davis SD, Frohlich C (1993) Did (or will) fluid injection cause earthquakes? criteria for a rational assessment. Seismol Res Lett 64(3–4):207–224Google Scholar
  7. Davis SD, Pennington WD (1989) Induced seismic deformation in the Cogdell oil field of west Texas. Bull Seismol Soc Am 79(5):1477–1495Google Scholar
  8. Davis SD, Nyffenegger PA, Frohlich C (1995) The 9 April 1993 earthquake in south-central Texas: was it induced by fluid withdrawal? Bull Seismol Soc Am 85(6):1888–1895Google Scholar
  9. DeShon HR, Hornbach MJ, Ellsworth WL, Oldham HR, Hayward C, Stump BW, Frohlich C, Olson JE, Luetgert JH (2014) Understanding North Texas Seismicity: a joint analysis of seismic data and 3D pore pressure modeling. AGU Fall Meeting Abstracts 1:4399Google Scholar
  10. Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142)Google Scholar
  11. Evans DM (1966) Man-made earthquakes in Denver. Geotimes 10(9):11–18Google Scholar
  12. Ferris JG (1952) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. US Geological Survey, Water Resources Division, Ground Water Branch, Reston, VAGoogle Scholar
  13. Frohlich C (2012) Two-year survey comparing earthquake activity and injection-well locations in the Barnett shale, Texas. Proc Natl Acad Sci 109(35):13934–13938CrossRefGoogle Scholar
  14. Frohlich C, Brunt M (2013) Two-year survey of earthquakes and injection/production wells in the eagle ford shale, Texas, prior to the MW4.8 20 October 2011 earthquake. Earth Planet Sci Lett 379:56–63CrossRefGoogle Scholar
  15. Frohlich C, Potter E, Hayward C, Stump B (2010) Dallas–Fort Worth earthquakes coincident with activity associated with natural gas production. Lead Edge 29(3):270–275CrossRefGoogle Scholar
  16. Frohlich C, Hayward C, Stump B, Potter E (2011) The Dallas–Fort Worth earthquake sequence: October 2008 through May 2009. Bull Seismol Soc Am 101(1):327–340CrossRefGoogle Scholar
  17. Frohlich C, Ellsworth W, Brown WA, Brunt M, Luetgert J, MacDonald T, Walter S (2014) The 17 May 2012 M4.8 earthquake near Timpson, East Texas: an event possibly triggered by fluid injection. J Geophys Res Solid Earth 119(1):581–593CrossRefGoogle Scholar
  18. Galvão P, Halihan T, Hirata R (2016) The karst permeability scale effect of Sete Lagoas, MG, Brazil. J Hydrol 532:149–162CrossRefGoogle Scholar
  19. Gan G, Frohlich C (2013) Gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proc Natl Acad Sci 110(47):18786–18791CrossRefGoogle Scholar
  20. Gleeson T, Ingebritsen S (eds) (2016) Crustal permeability. John Wiley & SonsGoogle Scholar
  21. Göbel T (2015) A comparison of seismicity rates and fluid-injection operations in Oklahoma and California: implications for crustal stresses. Lead Edge 34(6):640–648CrossRefGoogle Scholar
  22. Gomberg J, Wolf L (1999) Possible cause for an improbable earthquake: the 1997 Mw4.9 southern Alabama earthquake and hydrocarbon recovery. Geology 27(4):367–370CrossRefGoogle Scholar
  23. Halihan T, Sharp Jr JM, Mace RE (1999) Interpreting flow using permeability at multiple scales. In: Karst modeling. Karst Waters Institute Spec Pub 5, Karst Waters Institute, Leesburg, VA, pp 82–96Google Scholar
  24. Healy JH, Rubey WW, Griggs DT, Raleigh CB (1968) The Denver earthquakes. Science 161(3848):1301–1310.  https://doi.org/10.1126/science.161.3848.1301 CrossRefGoogle Scholar
  25. Herzog M (2014) Investigation of possible induced seismicity due to wastewater disposal in the Delaware Basin, Dagger Draw Field, New Mexico-Texas, USA. Honors Thesis, University of Colorado, Boulder, COGoogle Scholar
