Advertisement

Hydrogeology Journal

, Volume 26, Issue 3, pp 689–703 | Cite as

Conservation planning as an adaptive strategy for climate change and groundwater depletion in Wadi El Natrun, Egypt

  • Harris Switzman
  • Boshra Salem
  • Mohamed Gad
  • Zafar Adeel
  • Paulin Coulibaly
Paper
Part of the following topical collections:
  1. Climate-change research by early-career hydrogeologists

Abstract

In drylands, groundwater is often the sole source of freshwater for industrial, domestic and agricultural uses, while concurrently supporting ecosystems. Many dryland aquifers are becoming depleted due to over-pumping and a lack of natural recharge, resulting in loss of storage and future water supplies, water-level declines that reduce access to freshwater, water quality problems, and, in extreme cases, geologic hazards. Conservation is often proposed as a strategy for managing groundwater to reduce or reverse the depletion, although there is a need to better understand its potential effectiveness and benefits at the local scale. This study assesses the impact of water-conservation planning strategies on groundwater resources in the Wadi El Natrun (WEN) area of northern Egypt. WEN has been subjected to groundwater depletion and quality degradation since the 1990s, attributed to agricultural and industrial groundwater usage. Initiatives have been proposed to increase the sustainability of the groundwater resource in the study area, but they have yet to be evaluated. Simultaneously, there are also proposals to increase the extent of arable land and thus demand for freshwater. In this study, three water management scenarios are developed and assessed to the 2060s for their impact on groundwater resources using a hydrogeologic model. Results demonstrate that demand management implemented through an optimized irrigation and crop rotation strategy has the greatest potential to significantly reduce risk of groundwater depletion compared to the other two scenarios—“business as usual” and “30% water-use reduction”—that were evaluated.

Keywords

Egypt Climate change Water-resources conservation Arid regions Groundwater management 

Planification de la conservation en tant que stratégie d’adaptation au changement climatique et à l’épuisement des eaux souterraines dans le Wadi El Natrun, Égypte

Résumé

Dans les terres arides, les eaux souterraines sont souvent la seule source d’eau douce destinée aux usages industriels, domestiques et agricoles, tout en soutenant simultanément les écosystèmes. De nombreux aquifères des zones arides sont en voie d’épuisement en raison de la surexploitation et du manque de recharge naturelle, ce qui entraîne une perte de volumes stockés et des approvisionnements en eau futurs, des baisses de niveaux d’eau qui réduisent l’accès à l’eau douce, des problèmes de qualité de l’eau et, dans des cas extrêmes, des risques géologiques. La conservation est. souvent proposée comme une stratégie de gestion des eaux souterraines pour réduire ou renverser l’épuisement, bien qu’il soit nécessaire de mieux comprendre l’efficacité et les avantages potentiels à l’échelle locale. Cette étude évalue l’impact des stratégies de planification de la conservation de l’eau sur les ressources en eaux souterraines dans la région de Wadi El Natrun (WEN) du nord de l’Égypte. WEN a été soumis à l’épuisement des eaux souterraines et à la dégradation de leur qualité depuis les années 1990, attribué à l’utilization des eaux souterraines à des fins agricoles et industrielles. Des initiatives ont été proposées pour accroître la durabilité des ressources en eaux souterraines dans la zone d’étude, mais elles doivent encore être évaluées. Simultanément, il existe également des propositions visant à augmenter l’étendue des terres arables et donc avec une demande en eau douce. Dans cette étude, trois scénarios de gestion de l’eau sont développés et évalués à l’horizon 2060 concernant leur impact sur les ressources en eaux souterraines en utilisant un modèle hydrogéologique. Les résultats démontrent que la gestion de la demande mise en œuvre par une stratégie d’irrigation optimisée et de rotation de cultures a le plus grand potentiel pour réduire de manière significative le risque d’épuisement en eaux souterraines par rapport aux deux autres scénarios—« statu quo » et « 30% de réduction de l’utilization de l’eau »—qui ont été évalués.

