Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 899–922 | Cite as

Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

  • Raju Thapa
  • Srimanta GuptaEmail author
  • Arindam Gupta
  • D. V. Reddy
  • Harjeet Kaur
Paper

Abstract

Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation (R 2 = 0.308) with the average water-table depth in the study area.

Keywords

Groundwater potential zonation Multi-influencing factor (MIF) technique Groundwater monitoring Remote sensing India 

Utilisation de la technologie géospatiale pour la délimitation des zones aquifères potentiels en mettant l’accent sur l’analyse du niveau piézométrique dans le bassin de la rivière Dwarka, Birbhum, Inde

Résumé

Le bassin de la Rivière Dwarka à Birbhum, au Bengale occidental (Inde), est. une zone dominée par l’agriculture où les eaux souterraines jouent un rôle crucial. Le bassin connaît des conditions de stress hydrique saisonnier avec une pénurie en eau de surface. Dans l’étude présentée, la délimitation des zones d’aquifères potentiels (ZAP) est. réalisée à l’aide d’une technique géospatiale multi-facteurs. La géologie, la géomorphologie, le type de sol, l’utilisation des terres et la couverture végétale, les précipitations, la densité de linéaments et de failles, la densité du drainage, la pente et l’élévation de la zone d’étude ont été pris en compte pour la délimitation des ZAP de la zone d’étude. Environ 9.3, 71.9 et 18.8% de la zone d’étude se situent dans des zones aquifères potentiels bonnes, modérées et faibles, respectivement. Les données de productivité des aquifères corroborent les résultats du modèle, avec une productivité maximale dans l’ancienne plaine d’inondation et une productivité minimum dans les terrains de socle dans les régions ouest et sud-ouest. La validation des ZAP en utilisant la productivité de 148 puits montre la très grande précision de la prévision du modèle, c’est.-à-dire 89.1% sur la surimposition et 85.1 et 81.3% sur les taux de succès et de prévision, respectivement. La mesure de la fluctuation saisonnière de la nappe phréatique à l’aide d’un modèle multiplicatif des séries chronologiques pour prédire la tendance à court terme du niveau piézométrique, suivie d’une analyse de chi carré entre les profondeurs prédites et observées, indique une tendance à la baisse des niveaux piézométriques, avec un niveau de signification de 5% et une valeur de p de 0.233. Le schéma de pluviométrie des trois dernières années de la zone d’étude montre une corrélation modérément positive (R 2 = 0.308) avec la profondeur moyenne de la nappe phréatique dans la zone d’étude.

Utilización de la tecnología geoespacial para la definición de zonas potenciales de agua subterránea con énfasis en el análisis de los niveles freáticos en la cuenca del río Dwarka, Birbhum, India

Resumen

La cuenca del río Dwarka en Birbhum, Bengala Occidental (India), es un área dominada por la agricultura donde el agua subterránea desempeña un papel crucial. La cuenca experimenta condiciones estacionales de estrés hídrico con escasez de agua superficial. En el estudio presentado, la delimitación de las zonas potenciales de agua subterránea (GWPZs) se lleva a cabo utilizando una técnica geoespacial de criterios múltiples. Se consideraron la geología, la geomorfología, el tipo de suelo, el uso del suelo/cobertura del suelo, la precipitación, la densidad de lineamientos y fallas, la densidad de drenaje, la pendiente y la elevación del área de estudio para definir GWPZs en el área de estudio. Aproximadamente el 9.3, el 71.9 y el 18.8% del área de estudio se sitúa dentro de zonas potenciales de agua subterránea buena, moderada y pobre, respectivamente. Los datos potenciales del rendimiento del agua subterránea corroboran el resultado del modelo, con un rendimiento máximo en la planicie de inundación más antigua y un rendimiento mínimo en los terrenos de roca dura en las regiones occidental y suroeste. La validación de las GWPZ utilizando el rendimiento de 148 pozos muestra una precisión muy alta en la predicción del modelo, es decir, 89.1% en superposición y 85.1 y 81.3% en los índices de éxito y predicción, respectivamente. La medición de la fluctuación estacional del nivel freático con un modelo multiplicativo de series de tiempo para predecir la tendencia a corto plazo de la capa freática, seguida del análisis de chi cuadrado entre la profundidad pronosticada y observada, indica una tendencia a la profundización de los niveles freáticos, con un nivel de significación de 5% y un valor de p de 0.233. El patrón de lluvia de los últimos tres años del estudio muestra una correlación moderadamente positiva (R 2 = 0.308) con la profundidad promedio de la capa freática en el área de estudio.

