Hydrogeology Journal

, Volume 25, Issue 7, pp 2049–2065 | Cite as

Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers

  • Tianming Huang
  • Zhonghe Pang
  • Jilai Liu
  • Jinzhu Ma
  • John Gates
Report

Abstract

Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr−1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.

Keywords

China Groundwater recharge/water budget Unsaturated zone Groundwater age Piston flow 

Mécanisme de recharge des eaux souterraines dans une zone tabulaire intégrée du plateau de Loess, nord de la Chine: aperçu des traceurs environnementaux

Résumé

L’évaluation des caractéristiques de la recharge des eaux souterraines (taux de recharge, historique, mécanismes (piston et écoulement préférentiel)) et de l’âge des eaux souterraines dans les environnements semi-arides demeure un front de recherche difficile mais néanmoins important. De telles évaluations sont particulièrement importantes lorsque la zone non saturée (ZNS) est. épaisse et que le taux de recharge est. limité. Cette étude combine les évaluations de l’épaisse ZNS avec celles de la zone saturée et utilize des traceurs multiples, tels que Cl, NO3, Br, 2H, 18O, 13C, 3H et 14C, pour étudier les caractéristiques de la recharge des eaux souterraines dans une zone tabulaire intégrée dans le Plateau de Loess en Chine, où l’infiltration des précipitations est. la seule source de recharge pour les aquifères superficiels. Les résultats indiquent que la recharge diffuse sous les cultures, principale occupation des sols de la zone d’étude, est. de 55 à 71 mm par an à partir des bilans de chlorures dans les profils de sol. La durée nécessaire pour que les précipitations annuelles atteignent le niveau piézométrique est. de 160 à 400 ans. L’eau souterraine est. associée à une eau pré-moderne et à une eau fossile, avec un âge déterminé au 14C corrigé compris entre 136 à 23,412 années. La majeure partie de l’eau qui finalement constitue la recharge s’infiltre entre juillet et septembre. Les concentrations en Cl et NO3 dans la partie supérieure de la ZNS sont considérablement plus élevées que dans la partie profonde de la ZNS et dans l’eau souterraine superficielle à cause des activités anthropiques récentes. L’eau souterraine superficielle n’est. pas encore à l’équilibre hydraulique avec les conditions aux limites actuelles proches de la surface. Le matériel homogène de la ZNS et l’âge relativement vieux des eaux souterraines impliquent que l’écoulement de type piston est. le mécanisme de recharge dominant pour les aquifères superficiels dans la zone tabulaire.

Mecanismo de recarga del agua subterránea en una meseta integrada del Loess Plateau, norte de China: conocimientos a partir de trazadores ambientales

Resumen

La evaluación de las características de la recarga del agua subterránea (tasa de recarga, historia, mecanismos (flujo pistón y preferencial)) y la edad del agua subterránea en ambientes semiáridos sigue siendo un límite difícil pero importante para la investigación. Tales evaluaciones son particularmente importantes cuando la zona no saturada (UZ) es potente y la velocidad de recarga es limitada. Este estudio combinó evaluaciones de una potente UZ con aquellas de la zona saturada y se usaron múltiples trazadores, como Cl, NO3, Br, 2H, 18O, 13C, 3H y 14C, para estudiar las características de la recarga del agua subterránea en una meseta integrada de loess en el Loess Plateau, China, donde la infiltración de la precipitación es la única fuente de recarga para el agua subterránea poco profunda. Los resultados indican que la recarga difusa debajo de los cultivos, como el principal uso de la tierra del área de estudio, es de 55–71 mm año−1 basado en el balance de masa de cloruro en los perfiles de suelo. El tiempo requerido para que la precipitación anual llegue a la capa freática es de 160–400 años. El agua subterránea es toda agua pre-moderna y agua fósil, con edades corregidas de 14C que van desde 136 a 23,412 años. La mayor parte del agua que eventualmente se convierte en recarga se infiltró originalmente en julio-septiembre. El contenido de Cl y NO3 en la UZ superior son considerablemente más altos que los de la UZ profunda y del agua subterránea somera debido a las actividades humanas recientes. El agua subterránea poco profunda no ha estado en equilibrio hidráulico con las actuales condiciones del límite cercano a la superficie. El material homogéneo de la UZ y la edad del agua subterránea relativamente antiguo implican que el flujo pistón es el mecanismo dominante para la recarga del agua subterránea poco profunda en la meseta.

