Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 881–897 | Cite as

An approach to hydrogeological modeling of a large system of groundwater-fed lakes and wetlands in the Nebraska Sand Hills, USA

  • Nathan R. RossmanEmail author
  • Vitaly A. Zlotnik
  • Clinton M. Rowe
Paper
  • 352 Downloads

Abstract

The feasibility of a hydrogeological modeling approach to simulate several thousand shallow groundwater-fed lakes and wetlands without explicitly considering their connection with groundwater is investigated at the regional scale (~40,000 km2) through an application in the semi-arid Nebraska Sand Hills (NSH), USA. Hydraulic heads are compared to local land-surface elevations from a digital elevation model (DEM) within a geographic information system to assess locations of lakes and wetlands. The water bodies are inferred where hydraulic heads exceed, or are above a certain depth below, the land surface. Numbers of lakes and/or wetlands are determined via image cluster analysis applied to the same 30-m grid as the DEM after interpolating both simulated and estimated heads. The regional water-table map was used for groundwater model calibration, considering MODIS-based net groundwater recharge data. Resulting values of simulated total baseflow to interior streams are within 1% of observed values. Locations, areas, and numbers of simulated lakes and wetlands are compared with Landsat 2005 survey data and with areas of lakes from a 1979–1980 Landsat survey and the National Hydrography Dataset. This simplified process-based modeling approach avoids the need for field-based morphology or water-budget data from individual lakes or wetlands, or determination of lake-groundwater exchanges, yet it reproduces observed lake-wetland characteristics at regional groundwater management scales. A better understanding of the NSH hydrogeology is attained, and the approach shows promise for use in simulations of groundwater-fed lake and wetland characteristics in other large groundwater systems.

Keywords

Numerical modeling Wetlands Groundwater recharge Geographic information systems USA 

Approche par modélisation hydrogéologique d’un vaste système de lacs et de zones humides alimentés par des eaux souterraines dans les Sand Hills du Nebraska, Etats-Unis d’Amérique

Résumé

La faisabilité d’une approche de modélisation hydrogéologique visant à simuler plusieurs milliers de lacs et zones humides alimentés par des eaux souterraines peu profondes sans prendre en considération de manière explicite leur connexion avec les eaux souterraines a été étudiée à l’échelle régionale (~40,000 km2) grâce à une application dans les Sand Hills semi-arides du Nebraska (NSH), Etats-Unis d’Amérique. Les charges hydrauliques sont comparées aux altitudes locales des surfaces terrestres à partir d’un modèle d’altitude numérique (DEM) au sein d’un système d’information géographique pour évaluer l’emplacement des lacs et des zones humides. Les plans d’eau sont déduits lorsque les charges hydrauliques dépassent, ou sont situées au-dessus d’une certaine cote sous la surface du terrain. Le nombre de lacs et/ou de zones humides est. déterminé par l’analyze de grappes d’images appliquées à la même grille de 30-m que le DEM après interpolation des charges hydrauliques simulées et estimées. La carte piézométrique régionale a été utilisée pour calibrer le modèle hydrogéologique, considérant les données de précipitations efficaces rechargeant la nappe, issues du modèle MODIS. Les valeurs résultantes du débit de base total simulé vers les cours d’eau sont à moins d’un pourcent des valeurs observées. Les emplacements, les surfaces, et le nombre des lacs et zones humides simulés sont comparés avec les relevés Landsat 2005 et avec les surfaces des lacs des relevés Landsat 1979–1980, ainsi qu’avec la base nationale de données hydrographiques. Cette approche de modélisation simplifiée basée sur les processus évite de recourir à des données morphologiques de terrain ou de bilan hydrique pour chaque lac ou zone humide, ou encore la détermination des échanges entre lace et eaux souterraines, pourtant il reproduit les caractéristiques observées des lacs et des zones humides aux échelles régionales de gestion des eaux souterraines. On obtient une meilleure compréhension de l’hydrogéologie des NSH, et l’approche se révèle prometteuse pour simuler les caractéristiques des lacs et zones humides alimentés par les eaux souterraines pour d’autres grands systèmes aquifères.