利用地质空间技术描述印度比尔普姆地区Dwarka河流域地下水潜力带,重点进行水位分析

摘要

(印度)西孟加拉邦比尔普姆地区的Dwarka河流域是一个农业占主导地位的地区,那里的地下水发挥着至关重要的作用。该流域地表水匮乏,常常出现季节性缺水压力。在本研究中,采用地质空间多重影响因子技术对地下水潜力带进行了描述。在描述该研究区地下水潜力带时考虑了地质、地貌、土壤类型、土地利用/土地覆盖、降雨、线性结构和断层密度、坡度及高程。研究区内大约9.3、71.9和18.8%的区域分别为为好、中等和差的地下水潜力带。潜在的地下水出水量数据证实了模型的结果,较老的洪水平原出水量最大,西部和西南地区的硬岩地势中出水量最小。利用148口井的出水量对地下水潜力带进行了验证,显示出模型预测非常精确,也就是说,重叠量为89.1%,成功和预测率为85.1和81.3%。用时间序列乘法模型测量季节性水位波动来预测水位的短期趋势,然后对预测和观测到的水位深度进行了卡方分析,结果表明地下水位有下降趋势,达5%, p-值为0.233。研究区最近三年的降雨模式显示出与平均水位深度呈适度正相关(R 2 = 0.308)。

Uso de tecnologia geoespacial para delinear zonas potenciais para águas subterrâneas com uma ênfase em análise do lençol freático na bacia do Rio Dwarka, Birbhum, Índia

Resumo

A bacia do Rio Dwarka em Birbhum, Bengala Ocidental (Índia), é uma área dominada por agricultura onde as águas subterrâneas exercem um papel crucial. A bacia vivencia condições de estresse hídrico sazonais com uma escassez de águas superficiais. No presente estudo, o delineamento de zonas potenciais para águas subterrâneas (ZPAS) é conduzido usando técnicas de fatores multinfluência. Geologia, geomorfologia, tipo de solo, uso e cobertura da terra, precipitação, lineamentos e densidade de fraturas, densidade de drenagem, declividade e elevação da área de estudo foram considerados no delineamento de ZPAS na área de estudo. Cerca de 9.3, 71.9 e 18.8% da área de estudo came dentro de bom, moderado e pobre potencial para águas subterrâneas, respectivamente. Dados sobre a produção potencial das águas subterrâneas corroboram as saídas do modelo, com uma produção máxima na planície de inundação mais antiga e produção mínima em terrenos cristalinos nas regiões oeste e sudoeste. A validação das ZPAS usando a produtividade de 148 poços mostrou uma predição do modelo altamente acurada, p. ex., 89.1% em superposição e 85.1 e 81.3% em taxas de sucesso e predição, respectivamente. A mensuração da flutuação sazonal do lençol freático com um modelo multiplicativo de séries temporais para prever a tendência de curto prazo do lençol freático, seguida da análise do qui-quadrado entre a profundidade do lençol freático previsto e observado, indica uma tendência de queda dos níveis de água subterrânea, com um nível de significância de 5% e um valor-p de 0.233. O padrão de precipitação nos últimos três anos do estudo mostra uma correlação positiva moderada (R 2 = 0.308) com a profundidade média do lençol freático na área de estudo.

Notes

Funding

The author expresses his heartiest gratitude to the Department of Science and Technology (project No. SB/ES-687/2013 dated 11.11.2014), Government of India, for financial support to the project. The author would also like to thank the Central Ground Water Board, Survey of India, and Geological Survey of India for their help and support.