基于环境示踪剂的黄土塬区地下水补给机制研究

摘要

评价半干旱地区地下水补给特征(补给量、补给历史和补给机制,如活塞流和捷径流)和地下水年龄虽比较困难,但仍是一个重要的研究前沿,特别对于包气带较厚和补给量有限的地区。本文将巨厚包气带和饱和带结合起来,利用多种环境示踪剂,如Cl、NO3Br2H、18O、13C、3H14C,研究了黄土高原某典型黄土塬区地下水补给特征,其降水入渗是该塬区浅层地下水的唯一补给来源。结果显示作为区域主要的土地利用类型,在农田条件下基于包气带氯质量平衡方法确定出补给量为55–71 mm yr−1。年降水入渗到地下水水位的时间在160年到400年。地下水和泉水均是次现代水或古水(不含氚),14C校正年龄在13623,412年。地下水主要受79月份降水补给。包气带浅部ClNO3含量显著高于包气带深部和潜水中的含量,主要受近期人类活动的影响。浅层地下水尚未与目前近地表过程达到水力平衡。黄土均匀的土壤质地特征及相对较老的地下水年龄揭示均匀的活塞流入渗是黄土塬区浅层地下水补给的主要方式。

Mecanismo de recarga das águas subterrâneas em um planalto integrado do Platô Loesse, no norte da China: conhecimentos a partir de traçadores ambientais

Resumo

Avaliar as características da recarga das águas subterrâneas (taxa de recarga, histórico, mecanismo (fluxo de pistão e preferencial)) e a idade das águas subterrâneas em ambientes semiáridos continua sendo uma fronteira de pesquisa difícil, porém importante. Tais avaliações são particularmente importantes quando a zona não saturada (ZNS) é espessa e a taxa de recarga limitada. Esse estudo combinou avaliações da ZNS espessa com aquelas de zona saturada e utilizou traçadores múltiplos, como Cl, NO3, Br, 2H, 18O, 13C, 3H e 14C, para estudar as características da recarga das águas subterrâneas em um planalto loesse integrado no Platô Loesse, China, onde a infiltração da precipitação é a única fonte de recarga para as águas subterrâneas rasas. Os resultados indicam que a recarga difusa sob os cultivos, como principal uso da terra na área de estudo, é 55–71 mm ano−1 baseado no balanço de massa de cloreto dos perfis de solo. O período de tempo necessário para a precipitação anual atingir o lençol freático é de 160–400 anos. As águas subterrâneas são todas águas pré-moderna e paleolítica, com idade corrigida por 14C atingindo de 136 a 23,412 anos. A maioria da água que eventualmente se tornam recarga infiltrou-se originalmente em julho-setembro. Os conteúdos de Cl e NO3 na ZNS superior são consideravelmente maiores que na ZNS mais profunda e águas subterrâneas rasas por causa das atividades humanas recentes. As águas subterrâneas rasas não estão em equilíbrio hidráulico com as condições de fronteira próxima a superfície. O material homogêneo da ZNS e a idade das águas subterrâneas relativamente velhas implicam que o fluxo de pistão é o mecanismo de recarga dominante para as águas subterrâneas rasas no planalto.

Supplementary material

10040_2017_1599_MOESM1_ESM.pdf (1 mb)
ESM 1(PDF 1074 kb)

