Abstract
This study describes a low-cost method for sampling individual fractures in open wellbores in crystalline bedrock utilizing naturally occurring flow conditions in the well. The method entails using the dissolved oxygen alteration method (DOAM) to identify transmissive fractures and vertical flow direction. After obtaining information about relative hydraulic gradients, flow direction in the well is modified using a single control pump to isolate fractures of interest for sampling. Additional dissolved oxygen, injected during the DOAM procedure, serves as a tracer to ensure the water quality in the sampling zone is characteristic of the fracture of interest by requiring a tracer-free zone prior to sampling. Sampling procedures are described conceptually for nine bedrock wells with varying flow conditions containing one, two, or three transmissive inflowing fractures. The method was demonstrated in two crystalline bedrock wells containing one and two transmissive inflowing fractures.
Résumé
Cette étude décrit une méthode peu coûteuse pour l’échantillonnage des fractures individuelles dans les puits ouverts dans le substrat rocheux cristallin en utilisant des conditions d’écoulement naturelles dans le puits. La méthode consiste à utiliser la méthode d’altération de l’oxygène dissous (DOAM) pour identifier les fractures transmissives et la direction de l’écoulement vertical. Après avoir obtenu des informations sur les gradients hydrauliques relatifs, la direction des écoulements dans le puits est. modifiée à l’aide d’une pompe de contrôle unique pour isoler les fractures d’intérêt pour l’échantillonnage. L’oxygène dissous supplémentaire, injecté au cours de la procédure DOAM, est. utilisé comme traceur pour s’assurer que la qualité de l’eau dans la zone d’échantillonnage est. caractéristique de la fracture d’intérêt et que la zone est. libre de tout traceur avant échantillonnage. Les procédures d’échantillonnage sont décrites conceptuellement pour neuf puits dans un substrat rocheux avec des conditions d’écoulement variables contenant une, deux ou trois fractures transmissives. La méthode a été démontrée pour deux puits implantés dans une roche cristalline de socle contenant une et deux fractures émettrices transmissives.
Resumen
Este estudio describe un método de bajo costo para el muestreo de fracturas individuales en pozos abiertos en el basamento cristalino utilizando condiciones de flujo natural en el pozo. El método consiste en utilizar el método de alteración del oxígeno disuelto (DOAM) para identificar las fracturas transmisivas y la dirección del flujo vertical. Después de obtener información sobre los gradientes hidráulicos relativos, la dirección del flujo en el pozo se modifica utilizando una única bomba de control para aislar las fracturas de interés para el muestreo. El oxígeno disuelto adicional, inyectado durante el procedimiento DOAM, sirve como trazador para asegurar que la calidad del agua en la zona de muestreo es característica de la fractura de interés al requerir una zona libre de trazador antes del muestreo. Los procedimientos de muestreo se describen conceptualmente para nueve pozos en roca con condiciones de flujo variables que contienen la afluencia de una, dos o tres fracturas transmisivas. El método se demostró en dos pozos de basamento cristalino que contenían una y dos afluencias de fracturas transmisivas.
摘要
本研究描述了利用井中自然出现的水流条件在结晶岩开放井孔单个断裂中采集水样的一种低成本方法。该方法必须采用溶解氧蚀变法确认传导断裂和垂直水流方向。获取有关相对水力梯度信息之后,采用单一控制泵隔离需要采样的断裂以修改井中的水流方向。实施溶解氧蚀变法期间注入的额外溶解氧作为示踪剂以确保采样带中的水质,采样前需要一个无示踪剂带,使采样带呈现断裂的特征。概念性地描述了具有不同水流条件、包括一个、两个、或三个传导性流入断裂的九个基岩井的采样程序。本方法通过含有一个及两个传导性流入断裂的两个结晶岩井进行了展示。
Resumo
Este estudo descreve um método de baixo custo para amostragem de fraturas individuais em poços abertos em rocha cristalina utilizando condições de fluxo naturais no poço. O método implica no uso do método de alteração do oxigênio dissolvido para identificar fraturas transmissivas e direção do fluxo vertical. Após obter informações sobre o gradiente hidráulico relativo, a direção de fluxo no poço é modificada usando uma única bomba para isolar fraturas de interesse para amostragem. Oxigênio dissolvido adicional, injetado durante o procedimento de alteração do oxigênio dissolvido, serve de traçador para garantir que a qualidade da água na zona de amostragem é característica da fratura de interesse pelo requerimento de uma zona livre de traçador antes da amostragem. O procedimento de amostragem é descrito conceitualmente para nove poços com variação das condições de fluxo contendo uma, duas, ou três fraturas transmissivas com influxo. O método foi demonstrado em dois poços cristalinos contendo uma ou duas fraturas transmissivas com influxo.
This is a preview of subscription content, access via your institution.



References
Backhus DA, Ryan JN, Groher DM, MacFarlane JK, Gschwend PM (1993) Sampling colloids and colloid-associated contaminants in ground water. Groundwater 31(3):466–479
Cherry JA, Parker BL, Keller C (2007) A new depth-discrete multilevel monitoring approach for fractured rock. Ground Water Monitor Remediat 27(2):57–70
Chlebica DW, Robbins GA (2013) Altering dissolved oxygen to determine flow conditions in fractured bedrock wells. Ground Water Monitor Remediat 33(4):100–107
Church PE, Granato GE (1996) Bias in ground-water data caused by well-bore flow in long-screen wells. Ground Water 34(2):262–273
Dietz ME, Angel DR, Robbins GA, McNaboe LA (2016) Permeable asphalt: a new tool to reduce road salt contamination of groundwater in urban areas. Ground Water. doi:10.1111/gwat.12454
Elci A, Flach GP, Molz FJ (2003) Detrimental effects of natural vertical head gradients on chemical and water level measurements in observation wells: identification and control. J Hydrol 281(1–2):70–81
Flahive N (2017) A single packer method for characterizing water contributing fractures in crystalline bedrock wells. University of Connecticut, MSc Thesis, Storrs, CT
Harte PT (2013) Hydraulically controlled discrete sampling from open boreholes. Groundwater 51(6):822–827
Johnson CD, Haeni FP, Lane JW, White EA (2002) Borehole-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut. US Geol Surv Water Resour Invest Rep 01.-–4033
Johnson CD, Joesten PK, Mondazzi RA (2005a) Borehole-geophysical and hydraulic investigation of the fractured-rock aquifer near the University of Connecticut landfill, Storrs, Connecticut, 2000 to 2001. US Geol Surv Water Resour Invest Rep 03-4125
Johnson CD, Kochiss CK, Dawson CB (2005b) Use of discrete-zone monitoring systems for hydraulic characterization of a fractured-rock aquifer at the University of Connecticut landfill, Storrs, Connecticut, 1999 to 2002. US Geol Surv Water Resour Invest Rep 03-4338
Landon MK, Jurgens BC, Katz BG, Eberts SM, Burow KR, Crandall CA (2010) Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States. Hydrogeol J 18(3):577–593
Mayo AL (2010) Ambient well-bore mixing, aquifer cross-contamination, pumping stress, and water quality from long-screened wells: what is sampled and what is not? Hydrogeol J 18(4):823–883
McMillan LA, Rivett MO, Tellam JH, Dumble P, Sharp H (2014) Influence of vertical flows in wells on groundwater sampling. J Contam Hydrol 169:50–61
Paillet FL (1998) Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour Res 34(5):997–1010
Prakash B, Zaffiro AD, Zimmerman M, Munch DJ, Pepich BV (2009) Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry. EPA Doc. no. EPA 815-B-09-009
Puls RW and Barcelona MJ (1996) Low-flow (minimal drawdown) ground-water sampling procedures. EPA/540/5–95/504, Ground Water issue. US EPA, Office of Solid Waste and Emergency Response, Washington, DC
Reilly TE, Franke OL, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115(2):270–276
Robbins GA (2014) Groundwater sampling in fractured rock wells. GSA Northeastern Section Meeting, Lancaster, PA, 24 March 2014
Rogers J (1985) Bedrock geological map of Connecticut. Connecticut Geological and Natural History Survey, Hartford, CT, in cooperation with US Geological Survey, Reston, VA, scale 1:125,000
Shapiro AM (2002) Cautions and suggestions for geochemical sampling in fractured rock. Ground Water Monitor Remediat 22(3):151–164
Vitale SA and Robbins GA (2015a) Delineating groundwater flow in shallow monitoring wells using dissolved oxygen alteration. Abstract S8.10-87, IAH Congress AQUA 2015, Rome, 18 Sept 2015
Vitale SA and Robbins GA (2015b) Using dissolved oxygen alteration to identify connecting transmissive fractures and determine vertical flow velocity in crystalline bedrock wells. GSA Annual Meeting, Baltimore, MD, 1 November 2015
Vitale SA, Robbins GA (2016) Characterizing groundwater flow in monitoring wells by altering dissolved oxygen. Ground Water Monitor Remediat 36(2):59–67
Vitale SA, Robbins GA (2017) Measuring flow rate in crystalline bedrock wells using the dissolved oxygen alteration method. Ground Water. doi:10.1111/gwat.12512
Vitale SA, Robbins GA, McNaboe LA (2017) Impacts of road salting on water quality in fractured crystalline bedrock. J Environ Qual 46(2):288–294
Acknowledgements
The study was funded through the Geological Society of America Research Grants Program. The authors would like to thank Instrumentation Northwest, Inc. for the use of a dissolved oxygen probe.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vitale, S.A., Robbins, G.A. Measuring water quality from individual fractures in open wellbores using hydraulic isolation and the dissolved oxygen alteration method. Hydrogeol J 25, 2199–2206 (2017). https://doi.org/10.1007/s10040-017-1657-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-017-1657-2
Keywords
- Water quality
- Fractured rocks
- Dissolved oxygen
- Groundwater hydraulics
- Sampling