Supplementary material

10040_2017_1683_MOESM1_ESM.pdf (735 kb)
ESM 1 (PDF 735 kb)

References

  1. Abrahart RJ, See LM, Solomatine DP (2008) Practical hydroinformatics. Springer, Heidelberg, 505 pp.  https://doi.org/10.1007/978-3-540-79881-1
  2. Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool: a case of predicting potential zones of sustainable groundwater resources. J Hydrol 440:75–89.  https://doi.org/10.1016/j.jhydrol.2012.03.028 CrossRefGoogle Scholar
  3. Alley WM, Healy RW, LaBaugh JW, Reilly TE (2002) Flow and storage in groundwater systems. Science 296(5575):1985–1990.  https://doi.org/10.1126/science.1067123 CrossRefGoogle Scholar
  4. Arkoprovo B, Adarsa J, Prakash SS (2012) Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: a case study from Ganjam district, Orissa, India. Res J Recent Sci 1(9):59–66Google Scholar
  5. Balamurugan G, Anbazhagan S, Biswal TK (2008) Remote sensing for delineating deep aquifer zones, Hosur-Rayakottai region, India. In: 2008 (ed) National Symposium on Advances in Remote Sensing Technology and Applications with Special Emphasis on Microwave Remote Sensing and Annual Convention of Indian Society of Remote Sensing (ISRS). Ahmedabad, Gujarat, IndiaGoogle Scholar
  6. Balamurugan G, Seshan K, Bera S (2016) Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert. India, J King Saud Univ Sci.  https://doi.org/10.1016/j.jksus.2016.08.003
  7. BMTPC (2017) Building Materials and Technology Promotion Council: vulnerability atlas, 2nd edition, Ministry of Housing and Urban Affairs (Gov of India). http://www.bmtpc.org/. Accessed November 2017
  8. Bouwer H (2000) Integrated water management: emerging issues and challenges. Agric Water Manag 45(3):217–228.  https://doi.org/10.1016/S0378-3774(00)00092-5 CrossRefGoogle Scholar
  9. Bradford RB, Ragab R, Crooks SM, Bouraoui F, Peters E (2002) Simplicity versus complexity in modelling groundwater recharge in chalk catchments. Hydrol Earth Syst Sci 6:927–937.  https://doi.org/10.5194/hess-6-927-2002 CrossRefGoogle Scholar
  10. Butterworth JA, Schulze RE, Simmond LP, Moriarty P, Mugabe F (1999) Hydrological processes and water resources management in a dryland environment IV: long-term groundwater level fluctuations due to variation in rainfall. Hydrol Earth Syst Sci 3(3):353–361.  https://doi.org/10.5194/hess-3-353-1999 CrossRefGoogle Scholar
  11. Carretero SC, Kruse EE (2012) Relationship between precipitation and water-table fluctuation in a coastal dune aquifer: northeastern coast of the Buenos Aires province, Argentina. Hydrogeol J 20(8):1613–1621.  https://doi.org/10.1007/s10040-012-0890-y
  12. Castany G (1971) Tratado práctico de las aguas subterráneas [Groundwater practical treatise]. Omega, BarcelonaGoogle Scholar
  13. CGWB (1985) Central Groundwater Board (ER) Hydrogeology and groundwater resources of Birbhum district, West Bengal. Technical report, Series D, no. 30, CGWB, New DelhiGoogle Scholar
  14. CGWB (2014) Ground water year book of West Bengal and Andaman and Nicobar Islands (2013–2014) Technical report, Series D. Central Ground Water Board, Ministry of Water Resources (Government of India). http://www.cgwb.gov.in/Regions/GW-year-Books/GWYB-2013-14/West%20Bengal%20GWYB%2013-14.pdf. Accessed January 2017
  15. CGWB (2016a) Ground water year book of West Bengal and Andaman and Nicobar Islands (2014–2015). Technical report, Series D. Central Ground Water Board, Ministry of Water Resources, New Delhi. http://www.cgwb.gov.in/Regions/GW-year-Books/GWYB-2014-15/GWYB%202014-15(WB%20AND%20AN).pdf. Accessed January 2017
  16. CGWB (2016b) Ground water year book of West Bengal and Andaman and Nicobar Islands (2014–2015) Technical report Series D. Central Ground Water Board, Ministry of Water Resources, New Delhi. http://www.cgwb.gov.in/Regions/GW-year-Books/GWYB-2015-16/GWYB%20ER%202015-16.pdf. Accessed January 2017
