Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 933–943 | Cite as

Sensitivity of the Gravity Recovery and Climate Experiment (GRACE) to the complexity of aquifer systems for monitoring of groundwater

  • Yashwant B. KatpatalEmail author
  • C. Rishma
  • Chandan K. Singh
Report

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50–90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.

Keywords

Groundwater monitoring Groundwater storage Satellite imagery Remote sensing India 

Sensibilité de la gravity recovery and climate experiment (GRACE) à la complexité des systèmes aquifères pour le suivi des eaux souterraines

Résumé

La mission satellitaire Gravity Recovery and Climate Experiment (GRACE) vise à évaluer le stock d’eaux souterraines dans différentes conditions terrestres. L’objectif principal de la présente étude est. de mettre en évidence l’importance de la complexité des aquifères pour améliorer la performance de GRACE dans le suivi des eaux souterraines. La région de Vidarbha du Maharashtra, dans le centre de l’Inde, a été choisie comme zone d’étude pour l’analyze, car la région comprend un système aquifère simple dans la région occidentale et un système aquifère complexe dans la région orientale. Les analyses de tendance des niveaux d’eaux souterraines des différents systèmes aquifères et la variation spatio-temporelle de l’anomalie de stock de l’eau terrestre ont été étudiées pour comprendre le scénario d’eaux souterraines. GRACE et son application sur le terrain impliquent la sélection de quatre pixels de la sortie de GRACE pour différents systèmes aquifères, où chaque pixel de GRACE englobe 50 à 90 piézomètres. Les anomalies de stock d’eaux souterraines (GWSA) sont déduites pour chaque pixel pour la période 2002 à 2015 en utilisant les modèles de gravité mensuels de la version 05 (RL05) et les modèles de surface terrestre (GWSAGRACE) du système mondial d’assimilation des données terrestres (GLDAS) ainsi que les données actuelles de terrain (GWSAActuel). L’analyze corrélatoire entre GWSAGRACE et GWSAActuel a été effectuée en utilisant une régression linéaire. Les méthodes Pearson et Spearman montrent que la performance de GRACE est. bonne dans la région avec des aquifères simples; cependant, les performances sont plus faibles dans la région avec de multiples systèmes aquifères. L’étude met en évidence l’importance d’intégrer la sensibilité de GRACE dans l’estimation du stock des eaux souterraines dans les systèmes aquifères complexes dans les futures études.

Sensibilidad del gravity recovery and climate experiment (GRACE) a la complejidad de los sistemas de acuíferos para el monitoreo de agua subterránea

Resumen

La misión satelital del Gravity Recovery and Climate Experiment (GRACE) está dirigida a la evaluación del almacenamiento de agua subterránea en diferentes condiciones terrestres. El objetivo principal del estudio presentado es destacar la importancia de la complejidad del acuífero para mejorar el desempeño de GRACE en el monitoreo del agua subterránea. La región de Vidarbha de Maharashtra, en el centro de la India, fue seleccionada como el área de estudio para el análisis, ya que la región comprende un sistema acuífero simple en la región occidental y un sistema acuífero complejo en la región oriental. Se estudiaron los análisis de tendencias del nivel del agua subterránea de los diferentes sistemas de acuíferos y la variación espacial y temporal de la anomalía de almacenamiento de agua terrestre para comprender el escenario de aguas subterráneas. GRACE y su aplicación de campo implican seleccionar cuatro píxeles de la salida GRACE con diferentes sistemas de acuíferos, donde cada píxel GRACE abarca 50–90 pozos de monitoreo. Las anomalías del almacenamiento de agua subterránea (GWSA) se derivan para cada píxel para el período 2002 a 2015 utilizando los modelos de gravedad GRACE mensuales del Release 05 (RL05) y los modelos del Global Land Data Assimilation System (GLDAS) y de la superficie del terreno (GWSAGRACE), así como datos de campo (GWSAActual). El análisis de correlación entre GWSAGRACE y GWSAActual se realizó mediante regresión lineal. Los métodos de Pearson y Spearman muestran que el desempeño de GRACE es bueno en la región con acuíferos simples; sin embargo, el desempeño es más pobre en la región con múltiples sistemas acuíferos. El estudio destaca la importancia de incorporar la sensibilidad de GRACE en la estimación del almacenamiento de agua subterránea en sistemas complejos de acuíferos en futuros estudios.