References

  1. Allison GB, Hughes MW (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust J Soil Res 16:181–195CrossRefGoogle Scholar
  2. Allison GB, Cook PG, Barnett SR, Walker GR, Jolly ID, Hughes MW (1990) Land clearance and river salinisation in the western Murray Basin, Australia. J Hydrol 119:1–20CrossRefGoogle Scholar
  3. An Z, Kukla GJ, Porter SC, Xiao J (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quatern Res 36:29–36CrossRefGoogle Scholar
  4. Aravena R, Schiff SL, Trumbore SE, Dillon PI, Elgood R (1992) Evaluating dissolved inorganic carbon cycling in a forested lake watershed using carbon isotopes. Radiocarbon 34:636–645CrossRefGoogle Scholar
  5. Baran N, Richert J, Mouvet C (2007) Field data and modelling of water and nitrate movement through deep unsaturated loess. J Hydrol 345:27–37CrossRefGoogle Scholar
  6. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179CrossRefGoogle Scholar
  7. Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405CrossRefGoogle Scholar
  8. Chen Z, Qi J, Xu J, Xu J, Ye H, Nan Y (2003) Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain. Appl Geochem 18:997–1009CrossRefGoogle Scholar
  9. Chen H, Shao M, Li Y (2008) Soil desiccation in the Loess Plateau of China. Geoderma 143:91–100CrossRefGoogle Scholar
  10. Chen J, Liu X, Wang C, Rao W, Tan H, Dong H, Sun X, Wang Y, Su Z (2012) Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environ Earth Sci 66:505–517CrossRefGoogle Scholar
  11. Cheng L, Liu W, Li Z, Chen J (2014) Study of soil water movement and groundwater recharge for the loess tableland using environmental tracers. Trans ASABE 57:23–30Google Scholar
  12. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 ppGoogle Scholar
  13. Currell MJ, Cartwright I, Bradley DC, Han D (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol 385:216–229CrossRefGoogle Scholar
  14. Dafny E, Šimunek J (2016) Infiltration in layered loessial deposits: revised numerical simulations and recharge assessment. J Hydrol 538:339–354CrossRefGoogle Scholar
  15. Dettinger MD (1989) Reconnaissance estimates of natural recharge to desert basins in Nevada, USA, by using chloride-balance calculations. J Hydrol 106:55–78CrossRefGoogle Scholar
  16. EANET-Acid Deposition Monitoring Network in East Asia (2017) EANET data on the acid deposition in the East Asian region. http://www.eanet.asia. Accessed Jan 2017
  17. Edmunds WM (2009) Geochemistry’s vital contribution to solving water resource problems. Appl Geochem 24:1058–1073CrossRefGoogle Scholar
  18. Edmunds WM, Gaye CB (1997) Naturally high nitrate concentrations in groundwaters from the Sahel. J Environ Qual 26:1231–1239CrossRefGoogle Scholar
  19. Edmunds WM, Shand P (2008) Natural groundwater quality. Wiley, New York 488 ppCrossRefGoogle Scholar
  20. Edmunds WM, Walton NRG (1980) A geochemical and isotopic approach to recharge evaluation in semi–arid zones: past and present. In: Fontes JC (ed) Arid-zone hydrology: investigations with isotope techniques. Proceedings of Advisory Group Meeting, Vienna, Nov 1978, pp 47–68Google Scholar
  21. Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, north West China. Appl Geochem 21:2148–2170CrossRefGoogle Scholar
  22. El Etreiby F, Laudelout H (1988) Movement of nitrite through a loess soil. J Hydrol 97:213–224CrossRefGoogle Scholar
  23. Fan J, Hao M, Malhi SS (2010) Accumulation of nitrate-N in the soil profile and its implications for the environment under dryland agriculture in northern China: a review. Can J Soil Sci 90:429–440CrossRefGoogle Scholar
  24. Feth JH (1981) Chloride in natural continental water: a review. US Geol Surv Water Suppl Pap 2176, 30 ppGoogle Scholar
  25. Fonts J-C, Gainier JM (1979) Determination of initial 14C activity of total dissolved carbon: a review of existing models and a new approach. Water Resour Res 15:399–413CrossRefGoogle Scholar
  26. Gates JB, Böhlke JK, Edmunds WM (2008a) Ecohydrological factors affecting nitrate concentrations in a phreatic desert aquifer in northwestern China. Environ Sci Technol 42:3531–3537CrossRefGoogle Scholar
  27. Gates JB, Edmunds WM, Ma J, Scanlon BR (2008b) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910CrossRefGoogle Scholar
  28. Gates JB, Scanlon BR, Mu X, Zhang L (2011) Impacts of soil conservation on groundwater recharge in the semi-arid loess plateau, China. Hydrogeol J 19:865–875CrossRefGoogle Scholar
  29. Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2:255–266CrossRefGoogle Scholar
  30. Gillon M, Barbecot F, Gibert E, Corcho Alvarado JA, Marlin C, Massault M (2009) Open to closed system transition traced through the TDIC isotopic signature at the aquifer recharge stage: implications for groundwater 14C dating. Geochim Cosmochim Acta 73:6488–6501CrossRefGoogle Scholar
  31. Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB (2016) The global volume and distribution of modern groundwater. Nat Geosci 9:161–167CrossRefGoogle Scholar
  32. Goni IB, Fellman E, Edmunds WM (2001) Rainfall geochemistry in the Sahel region of northern Nigeria. Atmos Environ 35:4331–4339CrossRefGoogle Scholar
  33. Heller F, Liu TS (1982) Magnetostratigraphical dating of loess deposits in China. Nature 300:431–433CrossRefGoogle Scholar
  34. Herczeg AL, Leaney FW (2011) Review: Environmental tracers in arid-zone hydrology. Hydrogeol J 19:17–29CrossRefGoogle Scholar
  35. Hou G, Zhang M (2004) Groundwater resources and their sustainable utilization in the Ordos Basin. Shaanxi Science and Technology Press, Xi’an, China, 467 ppGoogle Scholar
  36. Huang T (2010) Study on groundwater recharge in typical loess–plains in the Loess Plateau of China. Doctoral Thesis, Institute of Geology and Geophysics, Chinese Academy of Sciences, BeijingGoogle Scholar
  37. Huang T, Pang Z (2010) Changes in groundwater induced by water diversion in the lower Tarim River, Xinjiang Uygur, NW China: evidence from environmental isotopes and water chemistry. J Hydrol 387:188–201CrossRefGoogle Scholar
  38. Huang T, Pang Z (2011) Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeol J 19:177–186CrossRefGoogle Scholar
  39. Huang T, Pang Z, Edmunds WM (2013a) Soil profile evolution following land-use change: implications for groundwater quantity and quality. Hydrol Process 27:1238–1252CrossRefGoogle Scholar
  40. Huang T, Pang Z, Yuan L (2013b) Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: baseline and factors controlling its transport and fate. Environ Earth Sci 70:145–156CrossRefGoogle Scholar
  41. Huang T, Yang S, Liu J (2016a) Using soil profile to assess groundwater recharge and effect of land-use change in a rain-fed agricultural area. Fresenius Environ Bull 25:862–873Google Scholar
  42. Huang T, Yang S, Liu J, Li Z (2016b) How much information can soil solute profiles reveal about groundwater recharge? Geosci J 20:495–502CrossRefGoogle Scholar
  43. Huang T, Pang Z, Liu J, Yin L, Edmunds WM (2017a) Groundwater recharge in an arid grassland as indicated by soil chloride profile and multiple tracers. Hydrol Process 31:1047–1057CrossRefGoogle Scholar
  44. Huang T, Pang Z, Li J, Xiang Y, Zhao Z (2017b) Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China. Hydrogeol J. doi:10.1007/s10040-017-1534-z Google Scholar
  45. IAEA (2009) Water isotope system for data analysis, visualization, and electronic retrieval (WISER). http://www.iaea.org/water/. Accessed Dec 2009
  46. Johnson DW, Lindberg SE (1992) Atmospheric deposition and forest nutrient cycling: a synthesis of the integrated forest study. Springer, New York, 707 ppCrossRefGoogle Scholar
  47. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2016) Review on soil water isotope-based groundwater recharge estimations. Hydrol Process 30:2817–2834CrossRefGoogle Scholar
  48. Leaney FW, Herczeg AL, Walker GR (2003) Salinization of a fresh palaeo-ground water resource by enhanced recharge. Ground Water 41:84–92CrossRefGoogle Scholar