Un enfoque para la modelización hidrogeológica de un gran sistema de lagos y humedales alimentados por agua subterránea en Nebraska Sand Hills, EE UU

Resumen

Se investiga la viabilidad de un enfoque de modelado hidrogeológico para simular varios miles de lagos y humedales poco profundos recargados por agua subterránea sin considerar explícitamente su conexión con el agua subterránea a una escala regional (~40,000 km2) a partir de una aplicación en la región semiárida de Nebraska Sand Hills (NSH), EEUU. Las cargas hidráulicas se comparan con las elevaciones locales de la superficie del terreno a partir de un modelo de elevación digital (DEM) dentro de un sistema de información geográfica para evaluar las ubicaciones de lagos y humedales. Los cuerpos de agua se infieren cuando las cargas hidráulicas exceden, o están por encima de cierta profundidad debajo de la superficie del terreno. El número de lagos y/o humedales se determina a través de un análisis de grupos de imágenes aplicados a una misma cuadrícula de 30 m en el DEM después de interpolar tanto las cargas hidráulicas simuladas como las estimadas. El mapa regional de la capa freática se usó para la calibración del modelo de agua subterránea, considerando en una base de MODIS los datos de recarga neta de agua subterránea. Los valores resultantes del flujo de base total simulado en los cursos de agua interiores están dentro del uno por ciento de los valores observados. Las ubicaciones, áreas y números de lagos y humedales simulados se comparan con los datos de un relevamiento con Landsat 2005 y con las áreas de lagos de un relevamiento a partir de datos de Landsat de 1979–1980 y del National Hydrography Dataset. Este enfoque de modelado simplificado basado en procesos evita la necesidad de contar con morfologías de campo o datos de balance de agua de lagos o humedales individuales, o la determinación de intercambios de agua entre los lagos y el agua subterránea, además reproduce las características observadas de los humedales y de los lagos a una escala regional para las gestión del agua subterránea. Se logra una mejor comprensión de la hidrogeología en el NSH, y el enfoque muestra buenas perspectivas para el uso en simulaciones de las características de los lagos y humedales alimentados con aguas subterráneas en otros grandes sistemas de aguas subterráneas.

美国内布拉斯加州Sand Hills地区地下水补给的湖泊和湿地巨大系统的水文地质模拟方法

摘要

在美国内布拉斯加州半干旱Sand Hills地区进行了采用水文地质方法在不特意考虑湖泊和湿地与地下水关联性的情况下区域尺度(大约40,000 km2)模拟几千个浅层地下水补给的湖泊和湿地可行性研究。在地里信息系统内通过数字高程模型对水头与当地地表高程进行了对比,以评估湖泊和湿地的位置。在水头超过、或者高于地表以下一定深度的地方推断了水体。插值模拟的和估算的水头之后,通过应用到如同数字高程模型那样的相同30-m 网格的图像聚类分析确定了众多的湖泊和湿地。考虑到基于MODIS的纯地下水补给数据,利用区域水位图对地下水模型进行校正。模拟的总基流同内部河流得到的值在观测到值的百分之一以内。模拟的湖泊和湿地的位置、面积和 数量与陆地卫星2005的勘查数据、1979–1980陆地卫星勘查的湖泊面积及国家水文数据库进行了对比。这个基于简化过程的模拟方法不需要基于野外的形态学数据或各自湖泊和湿地的水平衡数据,或者不需要确定湖泊-地下水交换,仍能再现区域地下水管理尺度上观测的湖泊-湿地特征。能够更好地了解内布拉斯加州Sand Hills地区的水文地质状况,该方法显示了在其他大型地下水系统中模拟地下水补给的湖泊和湿地特征中大有希望。

Uma abordagem para modelagem hidrogeológica de um amplo sistema de lagos e zonas húmidas alimentados por águas subterrâneas em Nebraska Sand Hills, EUA

