Skip to main content

Advertisement

Log in

Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China

Les caractéristiques hydrochimiques et isotopiques des eaux souterraines du nord-est. du désert de Tennger, Chine du nord

Características hidroquímicas e isotópicas del agua subterránea en el noreste del desierto de Tennger, en el norte de China

腾格里沙漠东北缘地区地下水化学与同位素特征研究

Características isotópicas e hidroquímicas das águas subterrâneas no nordeste do deserto de Tennger, Norte da China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater is typically the only water source in arid regions, and its circulation processes should be better understood for rational resource exploitation. Stable isotopes and major ions were investigated in the northeastern Tengger Desert, northern China, to gain insights into groundwater recharge and evolution. In the northern mountains, Quaternary unconsolidated sediments, exposed only in valleys between hills, form the main aquifer, which is mainly made of aeolian sand and gravel. Most of the mountain groundwater samples plot along the local meteoric water line (LMWL), with a more depleted signature compared to summer precipitation, suggesting that mountain groundwater was recharged by local precipitation during winter. Most of the groundwater was fresh, with total dissolved solids less than 1 g/L; dominant ions are Na+, SO4 2− and Cl, and all mineral saturation indices are less than zero. Evaporation, dissolution and cation exchange are the major hydrogeochemical processes. In the southern plains, however, the main aquifers are sandstone. The linear regression line of δD and δ 18O of groundwater parallels the LMWL but the intercept is lower, indicating that groundwater in the plains has been recharged by ancient precipitation rather than modern. Both calcite and dolomite phases in the plains groundwater are close to saturation, while gypsum and halite can still be dissolved into the groundwater. Different recharge mechanisms occur in the northern mountains and the southern plains, and the hydraulic connection between them is weak. Because of the limited recharge, groundwater exploitation should be limited as much as possible.

Résumé

Les eaux souterraines sont typiquement les seules ressources en eau dans les régions arides, et leurs processus de circulation doit être mieux comprise pour une exploitation rationnelle de la ressource. Les isotopes stables et les ions majeurs ont été utilisés dans le secteur nord-est. du désert de Tennger, nord de la Chine, pour obtenir de la connaissance sur la recharge et son évolution. Dans les montagnes du nord, les sédiments quaternaires non consolidés, exposés seulement dans les vallées entre des collines, forment les principaux aquifères essentiellement constitués de sables éoliens et de graviers. La plupart des échantillons des eaux souterraines des montagnes s’alignent le long de la droite météorique locale (LMWL), avec une signature plus appauvrie que les pluies estivales, suggérant que les eaux souterraines des montagnes sont rechargées par les pluies locales d’hiver. La plupart des eaux souterraines sont douces, avec une charge totale de solides dissous de 1 g/L; les ions dominants sont Na+, SO4 2− et Cl, et les indices de saturation de tous les minéraux sont inférieurs à zéro. L’évaporation, la dissolution et les échanges cationiques sont les processus hydrogéochimiques majeurs. Toutefois, les principaux aquifères dans les plaines du sud sont des grès. La régression linéaire de δD et δ18O des eaux souterraines est. parallèle à la droite des pluies locales mais l’interception est. située plus bas, indiquant que les eaux souterraines des plaines ont été rechargées plutôt par des pluies anciennes. Les phases de calcite et dolomite dans les eaux souterraines des aquifères de plaines sont proches de la saturation, alors que gypse et l’halite peuvent encore être dissous dans les eaux souterraines. Différents mécanismes de recharge ont lieu dans les montagnes du nord et les plaines du sud, et les connexions hydrauliques entre ces deux secteurs sont faibles. Du fait d’une recharge réduite, l’exploitation des eaux souterraines doit être limitée le plus possible.

Resumen

El agua subterránea es típicamente la única fuente de agua en las regiones áridas, y sus procesos de circulación deben ser mejor entendidos para la explotación racional de los recursos. Se investigaron los isótopos estables y los iones mayoritarios en el desierto de Tengger, al norte de China, para obtener información sobre la recarga y la evolución del agua subterránea. En las zonas montañosas del norte, los sedimentos no consolidados cuaternarios, expuestos sólo en valles entre colinas, forman el acuífero principal que está compuesto principalmente de arena eólica. La mayor parte de las muestras de agua subterránea de las montañas se agrupan a lo largo de la línea de agua meteórica local (LMWL), con una firma isotópica más empobrecida en comparación con la precipitación del verano, lo que sugiere que el agua subterránea de la zona montañosa fue recargada por la precipitación local durante el invierno. La mayor parte del agua subterránea es dulce, con sólidos disueltos totales inferiores a 1 g/l; Los iones dominantes son Na+, SO4 2− y Cl, y todos los índices de saturación mineral son menores que cero. La evaporación, la disolución y el intercambio catiónico son los principales procesos hidrogeoquímicos. En las llanuras meridionales, sin embargo, los acuíferos principales están compuestos por areniscas. La línea de regresión lineal de δD and δ18O del agua subterránea es paralela a la LMWL, pero la intercepción es más baja, lo que indica que el agua subterránea en las llanuras ha sido recargada por precipitaciones antiguas más que modernas. Tanto las fases de calcita como de dolomita en el agua subterránea de las llanuras están cerca de la saturación, mientras que el yeso y la halita todavía pueden disolverse en el agua subterránea. Existen diferentes mecanismos de recarga en las zonas montañosas del norte y las llanuras del sur, y la conexión hidráulica entre ellas es débil. Debido a la recarga limitada, la explotación del agua subterránea debe limitarse en la medida de lo posible.

摘要

地下水作为干旱区重要的供水水源, 充分掌握它的循环过程是保障区域水资源合理开发利用的前提。稳定同位素技术与水化学方法被用于了解中国北方腾格里沙漠东北缘地区地下水的补给来源与演化过程。在北部山区, 出露于山间沟谷的第四系风积砂与卵砾石等形成了主要含水层。绝大多数山区地下水沿当地大气降水线分布, 与夏季降水相比更加富集重同位素, 表明其主要接受冬季降水补给。大部分地下水矿化度小于1 g/L, 控制性离子为Na+,SO4 2−和Cl, 所有的矿物饱和指数都小于0。蒸发浓缩、矿物溶解及阳离子交换反应是主要的水文地球化学过程。在南部平原区地下水主要赋存与砂岩含水层中。数据显示其δD与δ18O的线性回归线平行于当地大气降水但截距更小, 表明现今降水并非其主要补给源。平原区地下水中的方解石和白云石矿物相均接近饱和, 而石膏和岩盐则仍可以继续溶解进入地下水中。很明显, 北部山区与南部平原区地下水的补给机制不同, 且水力联系相对微弱。鉴于研究区地下水补给来源有限,应当制定合理的地下水开采规划保障水资源可持续利用。

Resumo

As águas subterrâneas são tipicamente o único recurso de água em regiões áridas, e seus processos de circulação devem ser melhor entendidos para a exploração racional dos recursos. Isótopos estáveis e os íons mais importantes foram investigados no Nordeste do deserto de Tengger, Norte da China, para adquirir conhecimento sobre a recarga e evolução das águas subterrâneas. Nas montanhas ao norte, sedimentos não consolidados do quaternário, expostos apenas nos vales entre as escarpas, formam o aquífero principal que é composto principalmente de areias eólicas e cascalho. O gráfico com a maioria das amostras de água subterrânea das montanhas ao longo da linha de água meteórica local (LAML), com maior assinatura de depleção comparada à precipitação do verão, sugere que as águas subterrâneas das montanhas foram recarregadas por precipitação local durante o inverno. A maior parte das águas subterrâneas era doce, com o total de sólidos dissolvidos menores que 1 g/L; os íons dominantes são Na+, SO42- e Cl- e todos os índices de saturação mineral são menores que zero. Evaporação, dissolução e troca catiônica são os maiores processos hidrogeoquímicos. Nas planícies do Sul, os principais aquíferos são arenitos. A linha da regressão linear de δD e δ18O das águas subterrâneas é paralela à LAML mas a interceptação é mais baixa, indicando que as águas subterrâneas nas planícies foram recarregadas com precipitação antiga preferencialmente à moderna. Ambas fases da calcita e dolomita nas águas subterrâneas das planícies estão próximas a saturação, enquanto gipsita e halita podem ainda ser dissolvidas nas águas subterrâneas. Mecanismos de recarga diferentes ocorrem nas montanhas do Norte e planícies do Sul, e a conexão hidráulica entre elas é fraca. Por causa da recarga limitada, a exploração das águas subterrâneas devia ser limitada o máximo possível.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chem Geol 231(1–2):38–56

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Savard MM, Bourque E, Therrien R (2006) Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Quebec, Canada. Hydrogeol J 14(4):573–590

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Currell MJ, Cartwright I (2011) Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China. Hydrogeol J 19(4):835–850

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • Ding ZY, Ma JZ, Zhao W, Jiang Y, Love A (2013) Profiles of geochemical and isotopic signatures from the Helan Mountains to the eastern Tengger Desert, northwestern China. J Arid Environ 90(0):77–87

    Article  Google Scholar 

  • Edmunds W, Wright E (1979) Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya. J Hydrol 40(3):215–241

    Article  Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21(12):2148–2170

    Article  Google Scholar 

  • Eissa MA, Thomas JM, Pohll G, Hershey RL, Dahab KA, Dawoud MI, ElShiekh A, Gomaa MA (2013) Groundwater resource sustainability in the Wadi Watir Delta, Gulf of Aqaba, Sinai, Egypt. Hydrogeol J 21(8):1833–1851

    Article  Google Scholar 

  • Fisher RS, Mullican WF III (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5(2):4–16

    Article  Google Scholar 

  • Gat JR (1971) Comments on the stable isotope method in regional groundwater investigations. Water Resour Res 7(4):980–993

    Article  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24(1):225–262

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23(12):3519–3534

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090

    Article  Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536

    Article  Google Scholar 

  • Gonzalez-Ramon A, Rodriguez-Arevalo J, Martos-Rosillo S, Gollonet J (2013) Hydrogeological research on intensively exploited deep aquifers in the ‘Loma de Aebeda’ area (Jaén, southern Spain). Hydrogeol J 21(4):887–903

    Article  Google Scholar 

  • Guendouz A, Moulla A, Edmunds W, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11(4):483–495

    Article  Google Scholar 

  • Herczeg AL, Leaney FW (2011) Review: environmental tracers in arid-zone hydrology. Hydrogeol J 19(1):17–29

    Article  Google Scholar 

  • IAEA, WMO (2004) Global Network of Isotopes in Precipitation (GNIP) database. http://www.isohis.iaea.org. Accessed June 2017

  • Inner Mongolia Geology Survey (2012) The report and map for hydrogeological survey in the Haosi Buerdu. Inner Mongolia Science and Technology Press, Baotou, China

    Google Scholar 

  • Lapworth DJ, MacDonald AM, Tijani MN, Darling WG, Gooddy DC, Bonsor HC, Araguas-Araguas LJ (2013) Residence times of shallow groundwater in West Africa: implications for hydrogeology and resilience to future changes in climate. Hydrogeol J 21(3):673–686

    Article  Google Scholar 

  • Londono OMQ, Martinez DE, Dapena C, Massone H (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeol J 16(6):1113–1127. doi:10.1007/s10040-008-0289-y

    Article  Google Scholar 

  • Ma JZ, Ding ZY, Edmunds WM, Gates JB, Huang TM (2009) Limits to recharge of groundwater from Tibetan plateau to the Gobi Desert: implications for water management in the mountain front. J Hydrol 364(1–2):128–141

    Article  Google Scholar 

  • Martos-Rosillo S, Marin-Lechado C, Pedrera A, Vadillo I, Motyka J, Luis Molina J, Ortiz P, Martin Ramirez JM (2014) Methodology to evaluate the renewal period of carbonate aquifers: a key tool for their management in arid and semiarid regions, with the example of Becerrero aquifer, Spain. Hydrogeol J 22(3):679–689

    Article  Google Scholar 

  • Negrel P, Lemiere B, de Grammont HM, Billaud P, Sengupta B (2007) Hydrogeochemical processes, mixing and isotope tracing in hard rock aquifers and surface waters from the Subarnarekha River basin, (east Singhbhum District, Jharkhand state, India). Hydrogeol J 15(8):1535–1552

    Article  Google Scholar 

  • Parkhurst D, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, reaction path, advective transport, and inverse geochemical calculation. US Geol Surv Water Resour Invest Rep 99-4259

  • Robertson WM, Sharp JM Jr (2013) Estimates of recharge in two arid basin aquifers: a model of spatially variable net infiltration and its implications (Red Light Draw and Eagle Flats, Texas, USA). Hydrogeol J 21(8):1853–1864

    Article  Google Scholar 

  • Schoeller H (1965) Hydrodynamique dans le karst [Hydrodynamics of karst]. Actes du Colloques de Doubronik, IAHS/UNESCO, Wallingford pp. 3–20

  • Shi JA, Wang Q, Chen GJ, Wang GY, Zhang ZN (2001) Isotopic geochemistry of the groundwater system in arid and semiarid areas and its significance: a case study in Shiyang River basin, Gansu province, northwest China. Environ Geol 40(4–5):557–565

    Article  Google Scholar 

  • Shi XJ, Wang T, Zhang L, Castro A, Xiao XC, Tong Y, Zhang JJ, Guo L, Yang QD (2014) Timing, petrogenesis and tectonic setting of the late Paleozoic gabbro–granodiorite–granite intrusions in the Shalazhashan of northern Alxa: constraints on the southernmost boundary of the central Asian Orogenic Belt. Lithos 208–209:158–177

    Article  Google Scholar 

  • Shivanna K, Kulkarni U, Joseph T, Navada S (2004) Contribution of storms to groundwater recharge in the semi-arid region of Karnataka, India. Hydrol Process 18(3):473–485

    Article  Google Scholar 

  • Sonntag C, Muennich K, Junghans C, Klitzsch E, Thorweihe U, Weistroffer K, Loehnert E, El-Shazly E, Swailem F (1979) Palaeoclimatic information from deuterium and oxygen-18 in carbon-14-dated north Saharian groundwaters—groundwater formation in the past. Isotope hydrology 1978

  • Subyani AM (2004) Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ Geol 46(6–7):741–749

    Article  Google Scholar 

  • Wang LH, Li GM, Dong YH, Han DM, Zhang JY (2015) Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: a case study in the upper–middle reaches of the Shule River basin, northwestern China. Environ Earth Sci 73(4):1901–1915

    Article  Google Scholar 

  • Wang LH, Dong YH, Xie YX, Song F, Wei YQ, Zhang JY (2016) Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River basin, northwest China. Hydrogeol J 24(8):1967–0979

    Article  Google Scholar 

  • Wang LH, Dong YH, Xu ZF (2017) A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China. J Asian Earth Sci 146:20–29

    Article  Google Scholar 

  • Wei GX, Chen FH, Ma JZ, Dong Y, Zhu GF, Edmunds WM (2014) Groundwater recharge and evolution of water quality in China’s Jilantai Basin based on hydrogeochemical and isotopic evidence. Environ Earth Sci 72(9):3491–3506

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva, Switzerland

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Project funded by the China Postdoctoral Science Foundation (Grant no. 2016 M591247), Beijing Natural Science Foundation (8174077) and the Youth Innovation Promotion Association Chinese Academy Sciences (Grant no. 2016063). We are grateful to Dr. Jean-Michel Lemieux, Dr. Jordi Batlle-Aguilar, Dr. Rosario Jiménez-Espinosa and the anonymous reviewer for their constructive comments and suggestions which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Dong, Y., Xu, Z. et al. Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China. Hydrogeol J 25, 2363–2375 (2017). https://doi.org/10.1007/s10040-017-1620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1620-2

Keywords