  17. Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Rem S 65(12):1389–1399.Google Scholar
  18. Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472.  https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b CrossRefGoogle Scholar
  19. Custodio E, Llamas MR (1996) Hidrología Subterránea [Groundwater hydrology] Omega, BarcelonaGoogle Scholar
  20. Dabral S, Sharma N, Bhatt B, Joshi JP (2013) A geospatial technique for demarcating ground water recharge potential zones: a study of Mahi-Narmada inter stream region, Gujarat. IJGGS 4(1):177–185Google Scholar
  21. Davoodi MD, Rezaei M, Pourghasemi HR, Pourtaghi ZS, Pradhan B (2015) Groundwater spring potential mapping using a bivariate statistical model and GIS in the Taleghan watershed, Iran. Arab J Geosci.  https://doi.org/10.1007/s12517-013-1161-5
  22. De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17CrossRefGoogle Scholar
  23. Debnath GC, Mondal P (2013) Water degradation of Birbhum district. Golden Res Thoughts 2(11):2231–5063Google Scholar
  24. Dinesan VP, Gopinatha G, Ashitha MK (2015) Application of geoinformatics for the delineation of groundwater prospects zones: a case study for Melattur Grama Panchayat in Kerala, India. International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE’15). Aquatic Procedia 4:1389–1396CrossRefGoogle Scholar
  25. Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885CrossRefGoogle Scholar
  26. Eid MM, Rahman AMT, Zaghloul EA, Elbeih SF (2006) Integrated remote sensing and GIS for proposing groundwater recharge locations: case study at West El-Nubariya Canal, Egypt. Egypt J Remote Sens Space Sci 9:113–134Google Scholar
  27. Elbeih SF (2007) Impact of groundwater recharge on the surrounding environment. PhD Thesis, Ain Shams University, EgyptGoogle Scholar
  28. Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Phil Trans R Soc Lond B 358.  https://doi.org/10.1098/rstb.2003.1380
  29. Gov. of West Bengal (2017) District website of Birbhum. http://www.birbhum.gov.in/. Accessed Jan 2017
  30. GSI (2017) Birbhum district, West Bengal, District resource map, 1st edn. Geological Survey of India. http://www.portal.gsi.gov.in/portal/page?pageid=108,721665&_dad=portal&_schema=PORTAL. Accessed Nov 2016
  31. Gurumani N (2005) An introduction to biostatistics, 2nd edn. MJP, Chennai, IndiaGoogle Scholar
  32. Hammouri NA, El-Naqa A, Barakat M (2012) An integrated approach to groundwater exploration using remote sensing and geographic information system. J Water Resour Prot 4(9):717–724.  https://doi.org/10.4236/jwarp.2012.49081 CrossRefGoogle Scholar
  33. Horton RE (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361.  https://doi.org/10.1029/TR013i001p00350 CrossRefGoogle Scholar
  34. Hung LQ, Dinh NQ, Batelaan O, Tam VT, Lagrou D (2002) Remote sensing and GIS-based analysis of cave development in the Suoimuoi catchment (Son La-NW Vietnam). J Cave Karst Stud 64(1):23–33Google Scholar
  35. Ibrahim-Bathis K, Ahmed SA (2016) Rainfall-runoff modeling of Doddahalla watershed: an application of HEC-HMS and SCNCN in ungauged agricultural watershed. Arab J Geosci 9:170.  https://doi.org/10.1007/s12517-015-2228-2 CrossRefGoogle Scholar
  36. IMD (2013) Rainfall statistics of India – 2012, report no. ESSO/IMD/HS/R.F. REP/02 (2013)/16, India Meteorological Department, New DelhiGoogle Scholar
  37. IMD (2014) Rainfall statistics of India – 2013, report no. ESSO/IMD/HS/R.F.REPORT/02(2014)/18, India Meteorological Department, New DelhiGoogle Scholar
  38. IMD (2016a) Rainfall statistics of India – 2014, Report no. ESSO/IMD/HS R. F. REPORT/01(2016)/19, India Meteorological Department, New DelhiGoogle Scholar
  39. IMD (2016b) Rainfall statistics of India – 2015, Report no. ESSO/IMD/HS R. F. REPORT/04(2016)/22, India Meteorological Department, New DelhiGoogle Scholar
  40. Israil M, Al-hadithi M, Singhal DC (2006) Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeol J 14:753–759.  https://doi.org/10.1007/s10040-005-0483-0 CrossRefGoogle Scholar
  41. Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated RS and GIS: prospects and constraints. Water Resour Manag 21:427–467.  https://doi.org/10.1007/s11269-006-9024-4 CrossRefGoogle Scholar
  42. Jha MK, Chowdary VM, Chowdhury A (2010) Groundwater assessment in Salboni block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18:1713–1728.  https://doi.org/10.1007/s10040-010-0631-z CrossRefGoogle Scholar
  43. Jothibasu A, Anbazhagan S (2016) Modeling groundwater probability index in Ponnaiyar River basin of South India using analytic hierarchy process. Model Earth Syst Environ 2:109.  https://doi.org/10.1007/s40808-016-0174 CrossRefGoogle Scholar
  44. Kaliraj S, Chandrasekar N, Magesh NS (2014) Identification of potential groundwater recharge zones in Vaigai Upper Basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci 7:1385–1401.  https://doi.org/10.1007/s12517-013-0849-x CrossRefGoogle Scholar
  45. Klose M, Gruber D, Damm B, Gerold G (2014) Spatial databases and GIS as tools for regional landslide susceptibility modeling. Zeitschrift Geomorphol NF 58(1):1–36.  https://doi.org/10.1127/0372-8854/2013/0119 CrossRefGoogle Scholar
  46. Krishnamurthy J, Mani A, Jayaraman V, Manivel M (2000) Groundwater resources development in hard rock terrain: an approach using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinf 2(3–4):204–215.  https://doi.org/10.1016/S0303-2434(00)85015-1 CrossRefGoogle Scholar
  47. Kumanan CJ, Ramasamy SM (2003) Fractures and transmissivity behaviour of the hard rock aquifer system in parts of Western Ghats, Tamil Nadu, India. Water Resour J 53–59Google Scholar
  48. Kumar MG, Agarwal AK, Bali R (2008) Delineation of potential sites for water harvesting structures using remote sensing and GIS. J Indian Soc Remote Sens 36(4):323–334 https://link.springer.com/article/10.1007/s12524-008-0033-z CrossRefGoogle Scholar
  49. Lee S, Song KY, Kim Y, Park I (2012) Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeol J 20:1511–1527.  https://doi.org/10.1007/s10040-012-0894-7 CrossRefGoogle Scholar
  50. Machiwal D, Singh PK (2015) Comparing GIS-based multi-criteria decision-making and Boolean logic modelling approaches for delineating groundwater recharge zones. Arab J Geosci.  https://doi.org/10.1007/s12517-015-2002-5
  51. Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a semiarid region of India using remote sensing, GIS and MCDM techniques. Water Resour Manag 25:1359–1386.  https://doi.org/10.1007/s11269-010-9749-y CrossRefGoogle Scholar
  52. Magesh NS, Chandrasekar N, Soundranayagam JP (2011) Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of western Ghats, Tirunelveli district, Tamil Nadu India: a GIS approach. Environ Earth Sci 64:373–381.  https://doi.org/10.1007/s12665-010-0860-4 CrossRefGoogle Scholar
  53. Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. GSF 3(2):189–196.  https://doi.org/10.1016/j.gsf.2011.10.007 Google Scholar
  54. Manap MA, Nampak H, Pradhan B, Lee S, Soleiman WNA, Ramli MF (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci.  https://doi.org/10.1007/s12517-012-0795-z
  55. Matori AN (2012) Detecting flood susceptible areas using GIS-based analytic hierarchy process. International Conference on Future Environment and Energy, Singapore, February 2012Google Scholar
  56. Mayilvaganan MK, Mohana P, Naidu KB (2011) Delineating groundwater potential zones in Thurinjapuram watershed using geospatial techniques. Indian J Sci Technol 4(11):1470–1476Google Scholar
  57. Mitra M, Acharya T (2015) Study of fractures in Precambrian crystalline rocks using field technique in and around Balarampur, Purulia district, West Bengal, India. J Earth Syst Sci 124(8).  https://doi.org/10.1007/s12040-015-0635-0
  58. Mondal D, Gupta S, Reddy DV, Nagabhushanam P (2014) Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. J Geochem Explor 145:190–206.  https://doi.org/10.1016/j.gexplo.2014.06.005 CrossRefGoogle Scholar
  59. Murthy KSR, Mamo AG (2009) Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltele subbasin, South Ethiopia. Int J Remote Sens 30:2729–2740.  https://doi.org/10.1080/01431160802468255 CrossRefGoogle Scholar
  60. Nag SK (2005) Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. J Indian Soc Remote Sens 33(4):521–529.  https://doi.org/10.1007/BF02990737 CrossRefGoogle Scholar
  61. Naghibi A, Pourghasemi HR (2015) A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods for groundwater potential mapping in Iran. Water Resour Manage 29(14):5217–5236.  https://doi.org/10.1007/s11269-015-1114-8 CrossRefGoogle Scholar
  62. Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A (2015) Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci Inf 1(8):171–186.  https://doi.org/10.1007/s12145-014-0145-7 CrossRefGoogle Scholar
  63. Naghibi SA, Pourghasemi HR, Dixon B (2016) Groundwater spring potential using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:44.  https://doi.org/10.1007/s10661-015-5049-6 CrossRefGoogle Scholar
  64. NATMO (2009) National Atlas and Thematic Mapping Organisation, Survey of India, Census of India published maps. NATMO, KolkataGoogle Scholar
  65. Neuhaüser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model. Landslides 9:511–528.  https://doi.org/10.1007/s10346-011-0305-5 CrossRefGoogle Scholar
  66. NRDWS (2017) National Rural Drinking Water Supply, Ministry of Drinking Water & Sanitation, Gov of India. http://indiawater.gov.in/IMISReports/. Accessed Jan 2017
  67. NRSC (2017) Indian Geo-Platform of ISRP. http://bhuvan.nrsc.gov.in. Accessed Jan 2017
  68. Oh HJ, Kim YS, Choi JK, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172.  https://doi.org/10.1016/j.jhydrol.2010.12.027 CrossRefGoogle Scholar
  69. Panagopoulus GP, Antonakos AK, Lambrakis NJ (2005) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14(6):894–911.  https://doi.org/10.1007/s10040-005-0008-x CrossRefGoogle Scholar
  70. PHED (2007) Public Health Engineering Department, Government of West Bengal, activities & achievements in rural drinking water supply and other areas. http://www.wbphed.gov.in/applications/im/uploads/000643.pdf. Accessed 18 Aug 2016
  71. Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand township, southern Khorasan Province, Iran. Hydrogeol J 22:643–662.  https://doi.org/10.1007/s10040-013-1089-6 CrossRefGoogle Scholar
  72. Pradhan B (2009) Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Cent Eur J Geosci 1(1):120–129.  https://doi.org/10.2478/v10085-009-0008-5 Google Scholar
  73. Preeja KR, Sabu J, Jobin T, Vijith H (2011) Identification of groundwater potential zones of a Tropical River basin (Kerala, India) using remote sensing and GIS techniques. J Indian Soc Remote Sens 39(1):83–94 https://link.springer.com/article/10.1007/s12524-011-0075-5 CrossRefGoogle Scholar
  74. Punmia BC, Ashok KJ, Arun K (2005) Soil mechanics and foundations. Laxmi, New DelhiGoogle Scholar
  75. Rajaveni SP, Brindha K, Rajesh R, Elango L (2014) Spatial and temporal variation of groundwater level and its relation to drainage and intrusive rocks in a part of Nalgonda District, Andhra Pradesh, India. J Indian Soc Remote Sens 42(4):765–776 https://link.springer.com/article/10.1007/s12524-013-0328-6 CrossRefGoogle Scholar
  76. Rajaveni SP, Brindha K, Elango L (2017) Geological and geomorphological controls on groundwater occurrence in a hard rock region. Appl Water Sci 7(13):1377–1389 https://link.springer.com/article/10.1007/s13201-015-0327-6 CrossRefGoogle Scholar
  77. Ramaiah SN, Gopalakrishna GS, Vittala SS, Najeeb KMD (2012) Geomorphological mapping for identification of ground water potential zones in hard rock areas using geo-spatial information: a case study in Malur Taluk, Kolar District, Karnataka, India. Nat Environ Pollut Technol 11(3):369–376Google Scholar
  78. Ramasamy SM, Anbazhagan S (1997) Integrated terrain analysis in site selection for artificial recharge in Ayyar basin, Tamil Nadu, India. Water Resour J 43–48. http://14.139.186.108/jspui/handle/123456789/15969
  79. Rao NS (2006) Groundwater potential index in a crystalline terrain using remote sensing data. Environ Geol 50(7):1067–1076. https://link.springer.com/article/10.1007/s00254-006-0280-7 CrossRefGoogle Scholar
  80. Rassam DW, Pagendam DE, Hunter HM (2008) Conceptualisation and application of models for groundwater–surface water interactions and nitrate attenuation potential in riparian zones. Environ Modell Software 23:859–875.  https://doi.org/10.1016/j.envsoft.2007.11.003 CrossRefGoogle Scholar
  81. Razandi Y, Pourghasemi HR, Samani-Neisani N, Rahmati O (2015) Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inf 8(4):867–883.  https://doi.org/10.1007/s12145-015-0220-8 CrossRefGoogle Scholar
  82. Riad PH, Billib MH, Hassan AA, Omar MA (2011a) Water scarcity management in a semi-arid area in Egypt: overlay weighted model and fuzzy logic to determine the best locations for artificial recharge of groundwater, Nile Basin. WSE 4(1):24–35Google Scholar
  83. Riad PH, Billib MH, Hassan AA, Salam MA, El Din MN (2011b) Application of the overlay weighted model and Boolean logic to determine the best locations for artificial recharge of groundwater. JUEE 5(2):57–66.  https://doi.org/10.4090/juee.2011.v5n2.057066
  84. Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19(10):1825–1841.  https://doi.org/10.1080/014311698215018 CrossRefGoogle Scholar
  85. Saunders RJ (2001) Artificial recharge of groundwater as a water management option for eastern Maine. MSc Thesis, Bio-Resource Engineering, University of Maine, Bangor, MEGoogle Scholar
  86. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2008) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS 109(24):9320–9325.  https://doi.org/10.1073/pnas.1200311109 http://www.pnas.org/content/109/24/9320.full.pdf CrossRefGoogle Scholar
  87. Selvam S, Manimaran G, Sivasubramanian P, Balasubramanian N, Seshunarayana T (2014) GIS-based evaluation of water quality index of groundwater resources around Tuticorin coastal city, South India. Environ Earth Sci 71:2847–2867.  https://doi.org/10.1007/s12665-013-2662-y CrossRefGoogle Scholar
  88. Selvam S, Dar FA, Magesh NS, Singaraja C, Venkatramanan S, Chung SY (2016) Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti municipality, Tamil Nadu using IF technique. Earth Sci Inform 9(2):137–150 https://link.springer.com/article/10.1007%2Fs12145-015-0242-2 CrossRefGoogle Scholar
  89. Senanayake IP, Dissanayake DMDOK, Mayadunna BB, Weerasekera WL (2016) An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci Front 7:115–124.  https://doi.org/10.1016/j.gsf.2015.03.002 CrossRefGoogle Scholar
  90. Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13(5–6):826–834.  https://doi.org/10.1007/s10040-004-0378-5 CrossRefGoogle Scholar
  91. Senthil-Kumar GR, Shankar K (2014) Assessment of groundwater potential zones using GIS. Front Geosci 2(1):1–10Google Scholar
  92. Shaban A, Khawlie M, Bou Kheir R, Abdallah C (2001) Assessment of road instability along a typical mountainous road using GIS and aerial photos, Lebanon - eastern Mediterranean. Bull Eng Geol Env 60(2):93–101. https://link.springer.com/article/10.1007/s100640000092
  93. Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zone: the case of occidental Lebanon. Hydrogeol J 14(4):433–443.  https://doi.org/10.1007/s10040-005-0437-6 CrossRefGoogle Scholar
  94. Singh PK, Singh UC (2009) Water resource evaluation and management for Morar River basin, Gwalior district, Madhya Pradesh, using GIS. Earth Sci India 2(III):174–186Google Scholar
  95. Singh P, Thakur J, Singh UC (2013) Morphometric analysis of Morar River basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environ Earth Sci 68:1967–1977.  https://doi.org/10.1007/s12665-012-1884-8 CrossRefGoogle Scholar
  96. Singh P, Gupta A, Singh M (2014) Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. Egypt J Remote Sens Space Sci 17:111–121.  https://doi.org/10.1016/j.ejrs.2014.09.003 Google Scholar
  97. Sterlacchini S, Ballabio C, Blahut J, Masetti M, Sorichetta A (2011) Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology 125:51–61.  https://doi.org/10.1016/j.geomorph.2010.09.004 CrossRefGoogle Scholar
  98. Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504(11):69–79.  https://doi.org/10.1016/j.jhydrol.2013.09.034 CrossRefGoogle Scholar
  99. Thapa R, Gupta S, Reddy DV (2016) Application of geospatial modelling technique in delineation of fluoride contamination zones within Dwarka Basin, Birbhum, India. GSF.  https://doi.org/10.1016/j.gsf.2016.11.006
  100. Thapa R, Gupta S, Guin S, Kaur H (2017) Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Appl Water Sci 7(7):4117–4131. https://link.springer.com/article/10.1007/s13201-017-0571-z
  101. Thomas J, Joseph S, Thrivikramji K, Abe G, Kannan N (2012) Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern western Ghats, India. Environ Earth Sci 66(8):2353–2366.  https://doi.org/10.1007/s12665-011-1457-2 CrossRefGoogle Scholar
  102. Turker U, Alsalabi BS, Rızza T (2013) Water table fluctuation analyses and associated empirical approach to predict spatial distribution of water table at Yesilkoy/Agios Andronikos aquifer. Environ Earth Sci 69:63–75.  https://doi.org/10.1007/s12665-012-1934-2 CrossRefGoogle Scholar
  103. Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in west Sumatera Province, Indonesia. Catena 118:124–135.  https://doi.org/10.1016/j.catena.2014.02.005 CrossRefGoogle Scholar
  104. Varughese A, Suhail A, Chitra MG, Jiji PS, Deepthy C, Raneesh KY (2012) Identification of shallow groundwater potential zones using GIS: a case study. Int J Adv Eng Appl 1(4):65–70Google Scholar
  105. Venetis C (1971) Estimating infiltration and/or the parameters of unconfined aquifers from groundwater level observations. J Hydrol 12:161–169.  https://doi.org/10.1016/0022-1694(71)90107-7 CrossRefGoogle Scholar
  106. Viswanathan MN (1984) Recharge characteristics of an unconfined aquifer from the rainfall–water table relationship. J Hydrol 70:233–250.  https://doi.org/10.1016/0022-1694(84)90124-0 CrossRefGoogle Scholar
  107. WBPhed (2017) West Bengal Public Health Engineering Department, Govt. of West Bengal. http://www.wbphed.gov.in/. Accessed Jan 2017
  108. Van Westen CJ, Rengers N, Soeters R (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419.  https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e
  109. Zabihi M, Pourghasemi HR, Pourtaghi ZS, Behzadfar M (2016) GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ Earth Sci 75:665.  https://doi.org/10.1007/s12665-016-5424-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Raju Thapa
    • 1
  • Srimanta Gupta
    • 1
    Email author
  • Arindam Gupta
    • 2
  • D. V. Reddy
    • 3
  • Harjeet Kaur
    • 1
  1. 1.Department of Environmental ScienceThe University of BurdwanBurdwanIndia
  2. 2.Department of StatisticsThe University of BurdwanBurdwanIndia
  3. 3.CSIR-National Geophysical Research InstituteHyderabadIndia

Personalised recommendations