Advertisement

Hydrogeology Journal

, Volume 26, Issue 2, pp 417–428 | Cite as

First results of infrared thermography applied to the evaluation of hydraulic conductivity in rock masses

  • Giovanna Pappalardo
Paper

Abstract

An innovative methodological approach using infrared thermography (IRT) provides a potential contribution to the indirect assessment of hydraulic conductivity of jointed rock masses. This technique proved a suitable tool to evaluate the degree of fracturing of rock masses along with their discontinuity systems, which expedite water flow within the rock mass itself. First, based on the latest scientific outcomes on the application of IRT to the geomechanics of rock systems, rock mass surveys were carried out at different outcrops (dolostone, limestone and porphyroid) and hydraulic conductivity was empirically assessed through approaches well known in the international literature. Then, IRT campaigns were performed at each surveyed rock mass, with the purpose of evaluating the corresponding Cooling Rate Index, strictly linked to the cooling attitude of the rock. Such index was correlated with the assessed hydraulic conductivity and satisfactory regression equations were achieved. The interesting results show that hydraulic conductivity values are likely to be linked with the cooling behavior of rock masses, which, in turn, is affected by spacing, aperture and persistence of discontinuities.

Keywords

Crystalline rocks Carbonate rocks Infrared thermography Cooling Rate Index Hydraulic conductivity 

Premiers résultats de la thermographie infra-rouge appliquée à l’évaluation de la conductivité hydraulique des massifs rocheux

Résumé

Une approche méthodologique innovante utilisant la thermographie infrarouge (TIR) fournit une contribution potentielle pour l’évaluation indirecte de la conductivité hydraulique des massifs rocheux à diaclases. Cette technique s’est. avérée être un outil approprié pour évaluer le degré de fracturation des massifs rocheux ainsi que leurs systèmes de discontinuités, qui accélèrent l’écoulement de l’eau au sein du massif rocheux lui-même. Tout d’abord, sur la base des derniers résultats scientifiques concernant l’application de la TIR à la géomécanique des systèmes rocheux, des études de massifs rocheux ont été réalisées pour différents affleurements (dolomie, calcaire et porphyroïde) et la conductivité hydraulique a été évaluée de manière empirique à partir d’approches bien connues dans la littérature internationale. Ensuite, des campagnes TIR ont été réalisées pour chaque massif rocheux étudié, dans le but d’évaluer l’indice de fréquence de refroidissement (IFR) correspondant, strictement lié à l’attitude de refroidissement de la roche. L’indice IFR a été corrélé avec la conductivité hydraulique et des équations de régression satisfaisantes ont été établies. Les résultats intéressants montrent que les valeurs de conductivité hydraulique sont susceptibles d’être liées au comportement de refroidissement des massifs rocheux, qui, à leur tour, est. affecté par l’espacement, l’ouverture et la persistance des discontinuités.

Primeros resultados de la termografía infrarroja aplicada a la evaluación de la conductividad hidráulica en masas rocosas

Resumen

Un enfoque metodológico innovador que utiliza la termografía infrarroja (IRT) proporciona una contribución potencial a la evaluación indirecta de la conductividad hidráulica de las masas rocosas fracturadas. Esta técnica demostró ser una herramienta adecuada para evaluar el grado de fracturación de las masas rocosas junto con sus sistemas de discontinuidad, los cuales aceleran el flujo de agua dentro de la propia masa rocosa. En primer lugar, a partir de los resultados científicos más recientes sobre la aplicación del IRT a la geomecánica de los sistemas rocosos, se realizaron levantamientos de masas rocosas en diferentes afloramientos (dolomías, calizas y porfiroides) y se evaluó la conductividad hidráulica empíricamente mediante enfoques bien conocidos en la literatura internacional. A continuación se realizaron campañas de IRT en cada masa de roca, con el objetivo de evaluar el correspondiente índice de velocidad de enfriamiento (CRI), estrictamente ligado a la actitud de enfriamiento de la roca. El índice CRI se correlacionó con la conductividad hidráulica evaluada y se obtuvieron ecuaciones de regresión satisfactorias. Los interesantes resultados muestran que es probable que los valores de conductividad hidráulica estén ligados al comportamiento de enfriamiento de las masas rocosas, lo que a su vez se ve afectado por el espaciamiento, la apertura y la persistencia de las discontinuidades.

红外热成像仪应用到岩体水力传导率评估的初步结果

摘要

采用红外热成像仪的创新方法为间接评价有节理的岩体水力传导率提供了潜在的贡献。这项技术证明是评估岩体断裂程度及其本身加快岩块内水流的不连续系统的一项合适工具。根据红外热成像仪应用到岩石系统地质力学的最新科研成果,通过国际文献中广为人知的方法在不同出露点(白云岩、石灰岩及残斑岩)开展了岩体调查,评价了水力传导率。然后,对每个调查的岩体进行了红外热成像操作,目的就是评估完全与岩石的冷却形态相连的对应冷却速率指数。对应冷却速率指数与评价的水力传导率进行了对比,获得了满意的回归方程。令人关注的结果显示,水力传导率值可能与岩体的冷却方式相关,而岩体反过来受到间距、缝隙和不连续持久性的影响。

Primeiros resultados da termografia infravermelha aplicada à avaliação da condutividade hidráulica em maciços rochosos

Resumo

Uma abordagem metodológica inovadora que utiliza a termografia por infravermelho (TIV) fornece uma contribuição potencial para a avaliação indireta da condutividade hidráulica dos maciços rochosos articulados. Esta técnica provou ser uma ferramenta adequada para avaliar o grau de fraturamento em maciços rochosos junto com seus sistemas de descontinuidade, que aceleram o fluxo de água dentro da própria massa de rocha. Em primeiro lugar, com base nos resultados científicos mais recentes sobre a aplicação da TIV à geomecânica dos sistemas de rocha, levantamentos de massa de rocha foram realizados em diferentes afloramentos (dolomito, calcário e porfiróide) e a condutividade hidráulica foi empiricamente avaliada por abordagens bem conhecidas na literatura internacional. Em seguida, as campanhas TIV foram realizadas em cada massa de rocha pesquisada, com o objetivo de avaliar o índice de taxa de resfriamento (ITR) correspondente, estritamente vinculado à atitude de resfriamento da rocha. O índice ITR foi correlacionado com a condutividade hidráulica avaliada e foram obtidas equações de regressão satisfatórias. Os resultados interessantes mostram que os valores da condutividade hidráulica provavelmente estarão ligados ao comportamento de resfriamento dos maciços rochosos, que por sua vez é afetado pelo espaçamento, abertura e persistência de descontinuidades.

Notes

Acknowledgements

The author wishes to thank the editor and the anonymous reviewers for their contributions to this paper.

References

  1. Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 20(6):249–268CrossRefGoogle Scholar
  2. Baroň I, Bečkovský D, Míča L (2012) Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 11:15–27.  https://doi.org/10.1007/s10346-012-0367-z Google Scholar
  3. Barton N (1982) Modelling rock joint behaviour from in situ block tests: implications for nuclear waste repository design. ONWI-308, Office Of Nuclear Waste Isolation, Columbus, OH, 96 ppGoogle Scholar
  4. Barton NR, Bandis S (1990) Review of predictive capabilities of JRC-JCS model in engineering practice. In: Barton N, Stephansson O (eds) Rock joints, Proc. Int. Symp. on Rock Joints, Loen, Norway, June 1990. Balkema, Rotterdam, The Netherlands, pp 603–610Google Scholar
  5. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 1/2:1–54CrossRefGoogle Scholar
  6. Barton N, Quadros EF (1997) Joint aperture and roughness in the prediction of flow and groutability of rock masses. Int J Rock Mech Min Sci 34:3–4Google Scholar
  7. Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22(3):121–140CrossRefGoogle Scholar
  8. Bear J (1972) Dynamics of fluid in porous media. Elsevier, New YorkGoogle Scholar
  9. Brown SR, Kranz RL, Bonner BP (1986) Correlation between the surfaces of natural rock joints. Geophys Res Lett 13:1430–1433CrossRefGoogle Scholar
  10. Clerici A, Sfratato F (2008) Stima della conducibilità idraulica in ammassi rocciosi [Estimation of hydraulic conductivity in rocks]. Ital J Eng Geol Environ Spec Issue 1:67–76Google Scholar
  11. Deere DU (1963) Technical description of rock cores for engineering purposes. Rock Mech Eng Geol 1(1):16–22Google Scholar
  12. Ferrara V, Pappalardo G (2005) Kinematic analysis of rock falls in an urban area: the case of Castelmola hill near Taormina (Sicily, Italy). Geomorphology 66(1-4):373-383Google Scholar
  13. Fortin J, Schubnel A, Guéguen Y (2005) Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone. Int J Rock Mech Mining Sci 42(7-8):873889Google Scholar
  14. Hakami E (1995) Aperture distribution of rock fractures. PhD Thesis, Division of Engineering Geology, Royal Institute of Technology, StockholmGoogle Scholar
  15. Hantush MS (1966) Analysis of data from pumping tests in anisotropic aquifers. J Geophys Res 71(2):421–426CrossRefGoogle Scholar
  16. Houlsby A (1976) Routine interpretation of the Lugeon water-test. Q J Eng Geol 9:303–313CrossRefGoogle Scholar
  17. Hudson JA, Priest SD (1979) Discontinuities and rock mass geometry. Int J Rock Mech Min Sci Geomech Abstr 16:339–362CrossRefGoogle Scholar
  18. ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech 15(6):319–368CrossRefGoogle Scholar
  19. ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics, compilation arranged by the ISRM Turkish National Group. Kozan Ofset, Ankara, 628 ppGoogle Scholar
  20. Kazemi H (1969) Pressure transient analysis of naturally-fractured reservoirs with uniform fracture distribution. Soc Pet Eng J 26:451–462CrossRefGoogle Scholar
  21. Kiràly L (1969) Statistical analysis of fractures (Orientation and density). Geol Rundschau 59(1):125-151Google Scholar
  22. Lesnic D, Elliott L, Ingham DB, Clennell B, Knipe RJ (1997) A mathematical model and numerical investigation for determining the hydraulic conductivity of rocks. Int J Rock Mech Min Sci 34:741–759CrossRefGoogle Scholar
  23. Louis C (1969) Groundwater flow in rock masses and its influence on stability of rock masses. Research report no. 10, Imperial College, LondonGoogle Scholar
  24. Louis CA (1974) Rock hydraulics. In: Muller L (ed) Rock mechanics. Springer, Vienna, pp 299–382Google Scholar
  25. Lugeon M (1933) Barrages et Geologie [Dams and geology]. Dunod, ParisGoogle Scholar
  26. Mineo S, Pappalardo G (2016a) The use of infrared thermography for porosity assessment of intact rock. Rock Mech Rock Eng.  https://doi.org/10.1007/s00603-016-0992-2
  27. Mineo S, Pappalardo G (2016b) Preliminary results on the estimation of porosity in intact rock through InfraRed thermography. Rend Online Soc Geol Ital 41:317–320.  https://doi.org/10.3301/ROL.2016.157 Google Scholar
  28. Mineo S, Calcaterra D, Perriello Zampelli S, Pappalardo G (2015a) Application of infrared thermography for the survey of intensely jointed rock slopes. Rend Online Soc Geol Ital 35:212–215Google Scholar
  29. Mineo S, Pappalardo G, Rapisarda F, Cubito A, Di Maria G (2015b) Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani chain (NE Sicily). Eng Geol 195:225–235.  https://doi.org/10.1016/j.enggeo.2015.06.010 CrossRefGoogle Scholar
  30. Neuman SP, Walter GR, Bentley HW, Ward JJ, Gonzalez DD (1984) Determination of Horizontal Aquifer Anisotropy with Three Wells. Ground Water 22(1):66-72Google Scholar
  31. Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38:317–329CrossRefGoogle Scholar
  32. Palmström A (1982) The volumetric joint count: a useful and simple measure of the degree of jointing. Proc. Int. Congr. IAEG, New Delhi, V.221–V.228Google Scholar
  33. Palmström A (2005) Measurements of and correlations between block size and rock quality designation (RQD). Tunn Undergr Space Technol 20:362–377CrossRefGoogle Scholar
  34. Papadopulos IS (1965). Nonsteady flow to a well in an infinite anisotropic aquifer. Proceedings of Dubrovnik Symposium on the Hydrology of Fractured Rocks, International Association of Scientific Hydrology, Dubrovnik, Yugoslavia, pp 21–31Google Scholar
  35. Pappalardo G (2015) Correlation between P-wave velocity and physical-mechanical properties of intensely jointed dolostones, Peloritani mounts, NE Sicily. Rock Mech Rock Eng 48:1711–1721CrossRefGoogle Scholar
  36. Pappalardo G, Mineo S (2015) Rockfall hazard and risk assessment: the promontory of the pre-Hellenic village Castelmola case, north-eastern Sicily (Italy). Eng Geol Soc Territory 2:1989–1993. doi: https://doi.org/10.1007/978-3-319-09057-3_353
  37. Pappalardo G, Mineo S (2017) Investigation on the mechanical attitude of basaltic rocks from Mount Etna through InfraRed thermography and laboratory tests. Constr Build Mater 134:228–235.  https://doi.org/10.1016/j.conbuildmat.2016.12.146 CrossRefGoogle Scholar
  38. Pappalardo G, Mineo S, Rapisarda F (2014) Rockfall hazard assessment along a road on the Peloritani Mountains (northeastern Sicily, Italy). Nat Hazards Earth Syst Sci 14:2735–2748.  https://doi.org/10.5194/nhess-14-2735-2014 CrossRefGoogle Scholar
  39. Pappalardo G, Imposa S, Mineo S, Grassi S (2016a) Evaluation of the stability of a rock cliff by means of geophysical and geomechanical surveys in a cultural heritage site (south-eastern Sicily). Ital J Geosci 135(2):308–323.  https://doi.org/10.3301/IJG.2015.31 CrossRefGoogle Scholar
  40. Pappalardo G, Mineo S, Monaco C (2016b) Geotechnical characterization of limestones employed for the reconstruction of a UNESCO World Heritage Baroque monument in southeastern Sicily (Italy). Eng Geol 212:86–97.  https://doi.org/10.1016/j.enggeo.2016.08.004 CrossRefGoogle Scholar
  41. Pappalardo G, Mineo S, Perriello Zampelli S, Cubito A, Calcaterra D (2016c) InfraRed thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int J Rock Mech Min Sci 83:182–196Google Scholar
  42. Pappalardo G, Punturo R, Mineo S, Contrafatto L (2017) The role of porosity on the engineering geological properties of 1669 lavas from Mount Etna. Eng Geol 221:16–28.  https://doi.org/10.1016/j.enggeo.2017.02.020 CrossRefGoogle Scholar
  43. Rocha M, Franciss F (1977) Determination of hydraulic conductivity in anisotropic rock masses from integral samples. Rock Mech 9:67–93CrossRefGoogle Scholar
  44. Shannon HR, Sigda JM, Van Dam RL, Handrickx JMH, McLemore VT (2005) Thermal camera imaging of rock piles at the Questa Molybdenum Mine, Questa, New Mexico. In: Proc. 2005 National Meeting of the American Society of Mining and Reclamation, June 19–23, ASMR, Champaign, IL, pp 1015–1028Google Scholar
  45. Silliman SE (1989) An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture. Water Resour Res 25:2275–2283CrossRefGoogle Scholar
  46. Snow DT (1968) Rock fracture spacing, openings and porosities. J Soil Mech Found Div 94:73–91Google Scholar
  47. Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5(6):1273–1289CrossRefGoogle Scholar
  48. Teza G, Marcato G, Castelli E, Galgaro A (2012) IRTROCK: a MATLAB toolbox for contactless recognition of surface and shallow weakness of a rock cliff by infrared thermography. Comput Geosci 45:109–118CrossRefGoogle Scholar
  49. Wei ZQ, Egger P, Descoeudres F (1995) Permeability predictions for jointed rock masses. Int J Rock Mech Min Sci Geomech Abstr 32(3):251–261CrossRefGoogle Scholar
  50. Weisbrod N, Nativ R, Ronen D, Adar E (1998) On the variability of fracture surfaces in unsaturated chalk. Water Resour Res 34:1881–1887CrossRefGoogle Scholar
  51. Witherspoon PA, Gale JE (1983) Hydrogeological testing to characterize a fractured granite. Bull IAEG 26–27:515–526Google Scholar
  52. Zhang L (2013) Aspects of rock permeability. Front Struct Civ Eng 7(2):102–116CrossRefGoogle Scholar
  53. Zheng J, Zheng L, Liu H-H, Ju Y (2015) Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock. Int J Rock Mech Mining Sci 78:304-318Google Scholar
  54. Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Biologiche, Geologiche e AmbientaliUniversità degli Studi di CataniaCataniaItaly

Personalised recommendations