  26. Hornbach MJ, DeShon HR, Ellsworth WL, Stump BW, Hayward C, Frohlich C, Oldham HR, Olson JE, Magnani MB, Brokaw C, Luetgert JH (2015) Causal factors for seismicity near Azle, Texas. Nat Commun 6, 6728Google Scholar
  27. Horton S (2012) Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Seismol Res Lett 83(2):250–260CrossRefGoogle Scholar
  28. Hsieh PA, Bredehoeft JD (1981) Reservoir analysis of the Denver earthquakes: a case of induced seismicity. Geophys Res J (United States) 86(B2)Google Scholar
  29. Keranen KM, Savage HM, Abers GA, Cochran ES (2013) Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 MW 5.7 earthquake sequence. Geology 41(6):699–702CrossRefGoogle Scholar
  30. Keranen KM, Weingarten M, Abers GA, Bekins BA, Ge S (2014) Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 345(6195):448–451CrossRefGoogle Scholar
  31. Khan KS, Kunz R, Kleijnen J, Antes G (2003) Five steps to conducting a systematic review. J R Soc Med 96(3):118–121CrossRefGoogle Scholar
  32. Kim WY (2013) Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. J Geophys Res Solid Earth 118(7):3506–3518.  https://doi.org/10.1002/jgrb.50247 CrossRefGoogle Scholar
  33. Király L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques [Report on the current state of knowledge in the field of physical characteristics of karstic rocks]. In: Burger A, Dubertet L (eds) Hydrogeology of karstic terrains. IAH Contrib. to Hydrogeol., Heise, Hanover, Germany, pp 53–67Google Scholar
  34. Lee MK, Wolf LW (1998) Analysis of fluid pressure propagation in heterogeneous rocks: implications for hydrologically-induced earthquakes. Geophys Res Lett 25(13):2329–2332CrossRefGoogle Scholar
  35. Manga M, Beresnev I, Brodsky EE, Elkhoury JE, Elsworth D, Ingebritsen SE, Mays DC, Wang CY (2012) Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev Geophys 50(2)Google Scholar
  36. McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Solid Earth 119(2):1008–1019CrossRefGoogle Scholar
  37. McGarr A, Simpson D, Seeber L (2002) Case histories of induced and triggered seismicity. International Handbook of Earthquake and Engineering Seismology, vol 81, part A, Elsevier, Amsterdam, pp 647–664Google Scholar
  38. McGarr A, Bekins B, Burkardt N, Dewey J, Earle P, Ellsworth W, Ge S, Hickman S, Holland A, Majer E, Rubinstein J (2015) Coping with earthquakes induced by fluid injection. Science 347(6224):830–831CrossRefGoogle Scholar
  39. McNamara DE, Rubinstein JL, Myers E, Smoczyk G, Benz HM, Williams RA, Hayes G, Wilson D, Herrmann R, McMahon ND, Aster RC (2015) Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma. Lead Edge 34(6):628–639CrossRefGoogle Scholar
  40. Meremonte ME, Lahr JC, Frankel AD, Dewey JW, Crone AJ, Overturf DE, Carver DL, Bice WT (2002) Investigation of an earthquake swarm near Trinidad, Colorado, August–October 2001. US Geol Surv Open File Rep 2002-73Google Scholar
  41. Mulargia F, Bizzarri A (2014) Anthropogenic triggering of large earthquakes. Sci Rep 4:6100Google Scholar
  42. National Research Council (2013) Induced seismicity potential in energy technologies. National Academies Press, Washington, DCGoogle Scholar
  43. Nicholson C, Wesson RL (1990) Earthquake hazard associated with deep well injection: a report to the U.S. Environmental Protection Agency. USEPA, Washington, DCGoogle Scholar
  44. Pennington WD, Davis SD, Carlson SM, DuPree J, Ewing TE (1986) The evolution of seismic barriers and asperities caused by the depressuring of fault planes in oil and gas fields of South Texas. Bull Seismol Soc Am 76(4):939–948Google Scholar
