Advertisement

Hydrogeology Journal

, Volume 25, Issue 8, pp 2391–2402 | Cite as

Sensitivity of GRACE-derived estimates of groundwater-level changes in southern Ontario, Canada

  • Ellen HachbornEmail author
  • Aaron Berg
  • Jana Levison
  • Jaison Thomas Ambadan
Paper

Abstract

Amidst changing climates, understanding the world’s water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.

Keywords

Groundwater storage Groundwater monitoring GRACE satellite Canada Climate change 

Sensibilité des changements de niveaux d’eau souterraine estimés à l’aide des données dérivées de GRACE dans le sud de l’Ontario, Canada

Résumé

Dans un contexte de changement climatique, comprendre les ressources en eau à l’échelle du monde revêt une importance croissante. Dans l’Ontario, au Canada, les conditions d’étiage sont évaluées couramment en utilisant seulement les précipitations et les stations de jaugeage des bassins versants par les autorités de conservation de l’Ontario et par le ministère des Ressources Naturelles et des Forêts. Les changements régionaux de stockage des eaux souterraines en Ontario ne sont pas mesurés actuellement en utilisant les données satellitaires des instituts de recherche. Dans cette étude, les contributions des données de récupération de la gravité et de l’expérience climatique (GRACE) sont comparées à la base de données hydrogéologiques concernant le sud de l’Ontario pour la période 2003 à 2013, afin de déterminer l’adéquation des estimations de stockage de l’eau total à l’aide de GRACE pour la surveillance du stockage des eaux souterraines dans ce secteur. Les données de stockage d’eau terrestre de GRACE ont été utilisées pour déterminer les valeurs d’anomalie mensuelle des eaux souterraines stockées (GWS). Les valeurs de GWS ont été également déterminées en multipliant les élévations du niveau d’eau souterraine (des points d’eau du réseau piézométrique provincial) par le rendement spécifique. Les comparaisons des GWS dérivées de GRACE aux données de GWS déterminées sur les points d’eau ont permis de montrer que GRACE est. suffisamment sensible pour obtenir un signal significatif dans le sud de l’Ontario. Les résultats indiquent que les valeurs de GWS produites par GRACE sont utiles pour identifier les changements régionaux dans le stockage des eaux souterraines dans les zones avec des données de caractérisation hydrogéologique disponibles limitées. Les résultats indiquent également que GRACE peut avoir la capacité de prévoir les changements dans le stockage des eaux souterraines qui deviendront utiles lors des changements climatiques dans un proche avenir.

Sensibilidad de las estimaciones derivadas de GRACE en los cambios del nivel de agua subterránea en el sur de Ontario, Canadá

Resumen

En medio de los cambios climáticos, la comprensión de los recursos hídricos del mundo es cada vez más importante. En Ontario, Canadá, las condiciones de escasez de agua se evalúan actualmente utilizando sólo la precipitación y las mediciones de caudales en cuencas hidrográficas por parte de Conservation Authorities of Ontario and the Ministry of Natural Resources and Forestry. Los cambios regionales en el almacenamiento de agua subterránea en Ontario no se miden actualmente utilizando datos satelitales por parte los institutos de investigación. En este estudio se comparan las contribuciones de los datos de Gravity Recovery and Climate Experiment (GRACE) con una base de datos hidrogeológicos del período 2003–2013 que cubren el sur de Ontario para determinar la idoneidad de las estimaciones de almacenamiento total de agua a partir de GRACE con el monitoreo del almacenamiento de agua subterránea en este lugar. Los datos de almacenamiento de agua terrestre de GRACE se utilizaron para determinar los valores mensuales de anomalías de almacenamiento de agua subterránea (GWS). Los valores de GWS también se determinaron multiplicando las elevaciones del nivel de agua subterránea (de los pozos de la Red de Monitoreo de Agua Subterránea Provincial) por el rendimiento específico. Las comparaciones de GWS derivado de GRACE con los datos de GWS basados en pozos determinaron que GRACE es suficientemente sensible para obtener una señal significativa en el sur de Ontario. Los resultados muestran que los valores de GWS producidos por GRACE son útiles para identificar los cambios regionales en el almacenamiento de agua subterránea en áreas con limitados datos disponibles de la caracterización hidrogeológica. Los resultados también indican que GRACE puede tener la capacidad de pronosticar cambios en el almacenamiento de agua subterránea que serán útiles al monitorear cambios climáticos en un futuro cercano.

GRACE导出的加拿大安大略省南部地下水位变化估算值的灵敏度

摘要

在变化的气候中,了解世界的水资源越来越重要。在加拿大安大略省,安大略省保护部门及自然资源和林业部目前仅利用降水和基于流域的河流观测数据对低水条件进行了评价。安大略省区域地下水储量变化目前并不是由研究机构利用卫星数据测量的。在本研究中,把重力恢复和气候实验(GRACE)数据的贡献与囊括2003年到2013年安大略省南部一个水文地质数据库进行了对比,以确定GRACE总储水量估算值在监测这一区域地下水储量的适宜性。根据GRACE得出的陆地储水量数据用于确定每月的地下水储量(GWS)异常值。GWS值也通过(省级地下水监测网井得到的)地下水位高程乘以单位出水量确定。源自GRACE的GWS与机遇井的GWS数据对比结果确定,GRACE对获取安大略省南部有意义的信号足够敏感。结果显示,根据GRACE得到的GWS值对于利用有限的现有的水文地质特征描述数据确定本地区地下水储量的区域变化非常有用。结果还表明,GRACE可能还具有预测地下水储量变化的能力,这将在不久的将来监测气候变化时非常有用。

Sensibilidade das estimativas derivadas do GRACE de mudanças no nível da água subterrânea no sul de Ontário, no Canadá

Resumo

Em meio a mudanças climáticas, a compreensão dos recursos hídricos do mundo é cada vez mais importante. Em Ontário, no Canadá, as baixas condições de água são atualmente avaliadas usando apenas estações pluviométricas e fluviométricas operadas pelas Autoridades de Conservação de Ontário e pelo Ministério de Recursos Naturais e Florestas. As mudanças regionais de armazenamento das águas subterrâneas em Ontário não são atualmente medidas usando dados de satélite por institutos de pesquisa. Neste estudo, as contribuições dos dados do Gravity Recovery and Climate Experiment (GRACE) são comparadas a uma base de dados hidrogeológica que abrange o sul de Ontário de 2003 a 2013, para determinar a adequação das estimativas de armazenamento total de água do GRACE para monitoramento do armazenamento subterrâneo neste local. Os dados de armazenamento de água terrestre do GRACE foram utilizados para determinar os valores de anomalias mensais de armazenamento de água subterrânea (GWS). Os valores de GWS também foram determinados pela multiplicação das elevações do nível das águas subterrâneas (dos poços da Provincial Groundwater Monitoring Network) pelo rendimento específico. Comparações de GWS derivados do GRACE a dados GWS bem fundamentados determinaram que o GRACE é suficientemente sensível para obter um sinal significativo no sul de Ontário. Os resultados mostraram que os valores de GWS produzidos pelo GRACE são úteis para identificar mudanças regionais no armazenamento de águas subterrâneas em áreas com dados de caracterização hidrogeológica limitados. Os resultados também indicam que o GRACE pode ter a capacidade de prever mudanças no armazenamento de águas subterrâneas o que se tornará úteil ao monitoramento das mudanças climáticas em um futuro próximo.

Notes

Acknowledgements

The authors would like to thank Ross Kelly from the Ontario Ministry of Agriculture, Food, and Rural Affairs for his advice and support of this research. The in situ well data that were not available on the PGMN website due to time constraints were generously provided by the Nottawasaga Valley Conservation Authority, Grand River Conservation Authority, Quinte Conservation, and by the Ontario Ministry of Environment and Climate Change through the Provincial Groundwater Monitoring Network and personal correspondence. Finally, the authors would like to thank all those who reviewed the content for their insightful thoughts and recommendations, which helped improve this paper.

References

  1. Agriculture and Agri-Food Canada (2015) About the Canadian drought monitor. In: Drought watch. http://www.agr.gc.ca/eng/programs-and-services/list-of-programs-and-services/drought-watch/canadian-drought-monitor/about-the-canadian-drought-monitor/?id=1463576995558. Accessed 7 May 2016
  2. Alley WM, Konikow LF (2015) Bringing GRACE down to earth. Groundwater. doi: 10.1111/gwat.12379
  3. Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett. doi: 10.1029/2005gl023574
  4. Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control (Wiley Series in probability and statistics), 4th edn. Wiley, Chichester, UKGoogle Scholar
  5. Cameron I, Goel PK, Jamieson A, MacRitchie S, Millar M, Kaltenecker G, Ramanathan L, Zaletnik K, Fleischer F (2010) Climate Change Monitoring Review Project: Provincial Groundwater Monitoring Network (PGMN) and Stream Monitoring Network (PWQMN) assessment final report: sensitivity mapping and local watershed assessments for climate change detection and adaptation monitoring. Conservation Ontario, Newmarket, ONGoogle Scholar
  6. Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys Res Lett. doi: 10.1002/2014gl061055
  7. Chao N, Wang Z, Jiang W, Chao D (2016) A quantitative approach for hydrological drought characterization in southwestern China using GRACE. Hydrogeol J 24:893–903. doi: 10.1007/s10040-015-1362-y CrossRefGoogle Scholar
  8. Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res. doi: 10.1029/2008jb006056
  9. Climate Research Committee, National Research Council (1996) Natural climate variability on decade-to-century time scales, 1st edn. National Academies Press, Washington, DCGoogle Scholar
  10. Dove-Thompson D, Lewis C, Gray PA, et al (2011) A Summary of the effects of climate change on Ontario’s aquatic ecosystems. Ministry of Natural Resources and Forestry, Peterborough, ONGoogle Scholar
  11. Environment Canada (2004) Threats to Water Availability in Canada; NWRI Scientific Assessment Report Series no. 3 and ACSD Assessment Series no. 1. National Water Research Institute, Burlington, ONGoogle Scholar
  12. Environment Canada (2013) Groundwater–water–environment Canada. In: Groundwater. https://www.ec.gc.ca/eau-water/default.asp?lang=En&n=300688DC-1. Accessed 22 November 2015
  13. Environment Canada (2015) 1981–2010 Climate normals & averages. In: Canadian climate normals. http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed 22 November 2015
  14. Environmental Commissioner of Ontario (2008) Drought in Ontario? Groundwater and surface water impacts and response. In: Getting to K(No)w. Environmental Commissioner of Ontario, TorontoGoogle Scholar
  15. Environmental Commissioner of Ontario (2012) Annual report 2012: losing touch. Environmental Commissioner of Ontario, TorontoGoogle Scholar
  16. Featherstone D, Fortini N (2011) Town of Collingwood natural heritage system. Nottawasaga Valley Conservation Authority, Utopia, ONGoogle Scholar
  17. Gleeson T, Novakowski K, Kyser TK (2009) Extremely rapid and localized recharge to a fractured rock aquifer. J Hydrol. doi: 10.1016/j.jhydrol.2009.07.056
  18. Great Lakes Commission (2015) Annual report of the great lakes regional water use database representing 2014 water use data. http://projects.glc.org/waterusedata/pdf/wateruserpt2014.pdf. Accessed 30 April 2016
  19. Henry CM, Allen DM, Huang J (2011) Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeol J 19:741–755. doi: 10.1007/s10040-011-0724-3 CrossRefGoogle Scholar
  20. Hillmer N, Bothwell R (2007) Ontario. In: The Canadian encyclopedia. http://www.thecanadianencyclopedia.ca/en/article/ontario/. Accessed 25 October 2015