为监测地下水对含水层复杂性进行的重力恢复和气候试验的灵敏度

摘要

重力恢复和气候试验卫星使命就是评价不同陆地条件下的地下水储存量。所做的研究主要目标就是突出含水层复杂性的重要性,以改善地下水监测中重力恢复和气候试验的性能。选择了印度中部Maharashtra邦Vidarbha地区作为研究区进行分析,因为该地区包含西部的一个简单含水层和东部一个复杂的含水层。研究分析了不同含水层系统地下水位趋势及陆地储水异常的时间变化,来了解地下水方案。重力恢复和气候试验及其在野外的应用涉及到从不同含水层系统的重力恢复和气候试验输出中选择四个像素,每一个重力恢复和气候试验像素包含50–90口监测井。采用RL05每月的重力恢复和气候试验重力模型、全球土地数据同化系统地表模型以及实际野外数据导出了每个像素2002年到2015年的地下水储量异常。利用线性回归法对全球土地数据同化系统地表模型和实际野外数据进行了对比分析。皮尔森和斯皮尔曼方法显示,重力恢复和气候试验的性能在简单含水层的地区很好,然而,在多重含水层系统的地区性能较差。研究强调了未来研究中在估算复杂含水层系统地下水储量中充分考虑重力恢复和气候试验灵敏度的重要性。

Sensibilidade do gravity recovery and climate experiment (GRACE) à complexidade dos sistemas aquíferos para monitoramento de águas subterrâneas

Resumo

A missão de satélites Gravity Recovery and Climate Experiment (GRACE) visa a avaliação do armazenamento de águas subterrâneas em diferentes condições terrestres. O objetivo principal do presente estudo é destacar a significância da complexidade do aquífero para melhorar o desempenho do GRACE no monitoramento das águas subterrâneas. A região de Vidarbha, no Maharashtra, Índia central, foi selecionada como área de estudo para análise, uma vez que a região compreende um sistema de aquífero simples na região ocidental e um sistema aquífero complexo na região oriental. As análises de tendências de nível de águas subterrâneas dos diferentes sistemas aquíferos e a variação espacial e temporal da anomalia de armazenamento da água terrestre foram estudadas para compreender o cenário das águas subterrâneas. O GRACE e sua aplicação de campo envolve a seleção de quatro pixels de saída GRACE com diferentes sistemas aquíferos, onde cada pixel GRACE engloba entre 50 e 90 poços de monitoramento. As anomalias de armazenamento de águas subterrâneas (AAAS) foram derivadas para cada pixel durante o período de 2002 a 2015 utilizando os modelos de gravidade mensais do GRACE, Release 05 (RL05), e os modelos de superfície terrestre do Global Land Data Assimilation System (AAASGRACE), bem como os dados reais de campo (AAASAtual). A análise de correlação entre AAASGRACE e AAASAtual foi realizada por regressão linear. Os métodos de Pearson e Spearman mostram que o desempenho do GRACE é bom na região com aquíferos simples; no entanto, o desempenho é menor na região com múltiplos sistemas aquíferos. O estudo ressalta a importância de incorporar a sensibilidade do GRACE na estimativa do armazenamento de águas subterrâneas em sistemas de aquíferos complexos aos estudos futuros.

Notes

Acknowledgements

Authors are thankful to the Central Ground Water Board, Central Water Commission, India, and the National Aeronautics and Space Administration (NASA) for making the dataset available for the current study. The authors are also grateful to the valuable suggestions and modifications suggested by the reviewers and editors of Hydrogeology Journal, which helped to improve the manuscript.