Planificación de la conservación como estrategia adaptativa para el cambio climático y el agotamiento del agua subterránea en Wadi El Natrun, Egipto

Resumen

En las tierras secas, el agua subterránea es a menudo la única fuente de agua dulce para usos industriales, domésticos y agrícolas, al mismo tiempo que es un apoyo para los ecosistemas. Muchos acuíferos de las tierras secas se están agotando debido al exceso de bombeo y la falta de recarga natural, lo que resulta en pérdida de almacenamiento y suministro de agua en el futuro, disminución del nivel del agua que reduce el acceso a agua dulce, problemas de calidad del agua y, en casos extremos, en riesgos geológicos. La conservación se suele proponer como una estrategia de gestión del agua subterránea para reducir o revertir el agotamiento, aunque es necesario comprender mejor su potencial eficacia y beneficios a escala local. Este estudio evalúa el impacto de las estrategias de planificación de la conservación del agua en los recursos de aguas subterráneas en el área de Wadi El Natrun (WEN) del norte de Egipto. WEN ha sido sometida al agotamiento del agua subterránea y a la degradación de la calidad desde la década de 1990, atribuida al uso de agua subterránea agrícola e industrial. Se han propuesto iniciativas para aumentar la sostenibilidad del recurso del agua subterránea en el área de estudio, pero aún no se han evaluado. Simultáneamente, también hay propuestas para aumentar la extensión de las tierras cultivables y, por tanto, la demanda de agua dulce. En este estudio, se desarrollan y se evalúan tres escenarios de manejo del agua hasta el 2060s para su impacto en los recursos de aguas subterráneas utilizando un modelo hidrogeológico. Los resultados demuestran que la gestión de la demanda implementada a través de una estrategia optimizada de riego y rotación de cultivos tiene el mayor potencial para reducir significativamente el riesgo de agotamiento del agua subterránea en comparación con los otros dos escenarios “situación como la actual “y “reducción del 30% en el uso de agua”.

التخطيط للصون كإستراتيجية للتكيف مع تغير المناخ واستنزاف المياه الجوفية في وادي النطرون، مصر

الملخص

المياه الجوفية في الأراضي الجافة هى غالبا المصدر الوحيد للمياه العذبة اللازمة للاستخدامات الصناعية والمنزلية والزراعية، بينما تدعم في نفس الوقت النظم البيئية. وقد استنفدت العديد من خزانات المياه الجوفية في الأراضي الجافة بسبب السحب الجائر وضعف التغذية الطبيعية للخزان الجوفي، مما أدى إلى نقص المخزون الجوفي وإمدادات المياه في المستقبل، وانخفاض مناسيب المياه الجوفية والتي تقلل من إمكانية الوصول إلى مستوى المياه العذبة، ومشاكل نوعية المياه وفي الحالات القصوى تسبب مخاطر جيولوجية. وكثيرا ما يقترح مفهوم الصون كاستراتيجية لإدارة المياه الجوفية للحد من الاستنزاف ، على الرغم من أن هناك حاجة إلى فهم أفضل لفعاليته المحتملة وفوائده على الصعيد المحلي. وتقوم هذه الدراسة بتقييم تأثير استراتيجيات التخطيط لصون موارد المياه الجوفية في منطقة وادي النطرون في شمال مصر. وتتعرض المياه الجوفية في منطقة الدراسة إلى مشكلة النضوب وتدهور نوعيتها منذ التسعينيات، بسبب استخدام المياه الجوفية في الأغراض الزراعية والصناعية بكثافة. وقد اقترحت مبادرات لزيادة استدامة موارد المياه الجوفية في منطقة الدراسة، ولكن لم يتم تقييمها بعد. وفي الوقت نفسه، هناك أيضا مقترحات لزيادة حجم الأراضي الصالحة للزراعة وبالتالي إزدياد الطلب على المياه العذبة. ولذلك تم إقتراح ثلاثة سيناريوهات لإدارة المياه الجوفية وتقييمها والتنبؤ بالأوضاع المستقبلية لموارد المياه الجوفية حتى عام 2060 باستخدام نموذج هيدروجيولوجي. ودلت النتائج على أن إدارة الطلب التي يتم تنفيذها من خلال إستراتيجية التكيف لتغير المناخ مع تناوب الري والمحاصيل لديها أكبر إمكانية للحد من مخاطر استنزاف المياه الجوفية مقارنة بالسيناريوهين الآخرين الذان فترضا معدل الضخ الحالي و30٪ إنخفاض في معدل إستخدام المياه الجوفية والتي تم تقييمها فى هذة الدراسة.

针对埃及El Natrun干谷气候变化及地下水消耗所采取的作为合适策略的保护规划

摘要

在干旱谷地,地下水常常是工业、家庭及农业用水的唯一淡水源,同时,地下水也支撑着生态系统。由于超采及缺少天然补给,许多旱谷地含水层面临着枯竭,致使储量和未来供水量减少、水位下降导致难以获取淡水以及水质问题,还有就是,在极端情况下,引起地质灾害。尽管需要更好地了解局部尺度上的地下水潜在有效性及效益,但保护措施常常被提出作为管理地下水减少或扭转枯竭的策略。本研究评价了水保护规划策略对埃及北部El Natrun干谷地下水资源的影响。自从20世纪60年代以来,El Natrun干谷遭受着地下水枯竭和水质下降,主要是农业和工业利用地下水造成的。已经提出了增加研究区地下水资源可持续性的举措,但仍需要对这些举措进行评估。同时,还有建议提出增加耕地范围及增加淡水需求量。在本研究中,采用水文地质模型,提出了到2060年三种水管理方案,并对其对地下水资源的影响进行了评价。结果显示,与其它评价的两种方案-“一如既往”和“减少30%的用水量”相比,通过最优化灌溉和作物轮作策略实施的需求管理最有大幅减少地下水的枯竭风险的潜力。

Planejamento conservacionista como uma estratégia adaptativa para mudanças climáticas e depleção de águas subterrâneas em Wadi El Natrun, Egito

Resumo

Em terras áridas, as águas subterrâneas são geralmente o único recurso de água doce para usos industriais, domésticos e agrícolas, enquanto concomitantemente sustentam ecossistemas. Muitos aquíferos de terras áridas estão ficando deplecionados em virtude da sobrebombeamento e uma falta de recarga natural, resultando em perdas no armazenamento e suprimentos de água futuros, níveis descendentes de água que reduzem o acesso à água doce, problemas de qualidade da água, e, em casos extremos, perigos geológicos. Conservação é sempre proposta como uma estratégia para gestão das águas subterrâneas para reduzir ou reverter a depleção, embora exista a necessidade de um melhor entendimento de sua efetividade potencial e benefícios em escala local. Esse estudo avaliou o impacto de estratégias de planejamento hidroconservacionista dos recursos hídricos subterrâneos na área de Wadi El Natrun (WEN) no norte do Egito. WEN tem sido objeto de depleção das águas subterrâneas e degradação na qualidade desde os anos 1990, atribuídos aos usos agrícolas e industriais das águas subterrâneas. Foram propostas iniciativas para aumentar a sustentabilidade dos recursos hídricos subterrâneos na área de estudo, mas ainda não foram avaliadas. Simultaneamente, também há propostas para aumentar a extensão das terras aráveis e, consequentemente a demanda por água doce. Neste estudo, três cenários de gerenciamento da água são desenvolvidos e avaliados até a década de 2060 pelos seus impactos sobre os recursos hídricos subterrâneos utilizando um modelo hidrogeológico. Os resultados demonstram que o gerenciamento da demanda implementado através de uma estratégia otimizada de irrigação e rotação de culturas tem o maior potencial para reduzir significativamente o risco de depleção das águas subterrâneas em comparação com os outros dois cenários—“manutenção das tendências atuais” e “30% de redução no uso da água”—que foram avaliados.

Notes

Acknowledgements

This research is dedicated to the communities of Wadi El Natrun and we would like to thank them for hosting our researchers with great hospitality and warmth, and for their willingness to share information about their local water resources and livelihoods.

Author Contributions

We are extremely grateful for the patience, time, expertise, and partnership of our Egyptian colleagues regarding their essential roles in the collection of field and historical data, assistance with translation, and stewardship of important information on local natural resources. In particular, we would like to acknowledge the contributions of Mohamed Wahby at Alexandria University, Ezz El Din M. Farghly, Tina Jaskolski, Mohamed Rashad and Mohamed Wahba at the American University in Cairo, Ahmed Abbas, and Dr. Fatma Attia-Rahaman without whom this research would not have been possible. The contributions of Dr. Sarah Dickson, Hilary Barber, Jessie Newton and Naomi Goodman from McMaster University, and Dr. Caroline King with the International Institute for Environment and Development (London, UK) are also greatly appreciated.

Funding Information

This research was conducted with financial support provided by the United Nations University – Institute for Water Environment and Health, and McMaster University (Ontario, Canada).

Supplementary material

10040_2017_1669_MOESM1_ESM.pdf (578 kb)
ESM 1 (PDF 577 kb)

References

  1. Abdel Kawy W (2011) Use of spatial analyses techniques to suggested irrigation scheduling in Wadi El Natrun depression, Egypt. Arab J Geosci.  https://doi.org/10.1007/s12517-010-0262-7
  2. Abdel-Hamid M, Ismail M, Nasr YA, Kotb Y (2010) Assessment of soils of Wadi El-Natrun area, Egypt using remote sensing and GIS techniques. J Am Sci 6(10):195–206Google Scholar
  3. Abdelkhalek A (2013) Groundwater vulnerability assessment using modified DRASTIC GIS based index at the Western Nile Delta Region. University of Jordan, Amman, JordanGoogle Scholar
  4. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Publ Group 5(12):853–861.  https://doi.org/10.1038/ngeo1617 Google Scholar
  5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization, RomeGoogle Scholar
  6. El Arabi N (2012) Environmental management of groundwater in Egypt via artificial recharge extending the practice to soil aquifer treatment (SAT). Int J Environ Sustain 1(3):66–82CrossRefGoogle Scholar
  7. ARECMEEAA (2005) Environmental impact assessment: guidelines for land reclamation projects. ARECMEEAA, Cairo, EgyptGoogle Scholar
  8. Attia F, Fahmy H, Eid M, Hoevenaars J, Slootweg R (2007) The West Delta Water Conservation and Irrigation Rehabilitation project (WDWCIRP), 2nd edn. E1572. World Bank, Washington, DCGoogle Scholar
  9. Awad MA (2002) Land use planning of Wadi El-Natrun depression towards sustainable development. Dept. of Environmental Sciences. Alexandria University, AlexandriaGoogle Scholar
  10. Baietti A, El Dia Q, Requena SA, El Arabi N, Nassar A, Hamid AWA (2005) Conceptual framework and transaction model for a public-private partnership in irrigation in the West Delta, Egypt. Ministry of Water Resources and Irrigation, Cairo, EgyptGoogle Scholar
  11. Booij MJ, Tollenaar D, van Beek E, Kwadijk JCJ (2011) Simulating impacts of climate change on river discharges in the Nile Basin. Phys Chem Earth 36(13):696–709.  https://doi.org/10.1016/j.pce.2011.07.042 CrossRefGoogle Scholar
  12. Candela L, Elorza FJ, Jiménez-Martínez J, von Igel W (2012) Global change and agricultural management options for groundwater sustainability. Comput Electron Agric 86(C):120–130.  https://doi.org/10.1016/j.compag.2011.12.012 CrossRefGoogle Scholar
  13. Conroy MJ, Runge MC, Nichols JD, Stodola KW, Cooper RJ (2011) Conservation in the face of climate change: the roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty. Biol Conserv 144(4):1204–1213.  https://doi.org/10.1016/j.biocon.2010.10.019 CrossRefGoogle Scholar
  14. Corbeels M (2012) Agro-ecological attributes of conservation agriculture for sustainable land use. In: Proc. of the 8th International Symposium Agro Environ, Wageningen, The Netherlands, 1–4 May 2012Google Scholar
  15. Dawoud MA, Darwish MM, El-Kady MM (2005) GIS-based groundwater management model for western Nile Delta. Water Resour Manag 19(5):585–604.  https://doi.org/10.1007/s11269-005-5603-z CrossRefGoogle Scholar
  16. Diab MS, Gad MI, El-Sheikh AEA (2002) Study the effect of new reclamation projects on the groundwater system in the area northwest Wadi El Natroun and South El Nasr by using mathematical modeling. Faculty of Engineering, Mansoura University, El Mansoura, EgyptGoogle Scholar
  17. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:036006CrossRefGoogle Scholar
  18. Eid HM, El Marsafawy SM, Ouda SA (2006) Assessing the impact of climate on crop water needs in Egypt: the CropWat analysis of three districts in Egypt. Soil Water and Environment Research Institute (SWERI), Agricultural Research Center, GizaGoogle Scholar
  19. El-Din MMN (2013) Climate change risk management in Egypt. UNESCO, CairoGoogle Scholar
  20. El-Ganzori A (2012) Towards a climate change adaptation strategy for the water sector in Egypt. UNESCO, Cairot, p 102Google Scholar
  21. El-Sheikh AEA (2000) Hydrogeology of the area north and west of Wadi El-Natroun. Faculty of Science, Minufya University, Al Minufya, EgyptGoogle Scholar
  22. Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948.  https://doi.org/10.1038/nclimate2425 CrossRefGoogle Scholar
  23. Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943.  https://doi.org/10.1126/science.1229881 CrossRefGoogle Scholar
  24. Food and Agriculture Organization of the United Nations (FAO) (2017) CropWat. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/en/. Accessed 12 July 2012
  25. Fattah MK (2011) Hydrogeochemical evaluation of the quaternary aquifer in El Sadat City, Egypt. Arab J Sci Eng 37(1):121–145.  https://doi.org/10.1007/s13369-011-0146-5 CrossRefGoogle Scholar
  26. El Ganzori A (2013) Towards a climate change adaptation strategy for the water sector in Egypt. UNESCO, CairoGoogle Scholar
  27. Geirnaert W (1992) Composition and history of ground water in the western Nile Delta. J Hydrol 138(September):169–189.  https://doi.org/10.1016/0022-1694(92)90163-P CrossRefGoogle Scholar
  28. Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science 302:1524–1528.  10.1126/science.1089967 CrossRefGoogle Scholar
  29. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405(3–4):532–560CrossRefGoogle Scholar
  30. Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Geol Surv Techniques Methods, 6-A16Google Scholar
  31. Ibrahim R (2007) Hydrochemical study of groundwater in the area north-west of Wadi El-Natrun, Western Desert, Egypt. Minufya University, Al Minufya, EgyptGoogle Scholar
  32. Ibrahim S (2005) Groundwater resources management in Wadi El-Farigh area and its vicinities for sustainable agricultural development. Faculty of Eng., Ain Shams University, CairoGoogle Scholar
  33. Kashouty M, Sabbagh A (2011) Distribution and immobilization of heavy metals in Pliocene aquifer sediments in Wadi El Natrun depression, Western Desert. Arab J Geosci 4(5–6):1019–1039.  https://doi.org/10.1007/s12517-011-0358-8 CrossRefGoogle Scholar
  34. Khan S, Rana T, Hanjra MA, Zirilli J (2009) Water markets and soil salinity nexus: can minimum irrigation intensities address the issue? Agric Water Manag 96(3):493–503.  https://doi.org/10.1016/j.agwat.2008.09.014 CrossRefGoogle Scholar
  35. King C (2011) Living with environmental change in the endorheic oasis systems of the northern Sahara. School of Geography and the Environment, Oxford University, OxfordGoogle Scholar
  36. King C, Salem BB (2013) Assessing the cost of groundwater degradation in the urbanizing desert area of Wadi El Natrun. Local Sustainability 3:295–311.  https://doi.org/10.1007/978-94-007-1969-9_26
  37. King C, Salem BB (2012) A socio-ecological investigation of options to manage groundwater degradation in the Western Desert, Egypt. Ambio 41(5):490–503.  https://doi.org/10.1007/s13280-012-0255-8 CrossRefGoogle Scholar
  38. Knutti R, Abramowitz G, Collins M, Eyring V, Gleckler PJ, Hewitson B, Mearns L (2010) Good practice guidance paper on assessing and combining multi model climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) Meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi model climate projections. IPCC Working Group I Technical Support Unit, University of Bern, Bern, p 15Google Scholar
  39. Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13(1):317–320.  https://doi.org/10.1007/s10040-004-0411-8 CrossRefGoogle Scholar
  40. MacDonald AM, Bonsor HC, Dochartaigh BÉÓ, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7(2):024009.  https://doi.org/10.1088/1748-9326/7/2/024009 CrossRefGoogle Scholar
  41. Marston L, Konar M, Cai X, Troy TJ (2015) Virtual groundwater transfers from overexploited aquifers in the United States. Proc Natl Acad Sci:201500457.  https://doi.org/10.1073/pnas.1500457112
  42. Masoud AA, Atwia MG (2010) Spatio-temporal characterization of the Pliocene aquifer conditions in Wadi El-Natrun area, Egypt. Environ Earth Sci 62(7):1361–1374.  https://doi.org/10.1007/s12665-010-0623-2 CrossRefGoogle Scholar
  43. McCarl BA, Musumba M, Smith JB, Kirshen P, Jones R, El-Ganzori A, Ali MA, Kotb M, El-Shinnawy I, El-Agizy M, Bayoumi M (2015) Climate change vulnerability and adaptation strategies in Egypt’s agricultural sector. Mitig Adapt Strateg Glob Chang 20(7):1097–1109Google Scholar
  44. Milly P, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Climate change: stationarity is dead: whither water management? Science 319(5863):573–574.  https://doi.org/10.1126/science.1151915 CrossRefGoogle Scholar
  45. Ministry of Water Resources and Irrigation (MWRI) (2005) National Water Resources Plan. NWRP Project, CairoGoogle Scholar
  46. Mukherji A, Shah T (2005) Groundwater socio-ecology and governance: a review of institutions and policies in selected countries. Hydrogeol J 13(1):328–345.  https://doi.org/10.1007/s10040-005-0434-9 CrossRefGoogle Scholar
  47. Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19(4):429–453.  https://doi.org/10.1002/ldr.853 CrossRefGoogle Scholar
  48. Saidi S, Bouri S, Ben Dhia H, Anselme B (2009) A GIS-based susceptibility indexing method for irrigation and drinking water management planning: application to Chebba–Mellouleche aquifer, Tunisia. Agric Water Manag 96(12):1683–1690.  https://doi.org/10.1016/j.agwat.2009.07.005 CrossRefGoogle Scholar
  49. Salem B, King C, Gad M (2011) Report to the international project on groundwater and human security case studies (GWAHS-CS): Beni Salama Case Study, Egypt. UNU and UNESCO-IHPGoogle Scholar
  50. Sanford T, Frumhoff PC, Luers A, Gulledge J (2014) The climate policy narrative for a dangerously warming world. Nat Clim Chang 4(3):164–166.  https://doi.org/10.1038/nclimate2148
  51. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB et al (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci U S A 111(9):3245–3250.  https://doi.org/10.1073/pnas.1222460110 CrossRefGoogle Scholar
  52. Sharaky AM, El Hassanein AS, Khallaf KMA, Atta SA (2007) Hydrogeochemistry of groundwater in the western Nile Delta aquifers, Egypt. 2nd Int. Conf. on the Geology of Tethys, Cairo University, Cairo, March 2007, pp 1–23Google Scholar
  53. Shiferaw B, Reddy VR, Wani SP (2008) Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: the effect of alternative water pricing policies. Ecol Econ 67(2):327–340.  https://doi.org/10.1016/j.ecolecon.2008.05.011 CrossRefGoogle Scholar
  54. Shortland AJ (2004) Evaporites of the Wadi Natrun: seasonal and annual variation and its implication for ancient exploitation. Archaeometry 46(4):497–516CrossRefGoogle Scholar
  55. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci 14(10):1863–1880.  https://doi.org/10.5194/hess-14-1863-2010 CrossRefGoogle Scholar
  56. Switzman H, Coulibaly P, Adeel Z (2015) Modeling the impacts of dryland agricultural reclamation on groundwater resources in northern Egypt using sparse data. J Hydrol 520:420–438.  https://doi.org/10.1016/j.jhydrol.2014.10.064 CrossRefGoogle Scholar
  57. Taylor KE, Stouffer RJ, Meehl GA (2012a) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1
  58. Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y et al (2012b) Ground water and climate change. Nat Clim Chang 3(4):322–329.  https://doi.org/10.1038/nclimate1744 CrossRefGoogle Scholar
  59. Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for The Middle East and Northern Africa until 2050. Int J Climatol pp 1–18.  https://doi.org/10.1002/joc.3650
  60. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457(C):12–29CrossRefGoogle Scholar
  61. United Nations (2012) The Stockholm Statement to the 2012 United Nations Conference on Sustainable Development in Rio de Janeiro (Rio+20 Summit). Available at: http://www.worldwaterweek.org/documents/WWW_PDF/2011/2011-Stockholm-Statement.pdf. Accessed September 2017
  62. van Weert F, van der Gun J, Reckman J (2009) Global overview of saline groundwater occurrence and genesis. Igrac, (July), 26–27Google Scholar
  63. Veenenbos JS et al (1966) High dam soil survey. FAO/SP/UAR/16. FAO, RomeGoogle Scholar
  64. Voss KA, Famiglietti JS, Lo M, De Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49(2):904–914.  https://doi.org/10.1002/wrcr.20078 CrossRefGoogle Scholar
  65. Wada Y, Bierkens MFP (2014) Sustainability of global water use: past reconstruction and future projections. Environ Res Lett 9(10):104003.  https://doi.org/10.1088/1748-9326/9/10/104003 CrossRefGoogle Scholar
  66. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20):L20402.  https://doi.org/10.1029/2010GL044571 CrossRefGoogle Scholar
  67. Ward FA, Pulido-Velazquez M (2008) Water conservation in irrigation can increase water use. Proc Natl Acad Sci U S A 105(47):18215–18220.  https://doi.org/10.1073/pnas.0805554105 CrossRefGoogle Scholar
  68. Watanabe S, Kanae S, Seto S, Yeh PJF, Hirabayashi Y, Oki T (2012) Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models. J Geophys Res 117(D23):D23114.  https://doi.org/10.1029/2012JD018192 CrossRefGoogle Scholar
  69. Werner AD, Zhang Q, Xue L, Smerdon BD, Li X, Zhu X et al (2013) An initial inventory and indexation of groundwater mega-depletion cases. Water Resour Manag 27(2):507–533.  https://doi.org/10.1007/s11269-012-0199-6 CrossRefGoogle Scholar
  70. Whitfield S, Reed MS (2012) Participatory environmental assessment in drylands: introducing a new approach. J Arid Environ 77(C):1–10.  https://doi.org/10.1016/j.jaridenv.2011.09.015 CrossRefGoogle Scholar
  71. Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370(1–4):207–213.  https://doi.org/10.1016/j.jhydrol.2009.03.009 CrossRefGoogle Scholar
  72. Zaghloul E-SS, Elewa HH, El-Beih SF (1999) Preliminary report on water resources in Wadi Al-Natrun, Burg El-Arab and El-Dabaa stretch north Western Desert, Egypt. National Authority for Remote Sensing and Space Sciences, Water Resources and Engineering Application Dept., CairoGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringMcMaster UniversityHamiltonCanada
  2. 2.United Nations University—Institute for Water Environment and HealthHamiltonCanada
  3. 3.WaterSMART Solutions Ltd.CalgaryCanada
  4. 4.Alexandria UniversityAlexandriaEgypt
  5. 5.Desert Research CentreEgyptian Ministry of Agriculture and Land ReclamationCairoEgypt
  6. 6.Simon Fraser UniversityBurnabyCanada

Personalised recommendations