  21. Houborg R, Rodell M, Lawrimore J, Li B, Reichle R, Heim R, Rosencrans M, Tinker R, Famiglietti JS, Svoboda M, Wardlow B, Zaitchik BF (2010) Using enhanced GRACE water storage data to improve drought detection by the U.S. and North American drought monitors, 2010. IEEE International Geoscience and Remote Sensing Symposium. doi: 10.1109/igarss.2010.5654237
  22. Huang J, Halpenny J, van der Wal W, Klatt C, James TS, Rivera A (2012) Detectability of groundwater storage change within the Great Lakes Water Basin using GRACE. J Geophys Res. doi: 10.1029/2011jb008876
  23. Jet Propulsion Laboratory (2012) Gravity Recovery And Climate Experiment follow-on. Jet Propulsion Laboratory, California Institute of Technology. http://www.jpl.nasa.gov/missions/gravity-recovery-and-climate-experiment-follow-on-grace-fo/. Accessed 2 November 2015
  24. Johnson AI (1967) Specific yield: compilation of specific yields for various materials. USGS Numbered Series, USGS, Reston, VAGoogle Scholar
  25. Johnson WH, Hansel AK, Bettis EA, Karrow PF, Larson GJ, Lowell TV, Schneider AF (1997) Late Quaternary temporal and event classifications, Great Lakes region, North America. Quat Res 47:1–12. doi: 10.1006/qres.1996.1870 CrossRefGoogle Scholar
  26. Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol. doi: 10.1016/j.jhydrol.2007.02.036
  27. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res. doi: 10.1029/2011wr011453
  28. Leblanc MJ, Tregoning P, Ramillien G, Tweed SO, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res. doi: 10.1029/2008wr007333
  29. Li B, Rodell M, Zaitchik BF, Reichle RH, Koster RD, van Dam TM (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol. doi: 10.1016/j.jhydrol.2012.04.035
  30. Ministry of Natural Resources and Forestry (2015) Low Water Response Program. Government of Ontario. https://www.ontario.ca/environment-and-energy/low-water-response-program. Accessed 22 November 2015
  31. Ministry of the Environment (2010) Groundwater resource management in Ontario: past, present and future. Ontario Ministry of the Environment, Peterborough, ONGoogle Scholar
  32. Ministry of the Environment (2013) Provincial water levels. Ontario Ministry of the Environment, Peterborough, ONGoogle Scholar
  33. Ministry of the Environment and Climate Change (2017) Provincial Groundwater Monitoring Network. https://www.ontario.ca/data/provincial-groundwater-monitoring-network. Accessed 27 April 2017
  34. National Aeronautics and Space Administration (NASA) (2003) Studying Earth’s gravity from space: the Gravity Recovery and Climate Experiment (GRACE), FS-2002-1-029-GSFC, NASA, Washington, DCGoogle Scholar
  35. National Institute of Standards and Technology (2013) Autocorrelation plot. In: Engineering and statistics handbook. http://www.itl.nist.gov/div898/handbook/index.htm. Accessed 25 June 2016
  36. Niu J, Shen C, Li S-G, Phanikumar MS (2014) Quantifying storage changes in regional Great Lakes watersheds using a coupled subsurface–land surface process model and GRACE, MODIS products. Water Resour Res. doi: 10.1002/2014wr015589
  37. Ontario Geological Survey (2010) Surficial geology of southern Ontario. Project summary and technical document. Ontario Geological Survey, Sudbury, ONGoogle Scholar
  38. Pradhan G (2014) Understanding Interannual Groundwater Variability in North India using GRACE. MSc Thesis, University of Twente, Enschede, The NetherlandsGoogle Scholar
  39. Quinte Conservation (2013) Low water conditions. http://quinteconservation.ca/site/index.php?option=com_content&task=view&id=57&Itemid=74. Accessed 1 November 2015
  40. Rodell M (2012) Satellite gravimetry applied to drought monitoring. In: Remote sensing of drought: innovative monitoring approaches. CRC, Boca Raton, FLGoogle Scholar
  41. Rodell M, Famiglietti JS (2001) An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 37(5):1327–1339CrossRefGoogle Scholar