  49. Li F, Cheng S, Lin S (2007) The dry indexes of spring drought of the loess plateau in Gansu Province. J Arid Land Resour Environ 21(9):89–92Google Scholar
  50. Li J, Pang Z, Froehlich K, Huang T, Kong Y, Song W, Yun H (2015) Paleo-environment from isotopes and hydrochemistry of groundwater in east Junggar Basin, Northwest China. J Hydrol 529:650–661CrossRefGoogle Scholar
  51. Lin R, Wei K (2006) Tritium profiles of pore water in the Chinese loess unsaturated zone: implications for estimation of groundwater recharge. J Hydrol 328:192–199CrossRefGoogle Scholar
  52. Liu TS (1985) Loess and the environment. Science Press, Beijing, 481 ppGoogle Scholar
  53. Liu J, Chen Z, Zhang Z, Fei Y, Zhang F, Chen J, Wang Z (2009) Estimation of natural groundwater recharge in the Hutuo River alluvial-proluvial fan using environmental tracers. Geol Sci Technol Inform 28(6):114–118Google Scholar
  54. Liu W, Yang H, Sun Y, Wang X (2011) δ13C values of loess total carbonate: a sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess plateau. Chem Geol 284:317–322CrossRefGoogle Scholar
  55. LPISST–Loess Plateau Integrated Scientific Survey Team (1990) Study on rational development and utilization of groundwater resources in the Loess Plateau area. Xueyuan Publishing House, Beijing, 93 ppGoogle Scholar
  56. Ma J, Ding Z, Edmunds WM, Gates JB, Huang T (2009) Limits to recharge of groundwater from Tibetan plateau to the Gobi Desert: implications for water management in the mountain front. J Hydrol 364:128–141CrossRefGoogle Scholar
  57. Mazor E (2004) Chemical and isotopic groundwater hydrology, 3rd edn. Dekker, New York, 453 ppGoogle Scholar
  58. Michel RL (2005) Tritium in the hydrologic cycle. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: present and future of a developing science. Springer, The Netherlands, pp 53–66CrossRefGoogle Scholar
  59. Ning Y, Liu W, An Z (2006) Variation of soil Δδ13C values in Xifeng loess-paleosol sequence and its paleoenvironmental implication. Chin Sci Bull 51:1350–1354CrossRefGoogle Scholar
  60. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a compute program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey, Reston, VA, 312 ppGoogle Scholar
  61. Pearson FJ, Hanshaw BB (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. In: Isot Hydrol 1970, IAEA Symp 129, Vienna, pp 271–286Google Scholar
  62. Qu H (1991) Assessment of groundwater resources in the arid and semiarid land of China. Science Press, Beijing, 457 ppGoogle Scholar
  63. Ronen D, Sorek S (2005) The unsaturated zone: a neglected component of nature. In: Nutzmann G, Viotti P, Aagaard P (eds) Reactive transport in soil and groundwater: processes and models. Springer, Berlin, pp 3–15CrossRefGoogle Scholar
  64. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370CrossRefGoogle Scholar
  65. Scanlon BR, Stonestrom DA, Reedy RC, Leaney FW, Gates J, Cresswell RG (2009) Inventories and mobilization of unsaturated zone sulfate, fluoride and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resour Res 45, W00A18. doi: 10.1029/2008WR006963
  66. Shen Z, Zhu Y, Zhong Y (1993) Hydrogeochemistry. Geological Publishing House, Beijing 189 ppGoogle Scholar
  67. Smith DB, Wearn PL, Richards HJ, Rowe PC (1970) Water movement in the unsaturated zone of high and low permeability strata by measuring natural tritium. In: Proceedings of the Symposium on Isotope Hydrology. IAEA, Vienna, pp 73–87Google Scholar
  68. Solomon DK, Cook PG (2000) 3H and 3He. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Springer, New York, pp 397–424CrossRefGoogle Scholar
  69. Tan H, Wen X, Rao W, Bradd J, Huang J (2016) Temporal variation of stable isotopes in a precipitation-groundwater system: implications for determining the mechanism of groundwater recharge in high mountain-hills of the Loess Plateau, China. Hydrol Process 30:1491–1505CrossRefGoogle Scholar
  70. Tang Y, Dai G, Wang X (1997) Groundwater recharge sources for loess tableland in the western Weibei. Northwest Geol 18(4):85–89Google Scholar
  71. Tian H, Wang W, Cao Y, