Skip to main content
Log in

Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)

Définir les géo-habitats pour l’évaluation de l’écosystème des eaux souterraines: un exemple en Angleterre et Pays de Galles (Royaume-Uni)

Definición de geo-hábitats para las evaluaciones de ecosistemas de aguas subterráneas: un ejemplo de Inglaterra y Gales (Reino Unido)

地下水生态系统评价中定义地质栖息地:(英国)英格兰和威尔士

Definindo geohabitats para avaliação de ecossistêmica em águas subterrâneas: um exemplo da Inglaterra e País de Gales (GB)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north–south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.

Résumé

Les écosystèmes des eaux souterraines comportant des micro-organismes et des métazoaires contribuent fortement à la biodiversité globale. Leur complexité dépend de la géologie, qui détermine l’habitat physique disponible et son état chimique. Malgré cela, les méthodes de classification des habitats des eaux souterraines à l’aide de données géologiques ne sont pas bien établies et les chercheurs appellent à des cadres pour une détermination de plus haute résolution des habitats. Une typologie innovante pour l’Angleterre et le Pays de Galles (Royaume-Unis) est proposée, distinguant 11 habitats géologiques (géo-habitats) basés sur des principes hydrogéologiques. La distribution de ces habitats est également cartographiée. Des données hydrogéologiques et hydrochimiques sont utilisées pour déterminer les caractéristiques de chacun des géo-habitats, et démontrer les différences entre habitats. En utilisant ces paramètres abiotiques, une nouvelle méthode pour déterminer la qualité abiotique de l’habitat a ainsi été développée. Les géo-habitats ont des caractéristiques suffisamment différentes pour permettre la validation du système de classification. Tous les géo-habitats sont fortement hétérogènes, contenant à la fois des îlots d’habitats de très bonne qualité pour la faune et des secteurs de faible qualité pouvant limiter le développement de la faune. Les habitats karstiques et poreux sont généralement de meilleure qualité que les habitats fracturés. En tout, 70% de l’Angleterre et du Pays de Galles sont couverts par des habitats fracturés de faible qualité, avec seulement 13% couverts par des habitats de haute qualité. Les principaux secteurs d’habitats de haute qualité se situent au centre de l’Angleterre s’étendant du nord au sud, facilitant sans doute une certaine dispersion le long de cet axe. Ces secteurs sont séparés par des géo-habitats de faible qualité qui limitent sans doute la dispersion de la faune selon un axe est-ouest. Au sud-ouest de l’Angleterre et du Pays de Galles les géo-habitat adéquats se retrouvent en petits îlots isolés. D’une manière générale, ce papier propose une nouvelle typologie à l’échelle nationale qui peut être adaptée à des études dans d’autres secteurs géographiques.

Resumen

Los ecosistemas de aguas subterráneas que comprenden microorganismos y metazoos proporcionan una contribución importante a la biodiversidad global. Su complejidad depende de la geología, que determina el hábitat físico disponible, y las condiciones químicas dentro de él. A pesar de ello, los métodos de clasificación de los hábitats de aguas subterráneas utilizando datos geológicos no están bien establecidos y los investigadores han demandado marcos de hábitat de mayor resolución. Se propone una nueva tipología de hábitat para Inglaterra y Gales (Reino Unido), que distingue 11 hábitats geológicos (geo-hábitats) sobre los principios hidrogeológicos y se mapea su distribución. Se utilizan datos hidrogeológicos e hidroquímicos para determinar las características de cada geo-hábitat y demostrar sus diferencias. Utilizando estos parámetros abióticos, se desarrolla un nuevo método para determinar la calidad del hábitat abiótico. Los geo-hábitats tenían características significativamente diferentes, validando el sistema de clasificación. Todos los geo-hábitats eran altamente heterogéneos, conteniendo tanto áreas de hábitat de alta calidad que probablemente sean adecuados para la fauna, como áreas de baja calidad que pueden limitar las distribuciones faunísticas. Los hábitats cársticos y porosos generalmente eran de mayor calidad que los hábitats fracturados. En general, el 70% de Inglaterra y Gales están cubiertos por hábitats fracturados de menor calidad, con sólo el 13% cubierto por hábitats de mayor calidad. Las principales áreas de hábitat de alta calidad se producen en el centro de Inglaterra como fajas de tendencia norte-sur, lo que posiblemente facilita la dispersión a lo largo de este eje. Están separados por geo-hábitats de baja calidad que pueden impedir la dispersión este-oeste de la fauna. En el suroeste de Inglaterra y Gales, los geo-hábitats adecuados se presentan como pequeñas áreas aisladas. En general, este documento proporciona una nueva tipología a escala nacional que es adaptable para estudios en otras áreas geográficas.