  42. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll E (2004) The Global Land Data Assimilation System. Bull Am Meteorol Soc. doi: 10.1175/bams-85-3-381
  43. Rodell M, Beaudoing HK, NASA/GSFC/HSL (2007a) GLDAS Noah Land Surface Model L4 Monthly 1.0 × 1.0 degree, version 001. Goddard Earth Sciences Data and Information Services Center, Greenbelt, MDGoogle Scholar
  44. Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007b) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J. doi: 10.1007/s10040-006-0103-7
  45. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature. doi: 10.1038/nature08238
  46. Rodell M, Famiglietti JS, Scanlon BR (2010) Realizing the potential of satellite gravimetry for hydrology. Second GRACE Hydrology workshop; Austin, Texas, 4 November 2009. Eos Trans Am Geophys Union. doi: 10.1029/2010eo100008
  47. Salas JD, Delleur JW, Yevjevich V, Lane WL (1980) Applied modeling of hydrologic times series. Water Resources, Littleton, COGoogle Scholar
  48. Sanford BV, Arnott RWC (2009) Figure 3. Geological map of eastern Ontario, western Quebec, and northern New York state. In: Natural Resources Canada. http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/08e49e93-87da-584f-b7d3-1c8ebd07e520.html. Accessed 22 November 2015
  49. Simpson H (2015) Understanding groundwater factsheet. In: OMAFRA; Queen’s Printer Ontario. http://www.omafra.gov.on.ca/english/engineer/facts/15-041.htm. Accessed 27 April 2017
  50. Sly PG, Prior JW (1984) Late glacial and postglacial geology in the Lake Ontario basin. Can J of Earth Sci 21:802–821. doi: 10.1139/e84-087 CrossRefGoogle Scholar
  51. Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains aquifer (USA). Geophys Res Lett. doi: 10.1029/2007gl030139
  52. Swenson SC (2012) GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA.  http://dx.doi.org/10.5067/TELND-NC005. Accessed 21 January 2016
  53. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett. doi: 10.1029/2005gl025285
  54. Tapley BD, Bettadpur S, Ries J, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science. doi: 10.1126/science.1099192
  55. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02: an improved earth gravity field model from GRACE. J Geod. doi: 10.1007/s00190-005-0480-z
  56. Tregoning P, McClusky S, van Dijk AIJM, Crosbie RS, Peña-Arancibia JL (2012) Assessment of GRACE satellites for groundwater estimation in Australia. Australian Government, National Water Commission, Turner, AustraliaGoogle Scholar
  57. University of Texas Centre for Space Research (2015) GRACE Tellus Release 05 Land Data. ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/ascii. Accessed November 22 2015
  58. Werth S, Guntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int. doi: 10.1111/j.1365-246x.2009.04355.x
  59. Yeh PJ-F, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE). Water Resour Res. doi: 10.1029/2006wr005374
  60. Yirdaw SZ, Snelgrove KR, Agboma CO (2008) GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian prairie. J Hydrol. doi: 10.1016/j.jhydrol.2008.04.004
  61. Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process. doi: 10.1002/hyp.1095
  62. Zheng Q (2016) GRACE ‘months’. ftp://podaac.jpl.nasa.gov/allData/tellus/L3/docs/GraceMonths.html. Accessed 27 April 2017
  63. Zwiers FW, Storch H Von (2001) Statistical analysis in climate research, 1st edn. Cambridge University Press, Cambridge, UKGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ellen Hachborn
    • 1
    • 2
    Email author
  • Aaron Berg
    • 3
  • Jana Levison
    • 1
  • Jaison Thomas Ambadan
    • 3
  1. 1.School of EngineeringUniversity of GuelphGuelphCanada
  2. 2.Computational Hydraulics InternationalGuelphCanada
  3. 3.Department of GeographyUniversity of GuelphGuelphCanada

Personalised recommendations