References

  1. Becker MW (2006) Potential for satellite remote sensing of groundwater. Ground Water 44:306–318CrossRefGoogle Scholar
  2. Brunner P, Hendricks Franssen H-J, Kgotlhang L, Bauer-Gottwein P, Kinzelbach W (2007) How can remote sensing contribute in groundwater modeling? Hydrogeol J 15:5–18CrossRefGoogle Scholar
  3. CGWB (2012) Aquifer systems of India. http://www.cgwb.gov.in/AQM/India.pdf. Accessed 20 Apr 2017
  4. Chinnasamy P, Agoramoorthy G (2015) Groundwater storage and depletion trends in Tamil Nadu state, India. Water Resour Manag 29:2139–2152.  https://doi.org/10.1007/s11269-015-0932-z CrossRefGoogle Scholar
  5. Chinnasamy P, Hubbart JA, Agoramoorthy G (2013) Using remote sensing data to improve groundwater supply estimations in Gujarat, India. Earth Interact 17(1):1–17CrossRefGoogle Scholar
  6. Famiglietti, JS, Lo, M, Ho, SL, Bethune, J, Anderson, KJ, Syed, TH, Swenson, SC, de Linage, CR, Rodell, M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403.  https://doi.org/10.1029/2010GL046442
  7. Feng W, Zhong M, Lemoine J-M, Biancale R, Hsu H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground based measurements. Water Resour Res 49:2110–2118.  https://doi.org/10.1002/wrcr.20192 CrossRefGoogle Scholar
  8. Güntner A, Schmidt R, Döll P (2007) Supporting large-scale hydrogeological monitoring and modelling by time-variable gravity data. Hydrogeol J 15:167–170.  https://doi.org/10.1007/s10040-006-0089-1 CrossRefGoogle Scholar
  9. Huang Z, Pan Y, Gong H, Yeh PJ-F, Li X, Zhou D, Zhao W (2015) Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China plain. Geophys Res Lett 42:1791–1799.  https://doi.org/10.1002/2014GL062498 CrossRefGoogle Scholar
  10. Huang J, Pavlic G, Rivera A, Palombi D, Smerdon B (2016) Mapping groundwater storage variations with GRACE: a case study in Alberta, Canada. Hydrogeol J 24:1663–1680.  https://doi.org/10.1007/s10040-016-1412-0 CrossRefGoogle Scholar
  11. Jha MK, Chowdary VM (2006) Challenges of using remote sensing and GIS in developing nations. Hydrogeol J 15:197–200.  https://doi.org/10.1007/s10040-006-0117-1 CrossRefGoogle Scholar
  12. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48(4).  https://doi.org/10.1029/2011WR011453
  13. NASA (2016) Gravity recovery & climate experiment (GRACE) Tellus. https://grace.jpl.nasa.gov/data/get-data/. Accessed 21 June 2016
  14. Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1–4):245–256.  https://doi.org/10.1016/S0022-1694(02)00060-4 CrossRefGoogle Scholar
  15. Rodell M, Chen J, Kato H, Famiglietti J, Nigro J, Wilson C (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166.  https://doi.org/10.1007/s10040-006-0103-7 CrossRefGoogle Scholar
  16. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002CrossRefGoogle Scholar
  17. Scanlon BR, Longuevergne L, Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48:W04520.  https://doi.org/10.1029/2011WR011312 CrossRefGoogle Scholar
  18. Shah T, Molden D, Sakthivadivel R, Seckler D (2000) The global groundwater situation: overview and opportunities and challenges. IWMI, Colombo, Sri Lanka, 21 pp.  https://doi.org/10.5337/2011.0051
  19. Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys Res Lett 34(13).  https://doi.org/10.1029/2007gl030139
  20. Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, central United States. Water Resour Res 45(5).  https://doi.org/10.1029/2008wr006892
  21. Sun AY (2013) Predicting groundwater level changes using GRACE data. Water Resour Res 49:5900–5912.  https://doi.org/10.1002/wrcr.20421 CrossRefGoogle Scholar
  22. Swenson S, Yeh PJF, Wahr J, Famiglietti J (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33(16).  https://doi.org/10.1029/2006gl026962
  23. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433.  https://doi.org/10.1029/2006WR005779 CrossRefGoogle Scholar
  24. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31:L09607.  https://doi.org/10.1029/2004GL019920 CrossRefGoogle Scholar
  25. Thakur JK, Singh SK, Ekanthalu VS (2016) Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. Appl Water Sci.  https://doi.org/10.1007/s13201-016-0384-5
  26. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36(18).  https://doi.org/10.1029/2009gl039401
  27. Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331CrossRefGoogle Scholar
  28. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402.  https://doi.org/10.1029/2010GL044571 CrossRefGoogle Scholar
  29. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time variable gravity from GRACE: first results. Geophys Res Lett 31.  https://doi.org/10.1029/2004GL019779
  30. WRIS (2016) Water Resources Information System http://www.india-wris.nrsc.gov.in/wrpinfo/index.php?title=Main_Page. Accessed 20 Jan 2017
  31. Yeh PJF, Swenson S, Famiglietti J, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42(12).  https://doi.org/10.1029/2006WR005374
  32. Yirdaw SZ, Snelgrove KR (2011) Regional groundwater storage from GRACE over the Assiniboine Delta aquifer (ADA) of Manitoba. Atmosphere-Ocean 49(4):396–407.  https://doi.org/10.1080/07055900.2011.623915 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yashwant B. Katpatal
    • 1
    Email author
  • C. Rishma
    • 1
  • Chandan K. Singh
    • 1
  1. 1.Visvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations