Skip to main content

Advertisement

Log in

Inverse modeling and uncertainty analysis of potential groundwater recharge to the confined semi-fossil Ohangwena II Aquifer, Namibia

Modélisation inverse et analyse d’incertitude de la recharge potentielle d’eaux souterraines de l‘aquifère captif semi-fossile d’Ohangwena II en Namibie

Modelado inverso y análisis de incertidumbre de la recarga potencial de agua subterránea en el acuífero confinado semi-fósil de Ohangwena II, Namibia

纳米比亚承压的半-化石Ohangwena II含水层潜在地下水补给的反演模拟及不确定性分析

Modelagem inversa e análise de incertezas da recarga potencial das águas subterrâneas para o aquífero confinado semifóssil Ohangwena II, Namíbia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.

Résumé

L’identification des secteurs potentiels de recharge et de l’évaluation des taux de recharge de l‘aquifère captif semi-fossile d’Ohangwena II (KOH-2) est. cruciale pour son futur usage durable. Le KOH-2 est. situé dans le bassin transfrontalier endoréique de Cuvelai-Etosha- (CEB), partagé par l’Angola et la Namibie. L’objectif principal était le développement d’une stratégie pour aborder le problème de la pénurie de données, qui est. un problème bien connu dans les régions semi-arides. Dans un premier temps, des coupes géologiques conceptuelles ont été créées pour illustrer la possible configuration géologique du système. En outre, des temps de transfert des eaux souterraines ont été estimés par des calculs hydrauliques simples. Un modèle numérique bidimensionnel des eaux souterraines a été construit pour analyzer les modalités d’écoulement et les zones potentielles de recharge. Le modèle a été optimisé par rapport à des observations locales des charges hydrauliques et de l’âge de l‘eau souterraine. La sensibilité du modèle aux différentes conditions aux limites et aux structures internes a été examinée. L’incertitude sur les paramètres et les taux de recharge ont été estimés. Les résultats indiquent que la recharge du KOH-2 se produit principalement depuis les montagnes angolaises dans la partie nord-est. du CEB. La sensibilité du modèle des eaux souterraines aux différentes structures internes est. relativement faible par rapport aux changements des conditions aux limites sous forme de cours d’eaux infiltrants ou drainants. L‘analyze des incertitudes souligne les résultats précédents, indiquant que la recharge provient des montagnes angolaises. Les taux de recharge estimés sont de moins de 1% des précipitations annuelles moyennes, chiffres raisonnables pour les régions semi-arides.

Resumen

La identificación de áreas potenciales de recarga y la estimación de las tasas de recarga para el acuífero semi-fósil de Ohangwena II (KOH-2) es fundamental para su futuro uso sostenible. El KOH-2 se encuentra dentro de la cuenca transfronteriza endorreica de Cuvelai-Etosha (CEB), compartida por Angola y Namibia. El objetivo principal fue el desarrollo de una estrategia para abordar el problema de la escasez de datos, que es un problema bien conocido en las regiones semiáridas. En un primer paso, se crearon secciones geológicas transversales conceptuales para ilustrar la posible configuración geológica del sistema. Además, los tiempos de viaje de las aguas subterráneas se calcularon mediante simples cálculos hidráulicos. Se estableció un modelo numérico bidimensional de agua subterránea para analizar los patrones de flujo y las zonas potenciales de recarga. El modelo se optimizó frente a las observaciones locales de las cargas hidráulicas y de la edad del agua subterránea. Se evaluó la sensibilidad del modelo frente a diferentes condiciones de contorno y estructuras internas. Se estimaron las tasas de recarga y la incertidumbre de los parámetros. Los resultados indican que la recarga de agua subterránea al KOH-2 se produce principalmente en las tierras altas de Angola en la parte nororiental de la CEB. La sensibilidad de las diferentes estructuras internas del modelo de agua subterránea es relativamente pequeña en comparación con las cambiantes condiciones de contorno en la forma de corrientes influentes o efluentes. El análisis de incertidumbre resaltó los resultados anteriores, indicando la recarga de agua subterránea procedente de las Tierras Altas Angolanas. Las tasas estimadas de recarga son inferiores al 1% de la precipitación media anual, que son razonables para las regiones semiáridas.

摘要

承压的半-化石Ohangwena II含水层(KOH-2)潜在补给区的确定及补给量的估算对含水层未来的可持续利用至关重要。KOH-2位于内流跨界Cuvelai-Etosha盆地(CEB)内,这个盆地由安哥拉和纳米比亚共同分享。主要目标就是找到解决资料匮乏问题的策略,资料匮乏的问题是半干旱地区一个众所周知的问题。第一步,创建概念地质横截面,描述系统的可能地质背景。此外,通过简单的水力计算估算了地下水行进时间。建立了二维数值地下水模型以分析水流模式及潜在补给带。根据水头及地下水年龄的当地观测数据对模型进行了最优化处理。测试了模型对不同边界条件及内部结构的灵敏性。估算了参数不确定性及补给量。结果表明,KOH-2主要从CEB东北部的安哥拉高原得到地下水补给。地下水模型对不同内部结构的灵敏性与对变化的流入、流出河流边界条件的灵敏性相比相对较小。不确定性分析强调了先前的结果,表明地下水补给源自安哥拉高原。估算的补给量不到平均每年降水量的1%,对于半干旱地区,这也是合情合理的。

Resumo

A identificação de área de recarga potencial e estimativa de taxas de recarga para o aquífero confinado semifóssil Ohangwena II (KOH-2) é crucial para o seu uso sustentável futuro. O KOH-2 está localizado entre a bacia endorreica transfronteiriça Cuvelai-Etosha (BCE), compartilhada por Angola e Namíbia. O objetivo principal foi o desenvolvimento de uma estratégia para enfrentar o problema de escassez de dados, que é um problema bem conhecido em regiões semiáridas. Em um primeiro passo, criaram-se seções transversais geológicas conceituais para ilustrar a possíveis configurações geológicas do sistema. Mais adiante, os tempos de viagem das águas subterrâneas foram estimados por cálculos hidráulicos simples. Um modelo numérico bidimensional de águas subterrâneas foi ajustado para analisar padrões de fluxo e áreas de recarga potenciais. O modelo foi otimizado usando observações locais de carga hidráulica e datação as águas subterrâneas. Testou-se a sensibilidade do modelo contra diferentes condições de contorno e estruturas internas. As incertezas dos parâmetros e taxas de recarga foram estimadas. Os resultados indicam que a recarga das águas subterrâneas para o KOH-2 ocorre principalmente dos Planaltos Angolanos na parte nordeste da BCE. A sensibilidade do modelo de águas subterrâneas para diferentes estruturas internas é relativamente pequena em comparação com mudanças nas condições de contorno na forma de canais enfluêntes ou efluentes. A análise de incertezas salientou resultados anteriores, indicando recarga das águas subterrâneas originada a partir dos Planaltos Angolanos. As taxas de recarga estimadas são menores que 1% da média anual de precipitação, o que é razoável para regiões semiáridas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allison GB, Gee W, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J 58:6–14

    Article  Google Scholar 

  • Ananias A, Lohe C (2013) The estimation of the hydraulic properties of the Ohangwena Multi-Layered Aquifer (KOH), Cuvelai-Etosha Basin. Technical cooperation project “Groundwater for the North of Namibia”, prepared by Department of Water Affairs and Forestry (DWAF), Windhoek, Namibia and Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany

  • Armstrong D, Narayan K (1998) Using groundwater response to infer recharge, part 5. CSIRO, Clayton, Australia

  • Ayachit U (2008) The ParaView Guide: a parallel visualization application. Kitware, Clifton Park, NY

  • Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298. doi:10.1002/hyp.3360060305

    Article  Google Scholar 

  • Beyer M, Gaj M, Hamutoko JT, Koeniger P, Wanke H, Himmelsbach T (2015) Estimation of groundwater recharge via deuterium labelling in the semi-arid Cuvelai-Etosha Basin, Namibia. Isot Environ Health Stud 6016:1–20. doi:10.1080/10256016.2015.1076407

    Google Scholar 

  • Bittner ACW (1998) Drilling of a deep freshwater borehole in the Eenhana area applying the EDL-technique. Ministry of Agriculture Ward. Dept. of Water Affairs, Windhoek, Namibia

    Google Scholar 

  • BRGM (2004) Geology and major ore deposits of Central Africa: map scale 1/4000000. BRGM, Orléans, France

  • Chen JL, Wilson CR, Tapley BD, Scanlon B, Güntner A (2016) Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Glob Planet Change 139:56–65. doi:10.1016/j.gloplacha.2016.01.002

    Article  Google Scholar 

  • de Araújo A, Perevalov O, Jukov R (1988) Carta geológica de Angola [Geological map of Angola]. Inst. Nat. Geol., Luanda, Angola

  • de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of process and challenges. Hydrogeol J 10:5–17. doi:10.1007/s10040-001-0171-7

    Article  Google Scholar 

  • Dill HG, Kaufhold S, Lindenmaier F, Dohrmann R, Ludwig R, Botz R (2013) Joint clay-heavy-light mineral analysis: a tool to investigate the hydrographic-hydraulic regime of late Cenozoic deltaic inland fans under changing climatic conditions (Cuvelai-Etosha Basin, Namibia). Int J Earth Sci 102:265–304. doi:10.1007/s00531-012-0770-7

    Article  Google Scholar 

  • Eitel B, Blümel WD, Hüser K (2002) Environmental transition between 22 ka and 8 ka in monsoonally influenced Namibia: a preliminary chronology. Ann Geomorphol 126:31–57

    Google Scholar 

  • FNSWG (2015) Southern Africa food and nutrition security update. 16 pp. https://www.wfp.org/content/southern-africa-food-and-nutrition-security-working-group-2015. Accessed July 2018

  • Gasse F, Chalié F, Vincens A, Williams MAJ, Williamson D (2008) Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat Sci Rev 27:2316–2340

  • Ginn TR, Haeri H, Massoudieh A, Foglia L (2009) Notes on groundwater age in forward and inverse modeling. Transp Porous Media 79:117–134. doi:10.1007/s11242-009-9406-1

  • Grootes PM, Nadeau M-J, Rieck A (2004) 14C-AMS at the Leibniz-Laboratory for Radiometric Dating and Isotope Research. Nucl Instrum Methods Phys Res Sect B 223–224:55–61

    Article  Google Scholar 

  • GROWAS II (2016) Groundwater database and information system (vers. 2), Dept. of Water Affairs and Forestry, Ministry of Agriculture, Water and Forestry, Windhoek, Namibia

  • Haddon IG (2005) The sub-Kalahari geology and tectonic evolution of the Kalahari Basin, Southern Africa. PhD Thesis, University of the Witwatersrand, Johannesburg, South Africa, 360 pp

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations: the CRU TS3.10 dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Heine K, Geyh MA (1984) Radiocarbon dating of speleothems from the Rössing Cave, Namib Desert, and palaeoclimatic implications. In: Vogel JC (ed) Late Cainozoic palaeoclimates of the Southern Hemisphere. Balkema, Rotterdam, The Netherlands, pp 465–470

  • Hipondoka MHT, Mauz B, Kempf J, Packman S, Chiverrell RC, Bloemendal J (2014) Chronology of sand ridges and the Late Quaternary evolution of the Etosha pan, Namibia. Geomorphology 204:553–563

    Article  Google Scholar 

  • Houben G, Koeniger P, Sültenfuß J (2014) Freshwater lenses as archive of climate, groundwater recharge, and hydrochemical evolution: insights from depth-specific water isotope analysis and age determination on the island of Langeoog, Germany. Water Resour Res. doi:10.1002/2014WR015584

  • Joseph R (2016) Determination of hydraulic parameters of the Ohangwena aquifers and Aquitards based on borehole WW203302. University of Namibia; with support of the Technical Cooperation Project “Groundwater for the North of Namibia”, prepared by Department of Water Affairs and Forestry (DWAF), Namibia and Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany

  • Khazaei E, Spink AEF, Warner JW (2003) A catchment water balance model for estimating groundwater recharge in arid and semiarid regions of south-east Iran. Hydrogeol J 11:333–342. doi:10.1007/s10040-003-0266-4

    Article  Google Scholar 

  • Kinzelbach W, Aeschbach W, Albrich C, Goni IB, Beyerle U, Brunner P, Chiang WH, Rueedi J, Zoellmann K (2002) A survey of methods for analysing groundwater recharge in arid and semi-arid regions. Early Warning and Assessment Report Series, UNEP/DEWA/RS.02–2, United Nations Environment Programme, Nairobi, Kenya

    Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599

    Article  Google Scholar 

  • Lancaster N (2002) How dry was dry? Late Pleistocene palaeoclimates in the Namib Desert. Quaternary Sci Rev 21(7):769–782

    Article  Google Scholar 

  • Lerner DN, Issar A, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. International Association of Hydrogeologists, Wallingford, UK

    Google Scholar 

  • Lim S, Chase BM, Chevalier M, Reimer PJ (2016) 50,000 years of vegetation and climate change in the southern Namib Desert, Pella, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 451:197–209

    Article  Google Scholar 

  • Lindenmaier F, Miller RM, Fenner J, Christelis G, Dill HG, Himmelsbach T, Kaufhold S, Lohe C, Quinger M, Schildknecht F, Symons G, Walzer A, van Wyk B (2014) Structure and genesis of the Cubango Megafan in northern Namibia: implications for its hydrogeology. Hydrogeol J 22:1307–1328. doi:10.1007/s10040-014-1141-1

    Article  Google Scholar 

  • Lohe C, Miller RM, Joseph R, Quinger M (2016) Determination and delineation of hydraulic parameters of the Ohangwena Groundwater System, Cubango Megafan, northern Namibia. In: International Geological Congress IGC, Cape Town, South Africa, September 2016

  • Mendelson J, Jarvis A, Robertson T (2013) A profile and atlas of the Cuvelai-Etosha basin. RAISON and Gondwana Collection, Windhoek, Nambia

  • Miller RM, Schalk K (1980) Geological map of Namibia 1:1,000,000. Geological Survey of Nambia, Windhoek, Nambia

  • Miller RM, Pickford M, Senut B (2010) The geology, palaeontology and evolution of the Etosha pan, Namibia: implications for terminal Kalahari deposition. South African J Geol 113:307–334. doi:10.2113/gssajg.113.3.307

    Article  Google Scholar 

  • Poeter EO, Hill MC (1997) Inverse models: a necessary next step in groundwater modeling. Ground Water 35:250–260

    Article  Google Scholar 

  • Portniaguine O, Solomon DK (1998) Parameter estimation using groundwater age and head data, Cape Cod, Massachusetts. Water Resour Res 34:637. doi:10.1029/97WR03361

    Article  Google Scholar 

  • QGIS-Development-Team (2015) QGIS Geographic Information System. QGIS. http://www.qgis.org/en/site/. Accessed June 2017

  • Railsback LB, Brook GA, Liang F, Marais E, Cheng H, Edwards RL (2016) A multi-proxy stalagmite record from northwestern Namibia of regional drying with increasing global-scale warmth over the last 47 kyr: the interplay of a globally shifting ITCZ with regional currents, winds, and rainfall. Palaeogeogr Palaeoclimatol Palaeoecol 461:109–121

    Article  Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10:110–120. doi:10.1007/s10040-001-0173-5

    Article  Google Scholar 

  • Sanford W (2011) Calibration of models using groundwater age. Hydrogeol J 19:13–16. doi:10.1007/s10040-010-0637-6

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:347. doi:10.1007/S10040-002-0200-1

    Article  Google Scholar 

  • Schefuß E, Kuhlmann H, Mollenhauer G, Prange M, Pätzold J (2011) Forcing of wet phases in southeast Africa over the past 17,000 years. Nature 480:509–512

    Article  Google Scholar 

  • Schildknecht (2012) Groundwater for the north of Namibia: groundwater exploration with TEM soundings in the Cuvelai-Etosha-Basin. Bundesanstalt für Geowissenschaften und Rohstoffe. Hanover, Germany

    Google Scholar 

  • Spitz KH, Moreno J (1996) A practical guide to groundwater and solute transport modeling. Wiley, Chichester, UK

  • Steudel T, Göhmann H, Flügel W-A, Helmschrot J (2013) Assessment of hydrological dynamics in the upper Okavango River basins. Biodivers Ecol 5:247–261. doi:10.7809/b-e.00279

    Article  Google Scholar 

  • Strydom and Associates Land Surveyors Levelling Survey (2013) Groundwater Management in the North of Namibia, Tender no. BGR 01/2016, Dept. of Water Affairs and Forestry (DWAF), Namibia and Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany

  • Thomas DSG, Brook G, Shaw P, Bateman M, Haberyan K, Appleton C, Nash D, McLaren S, Davies F (2003) Late Pleistocene wetting and drying in the NW Kalahari: an integrated study from the Tsodilo Hills, Botswana. Quaternary Intern 104:53–67

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York

    Google Scholar 

  • Tolson BA, Shoemaker CA (2007) Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour Res 43:1–16. doi:10.1029/2005WR004723

    Article  Google Scholar 

  • Tolson BA, Shoemaker CA (2008) Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resour Res 44:1–19. doi:10.1029/2007WR005869

    Google Scholar 

  • Tyson PD, Odada EO, Partridge TC (2001) Late Quaternary environmental change in southern Africa. South Afric J Sci 97:139–150

    Google Scholar 

  • van der Kamp G, Maathuis H (1991) Annual fluctuations of groundwater levels as a result of loading by surface moisture. J Hydrol 127:137–152. doi:10.1016/0022-1694(91)90112-U

    Article  Google Scholar 

  • Voss CI, Wood WW (1994) Synthesis of geochemical, isotopic and groundwater modeling analysis to explain regional flow in a coastal aquifer of southern Oahu, Hawaii. IAEA-TECDOC-777, IAEA, Vienna, pp 147–178

  • Zagana E, Kuells C, Udluft P, Constantinou C (2007) Methods of groundwater recharge estimation in eastern Mediterranean: a water balance model application in Greece, Cyprus and Jordan. Hydrol Process 21:2405–2414. doi:10.1002/hyp

    Article  Google Scholar 

  • Zhang Y (2014) Nonlinear inversion of an unconfined aquifer: simultaneous estimation of heterogeneous hydraulic conductivities, recharge rates, and boundary conditions. Transp Porous Media 102:275–299. doi:10.1007/s11242-014-0275-x

    Article  Google Scholar 

  • Zhu C (2000) Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling. Water Resour Res 36:2607–2620

    Article  Google Scholar 

  • Zuber A, Rozanski K, Kania J, Purtschert R (2011) On some methodological problems in the use of environmental tracers to estimate hydrogeologic parameters and to calibrate flow and transport models. Hydrogeol J 19:53–69

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the German Federal Ministry for Education and Research (BMBF) within the SASSCAL project (South African Science and Service Center for Climate Change, Agriculture and Land Use) under contract number 01LG1201L. Parts of the data for this study were obtained from the Ministry of Agriculture, Water and Forestry (MAWF) of Namibia. Furthermore, we want to thank Aaron Peschke, Franziska Holst, Falk Lindenmaier, Matthias Beyer, Marcel Gaj, Paul Königer, Mariola Kosenko, Roland Bäumle, Jobst Maßmann, Marc Walther, Josefina Hamatoku, Heike Wanke, Lutz Reinhardt, Karsten Piepjohn, the two reviewers and the editor for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wallner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallner, M., Houben, G., Lohe, C. et al. Inverse modeling and uncertainty analysis of potential groundwater recharge to the confined semi-fossil Ohangwena II Aquifer, Namibia. Hydrogeol J 25, 2303–2321 (2017). https://doi.org/10.1007/s10040-017-1615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1615-z

Keywords