  45. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS, Field N (2014) The 2014 United States National Seismic Hazard Model. Earthquake Spectra 31(S1):S1–S30CrossRefGoogle Scholar
  46. Petersen MD, Mueller CS, Moschetti MP, Hoover SM, Rubinstein JL, Llenos AL, Michael AJ, Ellsworth WL, McGarr AF, Holland AA, Anderson JG (2015) Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: results of 2014 workshop and sensitivity studies. US Geol Surv Open File Rep 2015-1070Google Scholar
  47. Petersen MD, Mueller CS, Moschetti MP, Hoover SM, Llenos AL, Ellsworth WL, Michael AJ, Rubinstein JL, McGarr AF, Rukstales KS (2016) 2016 one-year seismic hazard forecast for the central and eastern United States from induced and natural earthquakes. US Geol Surv Open File Rep 2016-1035Google Scholar
  48. Pursley J, Bilek SL, Ruhl CJ (2013) Earthquake catalogs for New Mexico and bordering areas: 2005–2009. N M Geol 35(1):1–12Google Scholar
  49. Raleigh C, Healy J, Bredehoeft J (1976) An experiment in earthquake control at Rangely, Colorado. Science 191(4233):1230–1237CrossRefGoogle Scholar
  50. Rubinstein JL, Mahani AB (2015) Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol Res Lett 86(4):1060–1067CrossRefGoogle Scholar
  51. Rubinstein JL, Ellsworth WL, McGarr A, Benz HM (2014a) The 2001–present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado. Bull Seismol Soc Am 104(5):2162–2181.  https://doi.org/10.1785/0120140009 CrossRefGoogle Scholar
  52. Rubinstein JL, Ellsworth WL, Llenos AL, Walter SR (2014b) Is the recent increase in seismicity in southern Kansas natural? AGU Fall Meeting Abstracts 1:8Google Scholar
  53. Sanford AR, Mayeau TM, Schlue JW, Aster RC, Jaksha LH (2006) Earthquake catalogs for New Mexico and bordering areas II: 1999–2004. New Mexico Geol 28:99–109Google Scholar
  54. Saucier A, Frappier C, Chapuis RP (2010) Sinusoidal oscillations radiating from a cylindrical source in thermal conduction or groundwater flow: closed-form solutions. Int J Numer Anal Methods Geomech 34(16):1743–1765Google Scholar
  55. Seeber L, Armbruster JG, Kim WY (2004) A fluid-injection-triggered earthquake sequence in Ashtabula, Ohio: implications for seismogenesis in stable continental regions. Bull Seismol Soc Am 94(1):76–87CrossRefGoogle Scholar
  56. Segall P, Lu S (2015) Injection-induced seismicity: poroelastic and earthquake nucleation effects. J Geophys Res Solid Earth 120(7):5082–5103CrossRefGoogle Scholar
  57. Shapiro SA, Dinske C (2009) Fluid-induced seismicity: pressure diffusion and hydraulic fracturing. Geophys Prospect 57(2):301–310CrossRefGoogle Scholar
  58. Simpson D (1986) Triggered earthquakes. Annu Rev Earth Planet Sci 14:21CrossRefGoogle Scholar
  59. Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28(5):399–402CrossRefGoogle Scholar
  60. Weingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL (2015) High-rate injection is associated with the increase in US mid-continent seismicity. Science 348(6241):1336–1340CrossRefGoogle Scholar
  61. Yeck WL, Sheehan AF, Weingarten M, Nakai J, Ge S (2014) The 2014 Greeley, Colorado earthquakes: science, industry, regulation, and media, AGU Fall Meeting Abstracts 1:5Google Scholar
  62. Zhang Y, Person M, Rupp J, Ellett K, Celia MA, Gable CW, Bowen B, Evans J, Bandilla K, Mozley P, Dewers T (2013) Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. Groundwater 51(4):525–538CrossRefGoogle Scholar
  63. Zoback MD (2012) Managing the seismic risk posed by wastewater disposal. Earth 57(4):38Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Oklahoma State UniversityStillwaterUSA
  2. 2.Oklahoma State UniversityStillwaterUSA

Personalised recommendations