Resumo

A viabilidade de uma abordagem de modelagem hidrogeológica para simular a alimentação da água subterrânea superficial em milhares de lagos e zonas húmidas sem considerar explicitamente a sua conexão com as águas subterrâneas é investigada em escala regional (~40,000 km2) através de uma aplicação na região semiárida Nebraska Sand Hills (NSH), EUA. Cargas hidráulicas são comparadas às elevações locais da superfície terrestre a partir de um modelo digital de elevação (MDE) dentro de um sistema de informação geográfica para avaliar os locais de lagos e zonas húmidas. Os corpos d’água são inferidos onde as cargas hidráulicas excedem, ou estão acima de uma certa profundidade abaixo, a superfície terrestre. O número de lagos e/ou zonas húmidas é determinado através da análise de agrupamento de imagens aplicada em mesma grade de 30 m após a interpolação das cargas simuladas e estimadas pelo MDE. O mapa regional de nível freático foi utilizado para a calibração do modelo de águas subterrâneas, considerando os dados de recarga de água subterrânea com base na rede MODIS. Os valores resultantes do fluxo de base total simulado para fluxos interiores estão dentro de um por cento dos valores observados. Os locais, as áreas e os números de lagos e de zonas húmidas simulados foram comparados com os dados da pesquisa Landsat de 2005 e com áreas de lagos a partir de uma pesquisa Landsat entre 1979–1980 e do Conjunto de Dados de Hidrografia Nacional. Essa abordagem simplificada de modelagem baseada em processos evita a necessidade de dados de morfologia baseada em campo ou de balanço hídrico de lagos ou zonas húmidas individuais, ou a determinação das trocas de águas entre lago e aquífero, ainda assim, reproduz as características observadas em lago e zonas húmidas nas escalas regionais de manejo de águas subterrâneas. Foi alcançada uma melhor compreensão da hidrogeologia de NSH, e a abordagem mostra um uso promissor de simulações das características de lagos e áreas úmidas alimentadas por águas subterrâneas em outros grandes sistemas de águas subterrâneas.

Notes

Acknowledgements

This research was partially supported by a grant from the National Science Foundation IGERT program (DGE-0903469) and the Daugherty Water for Food Institute, Univ. of Nebraska–Lincoln. Staff of the CSD (UNL), CALMIT (UNL), and the USGS made available crucial data sources for the construction and calibration of the groundwater flow model. J. Szilagyi (CSD) provided the net groundwater recharge data set. T. Franz (UNL) provided the MATLAB script used to calculate lake and wetland numbers, and L. Howard (UNL) provided assistance with ArcGIS analyses. A. Brookfield (KGS, Univ. Kansas) consulted on the HydroGeoSphere software during early stages of this work. We also acknowledge staff of Waterloo Hydrogeologic (formerly Schlumberger Water Services) for providing technical guidance in the use of Visual MODFLOW Flex software.

Supplementary material

10040_2017_1691_MOESM1_ESM.pdf (2.5 mb)
ESM 1 (PDF 2607 kb)

References

  1. Ahlbrandt TS, Fryberger SG (1980) Eolian deposits in the Nebraska Sand Hills. US Geol Surv Prof Pap 1120A. pp 1–24Google Scholar
  2. Ala-aho P, Rossi PM, Isokangas E, Klove B (2015) Fully integrated surface–subsurface flow modelling of groundwater–lake interaction in an esker aquifer: model verification with stable isotopes and airborne thermal imaging. J Hydrol 522:391–406.  https://doi.org/10.1016/j.jhydrol.2014.12.054 CrossRefGoogle Scholar
  3. Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling: simulation of flow and advective transport, 2nd edn. Academic, San Diego, CAGoogle Scholar
  4. Ayers JF (2007) Box Butte County–Niobrara River numerical groundwater flow model. Project completion report. Available at https://dnrnebraskagov/sites/dnrnebraskagov/files/doc/water-planning/niobrara/publications/Box-Butte_ModelProjectCompletionReportpdf. Accessed 25 October 2017
  5. Befus KM, Cardenas MB, Ong JB, Zlotnik VA (2012) Classification and delineation of groundwater–lake interactions in the Nebraska Sand Hills (USA) using electrical resistivity patterns. Hydrogeol J 20(8):1483–1495.  https://doi.org/10.1007/s10040-012-0891-x CrossRefGoogle Scholar
  6. Beven K (2012) Rainfall–runoff modelling: the primer. Wiley, Chichester, UKGoogle Scholar
  7. Bleed AS, Flowerday CA (1998) An atlas of the Sand Hills, 3rd edn. Conservation and Survey Division, University of Nebraska-Lincoln, Lincoln, NE, 260 ppGoogle Scholar
  8. Brunner P, Doherty J, Simmons CT (2012) Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models. Water Resour Res 48:W07513.  https://doi.org/10.1029/2011WR011342
  9. Carney CP (2008) Groundwater flow model of the Central Model Unit of the Nebraska Cooperative Hydrology Study (COHYST) area. COHYST technical report, COHYST, Lincoln, NE. Available at http://cohystnebraskagov/adobe/dc012CMU_GFMR_081224pdf. Accessed 25 October 2017
  10. Chen X, Chen X (2004) Simulating the effects of reduced precipitation on ground water and streamflow in the Nebraska Sand Hills. J Am Water Resour Assoc 40(2):419–430.  https://doi.org/10.1111/j.1752-1688.2004.tb01040.x CrossRefGoogle Scholar
  11. Chen X, Chen X, Rowe C, Hu Q, Anderson M (2003) Geological and climatic controls on streamflows in the Nebraska Sand Hills. J Am Water Resour Assoc 39(1):217–228.  https://doi.org/10.1111/j.1752-1688.2003.tb01573.x CrossRefGoogle Scholar
  12. Dappen P, Merchant J, Ratcliffe I, Robbins C (2007) Delineation of 2005 land use patterns for the state of Nebraska Department of Natural Resources. Final report, Center for Advanced Land Management Information Technologies. University of Nebraska-Lincoln, Lincoln, NE. Available at https://calmit.unl.edu/pdf/2005_Landuse_FinalReport.pdf. Accessed 25 October 2017
  13. Doherty JE, Fienen MN, Hunt RJ (2010) Approaches to highly parameterized inversion: pilot-point theory, guidelines, and research directions. US Geol Surv Sci Invest Rep 2010-5168. 36 ppGoogle Scholar
  14. Donovan JJ, Smith AJ, Panek VA, Engstrom DR, Ito E (2002) Climate-driven hydrologic transients in lake sediment records: calibration of groundwater conditions using 20th century drought. Quat Sci Rev 21:605–624CrossRefGoogle Scholar
  15. Fasbender D, Peeters L, Bogaert P, Dassargues A (2008) Bayesian data fusion applied to water table spatial mapping. Water Resour Res 44:W12422.  https://doi.org/10.1029/2008WR006921 CrossRefGoogle Scholar
  16. Feinstein DT, Dunning CP, Juckem PF, Hunt RJ (2010a) Application of the Local Grid Refinement package to an inset model simulating the interactions of lakes, wells, and shallow groundwater, northwestern Waukesha County, Wisconsin. US Geol Surv Sci Invest Rep 2010-5214. 30 ppGoogle Scholar
  17. Feinstein DT, Hunt RJ, Reeves HW (2010b) Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies. US Geol Surv Sci Invest Rep 2010-5109. 379 ppGoogle Scholar
  18. Ginsberg MH (1987) Water-budget model of the south-central Sand Hills of Nebraska. PhD Thesis, University of Nebraska-Lincoln, Lincoln, NE. Available at http://digitalcommons.unl.edu/dissertations/AAI8717252/. Accessed 2 March 2013
  19. Gosselin DC, Rundquist DC, McFeeters SK (2000) Remote monitoring of selected ground-water dominated lakes in the Nebraska Sand Hills. J Am Water Resour Assoc 36(5):1039–1051.  https://doi.org/10.1111/j.1752-1688.2000.tb05708.x CrossRefGoogle Scholar
  20. Harvey FE, Swinehart JB, Kurtz TM (2007) Ground water sustenance of Nebraska’s unique Sand Hills peatland fen ecosystems. Groundwater 45(2):218–234.  https://doi.org/10.1111/j.1745-6584.2006.00278.x CrossRefGoogle Scholar
  21. Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge, UKGoogle Scholar
  22. Haitjema HM, Mitchell-Bruker S (2005) Are water tables a subdued replica of the topography? Groundwater 43(6):781–786.  https://doi.org/10.1111/j.1745-6584.2005.00090.x Google Scholar
  23. Hendricks Franssen HJ, Brunner P, Makobo P, Kinzelbach W (2008) Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images. Water Resour Res 44:W01419.  https://doi.org/10.1029/2007WR006097 Google Scholar
  24. Hunt RJ, Haitjema HM, Krohelski JT, Feinstein DT (2003) Simulating ground water–lake interactions: approaches and insights. Groundwater 41(2):227–237.  https://doi.org/10.1111/j.1745-6584.2003.tb02586.x CrossRefGoogle Scholar
  25. Junk WJ, An S, Finlayson CM, Gopal B, Kvet J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167.  https://doi.org/10.1007/s00027-012-0278-z CrossRefGoogle Scholar
  26. Klove B, Ala-aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kvaerner J, Muotka T, Mykra H, Preda E, Rossi P, Uvo CB, Velasco E, Pulido-Velazquez M (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266.  https://doi.org/10.1016/j.jhydrol.2013.06.037 CrossRefGoogle Scholar
  27. Knowling MJ, Werner AD (2016) Estimability of recharge through groundwater model calibration: insights from a field-scale steady-state example. J Hydrol:973–987.  https://doi.org/10.1016/j.jhydrol.2016.07.003
  28. Korus JT, Burbach ME, Howard LM, Joeckel RM (2011) Nebraska statewide groundwater-level monitoring report 2010. Nebraska Water Surv Pap 77, Conservation and Survey Division, University of Nebraska-Lincoln, Lincoln, NE, 19 ppGoogle Scholar
  29. Korus JT, Howard LM, Young AR, Divine DP, Burbach ME, Jess JM, Hallum DR (2013) The groundwater atlas of Nebraska. Resource Atlas no. 4b/2013, 3rd edn. Conservation and Survey Division, University of Nebraska, Lincoln, NE, 64 ppGoogle Scholar
  30. La Vigna F, Hill MC, Rossetto R, Mazza R (2016) Parameterization, sensitivity analysis, and inversion: an investigation using groundwater modeling of the surface-mined Tivoli-Guidonia basin (Metropolitan City of Rome, Italy). Hydrogeol J 24(6):1423–1441.  https://doi.org/10.1007/s10040-016-1393-z CrossRefGoogle Scholar
  31. Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res 113(F01011).  https://doi.org/10.1029/2007JF000838
  32. Li HT, Brunner P, Kinzelbach W, Li WP, Dong XG (2009) Calibration of a groundwater model using pattern information from remote sensing data. J Hydrol 377(1–2):120–130.  https://doi.org/10.1016/j.jhydrol.2009.08.012 CrossRefGoogle Scholar
  33. Liu G, Schwartz FW (2011) An integrated observational and model-based analysis of the hydrologic response of prairie pothole systems to variability in climate. Water Resour Res 47:W02504.  https://doi.org/10.1029/2010WR009084
  34. Liu G, Schwartz FW (2014) On modeling the paleohydrologic response of close-basin lakes to fluctuations in climate: methods, applications, and implications. Water Resour Res 50:2975–2992.  https://doi.org/10.1002/2013WR014107 CrossRefGoogle Scholar
  35. Liu H, Yin Y, Piao S, Zhao F, Engels M, Ciais P (2013) Disappearing lakes in semiarid northern China: drivers and environmental impact. Environ Sci Technol 47(21):12107–12114.  https://doi.org/10.1021/es305298q CrossRefGoogle Scholar
  36. Loope DB, Swinehart JB, Mason JP (1995) Dune-dammed paleovalleys of the Nebraska Sand Hills: intrinsic versus climatic controls on the accumulation of lake and marsh sediments. Geol Soc Am Bull 107(4):396–406CrossRefGoogle Scholar
  37. Luckey RR, Cannia JC (2006) Groundwater flow model of the Western Model Unit of the Nebraska Cooperative Hydrology Study (COHYST) area. COHYST technical report, COHYST, Lincoln, NE. Available at ftp://ftpdnrnebraskagov/Pub/cohystftp/cohyst/model_reports/WMU_Documentation_060519pdf. Accessed 25 October 2017
  38. Luckey RR, Gutentag ED, Heimes FJ, Weeks JB (1986) Digital simulation of ground-water flow in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400-D. 57 ppGoogle Scholar
  39. McCarraher DB (1977) Nebraska’s Sandhills Lakes. Nebraska Game and Parks Commission, Lincoln, NE, 67 ppGoogle Scholar
  40. McGuire VL (2014) Water-level changes and change in water in storage in the High Plains Aquifer, predevelopment to 2013 and 2011–13. US Geol Surv Sci Invest Rep 2014-5218, 14 ppGoogle Scholar
  41. McLean JS, Chen HH, Goeke JW (1997) Simulation of ground-water flow in the High Plains Aquifer, southern Sandhills area, west-central Nebraska. US Geol Surv Open File Rep 96-206, 16 ppGoogle Scholar
  42. NDNR (2016) National hydrographic dataset, NDH: major streams. http://nednrnebraskagov/Media/GISData/Annual/MajorStreamzip. Accessed 25 October 2017
  43. Ong JB (2010) Investigation of spatial and temporal processes of lake–aquifer interactions in the Nebraska Sand Hills. PhD Thesis, University of Nebraska-Lincoln, Lincoln, NE. Available at http://digitalcommons.unl.edu/geoscidiss/13/. Accessed 15 September 2013
  44. Ong JB, Zlotnik VA (2011) Assessing lakebed hydraulic conductivity and seepage flux by potentiomanometer. Ground Water 49(2):270–274.  https://doi.org/10.1111/j.1745-6584.2010.00717.x CrossRefGoogle Scholar
  45. Peterson SM, Stanton JS, Saunders AT, Bradley JR (2008) Simulation of ground-water flow and effects of ground-water irrigation on base flow in the Elkhorn and Loup River basins, Nebraska. US Geol Surv Sci Invest Rep 2008-5143. 66 ppGoogle Scholar
  46. Riordan B, Verbyla D, McGuire D (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res 111:G04002.  https://doi.org/10.1029/2005JG000150
  47. Rossman NR, Zlotnik VA, Rowe CM, Szilagyi J (2014) Vadose zone lag time and potential 21st century climate change effects on spatially distributed groundwater recharge in the semi-arid Nebraska Sand Hills. J Hydrol 519:656–669.  https://doi.org/10.1016/j.jhydrol.2014.07.057 CrossRefGoogle Scholar
  48. Rousseau-Gueutin P, Love AJ, Vasseur G, Robinson NI, Simmons CS, de Marsily G (2013) Time to reach near-steady state in large aquifers. Water Resour Res 49:6893–6908.  https://doi.org/10.1002/wrcr.20534 CrossRefGoogle Scholar
  49. Rundquist DC (1983) Wetland Inventories of Nebraska’s Sandhills. Resources Rep, Publ. 9, Conservation and Survey Division, University of Nebraska-Lincoln, Lincoln, NE. Available at https://marketplace.unl.edu/nemaps/wetland-inventories-of-nebraska-s-sandhills-rr-9.html. Accessed 25 October 2017
  50. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WA, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109(24):9320–9325.  https://doi.org/10.1073/pnas.1200311109 CrossRefGoogle Scholar
  51. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing arctic lakes. Science 308(5727):1429.  https://doi.org/10.1126/science.1108142 CrossRefGoogle Scholar
  52. Sridhar V, Hubbard KG, Wedin DA (2006) Assessment of soil moisture dynamics of the Nebraska Sandhills using long-term measurements and a hydrology model. J Irrig Drainage Eng 132(5):463–473.  https://doi.org/10.1061/(ASCE)0733-9437(2006)132:5(463) CrossRefGoogle Scholar
  53. Stanton JS, Peterson SM, Fienen MN (2010) Simulation of groundwater flow and effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River basins, Nebraska, 1895–2055: phase two. US Geol Surv Sci Invest Rep 2010-5149. 78 ppGoogle Scholar
  54. Summerside S, Ponte M, Dreeszen VH, Hartung SL, Khisty MJ, Szilagyi J (2001) Update and revision of regional 1 × 2 degree water-table configuration maps for the state of Nebraska. Conservation and Survey Division, University of Nebraska-Lincoln, Lincoln, NE, 14 ppGoogle Scholar
  55. Szilagyi J, Jozsa J (2013) MODIS-aided statewide net groundwater-recharge estimation in Nebraska. Groundwater 51(5):735–744.  https://doi.org/10.1111/j.1745-6584.2012.01019.x CrossRefGoogle Scholar
  56. Szilagyi J, Jozsa J, Kovacs A (2011b) A calibration-free evapotranspiration mapping (CREMAP) technique. In: Labedzki L (ed) Evapotranspiration. InTech, Rijeka, Croatia, pp 257–274Google Scholar
  57. Szilagyi J, Zlotnik VA, Gates J, Jozsa J (2011a) Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA. Hydrogeol J 19(8):1503–1513.  https://doi.org/10.1007/s10040-011-0769-3 CrossRefGoogle Scholar
  58. Szilagyi J, Zlotnik VA, Jozsa J (2013) Net recharge versus depth to groundwater relationship in the Platte River Valley of Nebraska, United States. Groundwater 51(6):945–951.  https://doi.org/10.1111/gwat.12007 CrossRefGoogle Scholar
  59. Tao S, Fang J, Zhao X, Zhao S, Shen H, Hu H, Tang Z, Wang Z, Guo Q (2015) Rapid loss of lakes on the Mongolian Plateau. Proc National Acad Sci 112(7):2281–2286.  https://doi.org/10.1073/pnas.1411748112 CrossRefGoogle Scholar
  60. Turner JV, Townley LR (2006) Determination of groundwater flow-through regimes of shallow lakes and wetlands from numerical analysis of stable isotope and chloride tracer distribution patterns. J Hydrol 320:451–483.  https://doi.org/10.1016/j.jhydrol.2005.07.050 CrossRefGoogle Scholar
  61. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston, Washington, DCGoogle Scholar
  62. UNESCO (2017) Saryarka – Steppe and Lakes of northern Kazakhstan. UNESCO, Paris. http://whcunescoorg/en/list/1102/. Accessed 25 October 2017
  63. Urbano LD, Person M, Kelts K, Hanor JS (2004) Transient groundwater impacts on the development of paleoclimatic lake records in semi-arid environments. Geofluids 4(3):187–196.  https://doi.org/10.1111/j.1468-8123.2004.00081.x CrossRefGoogle Scholar
  64. Voss CI, Soliman SM (2014) The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling. Hydrogeol J 22(2):441–468.  https://doi.org/10.1007/s1040-013-1039-3 CrossRefGoogle Scholar
  65. Winter TC (1986) Effect of ground-water recharge on configuration of the water table beneath sand dunes and on seepage in lakes in the sandhills of Nebraska, USA. J Hydrol 86(3–4):221–237.  https://doi.org/10.1016/0022-1694(86)90166-6 CrossRefGoogle Scholar
  66. Winter TC (1990) Map distribution of the difference between precipitation and open water evaporation in North America. In: Geology of North America, Map GNA-01. USGS, Denver, COGoogle Scholar
  67. Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15(5):891–901.  https://doi.org/10.1007/s10040-006-0145-x CrossRefGoogle Scholar
  68. Woodrow K, Lindsay JB, Berg AA (2016) Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. J Hydrol 540:1022–1029.  https://doi.org/10.1016/j.jhydrol.2016.07.018 CrossRefGoogle Scholar
  69. Zlotnik VA, Olaguera F, Ong JB (2009) An approach to assessment of flow regimes of groundwater-dominated lakes in arid environments. J Hydrol 371(1–4):22–30.  https://doi.org/10.1016/j.jhydrol.2009.03.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nathan R. Rossman
    • 1
    • 2
    Email author
  • Vitaly A. Zlotnik
    • 1
  • Clinton M. Rowe
    • 1
  1. 1.Department of Earth and Atmospheric SciencesUniversity of Nebraska-LincolnLincolnUSA
  2. 2.HDR, IncOmahaUSA

Personalised recommendations