摘要

包含微生物和后生动物的地下水生态系统为全球的生物多样性做出了重要的贡献。其复杂性取决于地质状况,因为地质状况决定现有的栖息地以及栖息地内的化学条件。尽管如此,利用地质数据对地下水栖息地的方法还没有建立,研究人员需要更高分辨率的栖息地框架。这里提出了(英国)英格兰和威尔士一种新的栖息地类型学,这种类型学根据水文地质原则区分出11个地质上的栖息地(地质栖息地)及绘制出其分布图。利用水文地质和水化学数据确定每一个地质栖息地的特征,论证其差异。利用这些非生物参数,提出了一种新的确定非生物栖息地品质的方法。地质栖息地具有显著不同的特征,验证了分类系统。所有的地质栖息地高度异质,包含很可能适宜动物种群的高品质的栖息地地块以及可能限制动物种群分布的低品质区域。岩溶和多孔渗水的栖息地通常比断裂的栖息地品质要高。总的来说,70%的英格兰和威尔士被低品质断裂的栖息地所覆盖,只有13%的面积被高品质的栖息地所覆盖。高品质栖息地的主要区域位于英格兰中部,呈北-南走向带,可能促进沿这个轴散布。这些区域被可能阻止东-西向动物群分布的低品质地质栖息地所分隔。在英格兰和威尔士西南地区,有适宜的地质栖息地,以小的岛状地块分布。总的来说,本文提供了一种新的全国尺度的类型学,这种类型学也适合在其它地理区的研究。

Resumo

Ecossistemas em águas subterrâneas incluindo microrganismos e metazoários fornecem uma importante contribuição para a biodiversidade global. Sua complexidade depende da geologia, que determina o habitat físico disponível, e as condições químicas dentro dele. Apesar disso, métodos para classificação de habitats em águas subterrâneas usando dados geológicos não são bem estabelecidos e pesquisadores tem requerido por arcabouços para habitats de maior resolução. Uma nova tipologia de habitat para Inglaterra e País de Gales (Reino Unido) é proposta, que distingue 11 habitats geológicos (geohabitats) em princípios hidrogeológicos e mapeia sua distribuição. Os dados hidrogeológicos e hidroquímicos são usados ​​para determinar as características de cada geohabitat e demonstrar suas diferenças. Usando esses parâmetros abióticos, um novo método para determinar a qualidade do habitat abiótico é então desenvolvido. Os geohabitats apresentaram características significativamente diferentes, validando o sistema de classificação. Todos os geohabitats foram altamente heterogêneos, contendo os dois fragmentos de habitat de alta qualidade que provavelmente serão adequados para a fauna e áreas de baixa qualidade que podem limitar as distribuições faunísticas. Os habitats cársticos e porosos geralmente eram de maior qualidade do que os habitats fraturados. No geral, 70% da Inglaterra e do País de Gales são cobertos por habitats fraturados de menor qualidade, com apenas 13% cobertos por habitats de maior qualidade. As principais áreas de habitats de alta qualidade ocorrem no centro da Inglaterra como cinturões de tendência norte-sul, possivelmente facilitando a dispersão ao longo deste eixo. Eles são separados por geohabitats de baixa qualidade que podem impedir a dispersão leste-oeste da fauna. No sudoeste da Inglaterra e do País de Gales, os geohabitats adequados ocorrem como pequenos fragmentos isolados. Em geral, este artigo fornece uma nova tipologia de escala nacional adaptável para estudos em outras áreas geográficas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen D, Brewerton L, Coleby L, Gibbs B, Lewis M, MacDonald A, Wagstaff SJ, Williams AT (1997) The physical properties of major aquifers in England and Wales. British Geological Survey technical report WD/97/34, Environment Agency R&D Publ. 8, BGS, Keyworth UK

  • Ander EL, Shand P, Griffiths K, Lawrence A, Hart P, Pawley J (2004) Baseline report series. 13: The Great Ouse chalk aquifer, East Anglia. Environment Agency, London

  • Arietti M, Edwards B (2006) Groundwater Invertebrates in chalk boreholes and their significance in public water supply. Internal report, Three Valleys Water, Hatfield, UK

  • Atkinson T, Smart P (1981) Artificial tracers in hydrogeology. The Royal Society, London

    Google Scholar 

  • Ban F, Pan G, Zhu J, Cai B, Tan M (2008) Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave, China. Hydrol Proc 22(18):3749–3758

  • Bloomfield JP, Jackson CR, Stuart ME (2013) Changes in groundwater levels, temperature and quality in the UK over the 20th century: an assessment of evidence of impacts from climate change. Hydrol Earth Syst Sci 17:4769–4787

    Article  Google Scholar 

  • Bork J, Berkhoff SE, Bork S, Hahn HJ (2009) Using subsurface metazoan fauna to indicate groundwater–surface water interactions in the Nakdong River floodplain, South Korea. Hydrogeol J 17(1):61–75

    Article  Google Scholar 

  • Boulton AJ, Fenwick GD, Hancock PJ, Harvey MS (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr Systemat 22(2):103–116

    Article  Google Scholar 

  • British Geological Survey (2016) Baseline England and Wales. http://www.bgs.ac.uk/research/groundwater/quality/BaselineUK/baselineEngWales.html. Accessed 18 Sept 2016

  • Cañadas A, Sagarminaga R, De Stephanis R, Urquiola E, Hammond P (2005) Habitat preference modelling as a conservation tool: proposals for marine protected areas for cetaceans in southern Spanish waters. Aquat Conserv 15(5):495–521

    Article  Google Scholar 

  • Castellarini F, Malard F, Dole-Olivier M, Gibert J (2007) Modelling the distribution of stygobionts in the Jura Mountains (eastern France): implications for the protection of ground waters. Divers Distrib 13(2):213–224

    Article  Google Scholar 

  • Cobbing J, Moreau M, Shand P, Lancaster A (2004) Baseline report series, 14: the Corallian of Oxfordshire and Wiltshire. Environment Agency, London

  • Cornu J, Eme D, Malard F (2013) The distribution of groundwater habitats in Europe. Hydrogeol J 21(5):949–960

    Article  Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62(1):11–17

    Google Scholar 

  • Culver DC, Pipan T, Schneider K (2009) Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions. Freshw Biol 54(4):918–929

    Article  Google Scholar 

  • Danielopol DL, Gibert J, Griebler C, Gunatilaka A, Hahn HJ, Messana G, Notenboom J, Sket B (2004) Incorporating ecological perspectives in European groundwater management policy. Environ Conserv 31(3):185–189

    Article  Google Scholar 

  • Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J North Am Benthol Soc 24(3):461–477

    Article  Google Scholar 

  • Dole-Olivier M, Malard F, Martin D, Lefébure T, Gibert J (2009) Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshw Biol 54(4):797–813

    Article  Google Scholar 

  • Eberhard S, Halse S, Humphreys W (2005) Stygofauna in the Pilbara region, north-west Western Australia: a review. J R Soc West Aust 88(4):167–176

    Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Ezekwe N (2010) Petroleum reservoir engineering practice. Prentice Hall, Upper Saddle River, NJ

  • Finston TL, Johnson MS (2004) Geographic patterns of genetic diversity in subterranean amphipods of the Pilbara, Western Australia. Mar Freshw Res 55(6):619–628

    Article  Google Scholar 

  • Foster S, Tyson G, Colvin C, Wireman M, Manzano M, Kreamer D, Goldscheider N, Coxon C (2016) Strategic overview series: ecosystem conservation and groundwater. International Association of Hydrogeologists, Wallingford, UK. https://iah.org/wp-content/uploads/2016/04/IAH-SOS-Ecosystem-Conservation-Groundwater-9-Mar-2016.pdf. Accessed 20 Feb 2017

  • Gagic V, Petrović-Obradović O, Fründ J, Kavallieratos NG, Athanassiou CG, Starý P, Tomanović Ž (2016) The effects of aphid traits on parasitoid host use and specialist advantage. PLoS One 11(6):1–14

    Article  Google Scholar 

  • Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshw Biol 54(4):830–847

    Article  Google Scholar 

  • Gibert J, Danielopol D, Stanford JA (1994) Groundwater ecology. Academic, San Diego

  • Gibert J, Culver DC, Dole-Olivier M, Malard F, Christman MC, Deharveng L (2009) Assessing and conserving groundwater biodiversity: synthesis and perspectives. Freshw Biol 54(4):930–941

    Article  Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14(6):926–941

    Article  Google Scholar 

  • Griebler C, Stein H, Kellermann C, Berkhoff S, Brielmann H, Schmidt S, Selesi D, Steube C, Fuchs A, Hahn HJ (2010) Ecological assessment of groundwater ecosystems: vision or illusion? Ecol Eng 36(9):1174–1190

    Article  Google Scholar 

  • Griffiths KJ, Shand P, Marchant P (2006) Baseline report series, 23: the Lincolnshire Limestone. Environment Agency, London

  • Hahn HJ (2006) The GW-fauna-index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnol 36(2):119–137

    Article  Google Scholar 

  • Hahn HJ (2009) A proposal for an extended typology of groundwater habitats. Hydrogeol J 17(1):77–81

    Article  Google Scholar 

  • Hahn HJ, Fuchs A (2009) Distribution patterns of groundwater communities across aquifer types in south-western Germany. Freshw Biol 54(4):848–860

    Article  Google Scholar 

  • Hahn HJ, Matzke D (2005) A comparison of stygofauna communities inside and outside groundwater bores. Limnologica 35(1):31–44

    Article  Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13(1):98–111

    Article  Google Scholar 

  • Harvey RW (1997) Microorganisms as tracers in groundwater injection and recovery experiments: a review. FEMS Microbiol Rev 20(3):461–472

    Article  Google Scholar 

  • Johns T, Jones JI, Knight L, Maurice L, Wood P, Robertson A (2015) Regional-scale drivers of groundwater faunal distributions. Freshw Sci 34(1):316–328

    Article  Google Scholar 

  • Jones H, Morris B, Cheney C, Brewerton L, Merrin P, Lewis M, MacDonald AM, Coleby LM, Talbot JC, Mckenzie AA, Bird MJ, Cunningham JE, Robinson V (2000) The physical properties of minor aquifers in England and Wales. British Geological Survey technical report WD/00/04, Environment Agency R&D Publ. 68, BGS, Keyworth, UK; Environmental Agency, London

  • Josse J, Husson F (2012) Handling missing values in exploratory multivariate data analysis methods. J Soc Fr Stat 153(2):79–99

    Google Scholar 

  • Josse J, Husson F (2016) missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw 70(1):1–31

    Article  Google Scholar 

  • Klove B, Ala-aho P, Bertrand G, Boukalova Z, Ertuerk A, Goldscheider N, Ilmonen J, Karakaya N, Kupfersberger H, Kvoerner J, Lundberg A, Mileusnic M, Moszczynska A, Muotka T, Preda E, Rossi P, Siergieiev D, Simek J, Wachniew P, Angheluta V, Widerlund A (2011) Groundwater dependent ecosystems, part I: hydroecological status and trends. Environ Sci Pol 14(7):770–781

    Article  Google Scholar 

  • Knight L (2009) The biodiversity action plan (BAP) for Niphargus glenniei (Crustacea: Amphipoda: Niphargidae): the first British troglobite to be listed. Cave Karst Sci 35(1):13–18

    Google Scholar 

  • Knight LRFD (2011) The aquatic macro-invertebrate fauna of Swildon’s hole, Mendip Hills, Somerset, UK. Cave Karst Sci 38(2):81–92

    Google Scholar 

  • Larned ST (2012) Phreatic groundwater ecosystems: research frontiers for freshwater ecology. Freshw Biol 57(5):885–906

    Article  Google Scholar 

  • Lefébure T, Douady C, Malard F, Gibert J (2007) Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol Phylogenet Evol 42(3):676–686

    Article  Google Scholar 

  • Malard F, Hervant F (1999) Oxygen supply and the adaptations of animals in groundwater. Freshw Biol 41(1):1–30

    Article  Google Scholar 

  • Malard F, Boutin C, Camacho AI, Ferreira D, Michel G, Sket B, Stoch F (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54(4):756–776

    Article  Google Scholar 

  • Martin P, de Broyer C, Fiers F, Michel G, Sablon R, Wouters K (2009) Biodiversity of Belgian groundwater fauna in relation to environmental conditions. Freshw Biol 54(4):814–829

    Article  Google Scholar 

  • Mattison RG, Taki H, Harayama S (2002) The bacterivorous soil flagellate Heteromita globosa reduces bacterial clogging under denitrifying conditions in sand-filled aquifer columns. Appl Environ Microbiol 68(9):4539–4545

    Article  Google Scholar 

  • Mattison R, Taki H, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49(1):142–150

    Article  Google Scholar 

  • Maurice L, Bloomfield J (2012) Stygobitic invertebrates in groundwater: a review from a hydrogeological perspective. Fr Rev 5(1):51–71

    Google Scholar 

  • Maurice L, Atkinson T, Barker JA, Bloomfield J, Farrant A, Williams A (2006) Karstic behaviour of groundwater in the English Chalk. J Hydrol 330(1):63–70

    Article  Google Scholar 

  • Maurice L, Atkinson T, Barker J, Williams A, Gallagher A (2012) The nature and distribution of flowing features in a weakly karstified porous limestone aquifer. J Hydrol 438:3–15

    Article  Google Scholar 

  • Maurice L, Robertson A, White D, Knight L, Johns T, Edwards F, Arietti M, Sorensen JPR, Weitowitz D, Marchant BP, Bloomfield JP (2015) The invertebrate ecology of the Chalk Aquifer in England (UK). Hydrogeol J 24(2):459–474

    Article  Google Scholar 

  • McInerney CE, Maurice L, Robertson AL, Knight LR, Arnscheidt J, Venditti C, Dooley JSG, Mathers T, Matthijs S, Eriksson K, Proudlove GS, Hänfling B (2014) The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Mol Ecol 23(5):1153–1166

    Article  Google Scholar 

  • Price M, Bird M, Foster S (1976) Chalk pore-size measurements and their significance. Water Serv 80(968):596–600

    Google Scholar 

  • Proudlove GS, Wood PJ, Harding PT, Horne DJ, Gledhill T, Knight LRFD (2003) A review of the status and distribution of the subterranean aquatic Crustacea of Britain and Ireland. Cave Karst Sci 30(2):51–74

    Google Scholar 

  • RDC Team (2017) R: A language and environment for statistical computing. R Development Core Team, Vienna

  • Revelle W (2016) Psych: procedures for personality and psychological research, version 1.6.4. Northwestern University, Evanston, IL. http://CRAN.R-project.org/package=psych. Accessed June 2017

  • Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232

    Article  Google Scholar 

  • Robertson A, Smith J, Johns T, Proudlove G (2009) The distribution and diversity of stygobites in Great Britain: an analysis to inform groundwater management. Q J Eng Geol Hydrogeol 42(3):359–368

    Article  Google Scholar 

  • Rukke N (2002) Effects of low calcium concentrations on two common freshwater crustaceans, Gammarus lacustris and Astacus astacus. Funct Ecol 16(3):357–366

    Article  Google Scholar 

  • Russ J, Montgomery W (2002) Habitat associations of bats in northern Ireland: implications for conservation. Biol Conserv 108(1):49–58

    Article  Google Scholar 

  • Russo D, Almenar D, Aihartza J, Goiti U, Salsamendi E, Garin I (2005) Habitat selection in sympatric Rhinolophus mehelyi and R. euryale (Mammalia: Chiroptera). J Zool 266(3):327–332

    Article  Google Scholar 

  • Schmidt SI, Hahn HJ (2012) What is groundwater and what does this mean to fauna? Limnologica 42(1):1–6

    Article  Google Scholar 

  • Shand P, Haria AH, Neal C, Griffiths K, Gooddy D, Dixon AJ, Hill T, Buckley DK, Cuningham J (2005) Hydrochemical heterogeneity in an upland catchment: further characterisation of the spatial, temporal and depth variations in soils, streams and groundwaters of the Plynlimon forested catchment, Wales. Hydrol Earth Syst Sci 9(6):621–644

    Article  Google Scholar 

  • Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. Cave and Karst Sci 69(2):279–284

  • Smedley P, Allen D (2004) Baseline report series, 16: The granites of south-west England. Environment Agency, London

  • Smedley P, Griffiths K, Tyler-Whittle R, Hargreaves R, Lawrence AR, Besien T (2003) Baseline report series, 5: The Chalk of the North Downs, Kent and East Surrey. Environment Agency, London

  • Smedley P, Neumann I, Farrell R (2004) Baseline report series, 10: The Chalk Aquifer of Yorkshire and North Humberside. Environment Agency, London

  • Smith, A, Myers AH, Armstrong RW, Daley DL (2013) User guide for the BGS DiGMapGB-50 data (V7). BGS, Keyworth, UK

  • Stanford J, Ward J, Ellis B (1994) Ecology of the alluvial aquifers of the Flathead River, Montana. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, San Diego, pp 367–388

  • Stein H, Kellermann C, Schmidt SI, Brielmann H, Steube C, Berkhoff SE, Fuchs A, Hahn HJ, Thulin B, Griebler C (2010) The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. J Environ Monit 12(1):242–254

    Article  Google Scholar 

  • Stein H, Griebler C, Berkhoff S, Matzke D, Fuchs A, Hahn HJ (2012) Stygoregions: a promising approach to a bioregional classification of groundwater systems. Sci Rep 2:1–9

    Article  Google Scholar 

  • Stoch F, Artheau M, Brancelj A, Galassi DMF (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw Biol 54(4):745–755

    Article  Google Scholar 

  • Tomlinson M, Boulton AJ (2010) Ecology and management of subsurface groundwater dependent ecosystems in Australia: a review. Mar Freshw Res 61(8):936–949

    Article  Google Scholar 

  • VLMP (2016) Maximum dissolved oxygen concentration saturation table. Maine Volunteer Lake Monitoring Program. http://www.mainevlmp.org/wp-content/uploads/2014/01/Maximum-Dissolved-Oxygen-Concentration-Saturation-Table.pdf. Accessed 6 Oct 2016

  • Ward J, Palmer M (1994) Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river–aquifer systems. Hydrobiol 287(1):147–156

    Article  Google Scholar 

  • Weitowitz DC (2017) An investigation into the distribution of groundwater animals (stygobites) in England and Wales. PhD Thesis, University of Roehampton, London

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. The J Geol 30(5):377–392

    Article  Google Scholar 

  • Worthington S, Ford D (2009) Self-organized permeability in carbonate aquifers. Groundwater 47(3):326–336

    Article  Google Scholar 

Download references

Acknowledgements

Damiano Weitowitz was supported by a joint studentship of the National Environment Research Council (NERC) and the University of Roehampton, London. The authors wish to thank the Environment Agency (EA) and the British Geological Survey (BGS) for the provision of hydrogeological and hydrochemical data. This paper is published with the permission of the Director of the British Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano C. Weitowitz.

Electronic supplementary material

ESM 1

(PDF 1956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitowitz, D.C., Maurice, L., Lewis, M. et al. Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK). Hydrogeol J 25, 2453–2466 (2017). https://doi.org/10.1007/s10040-017-1629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1629-6

Keywords

Navigation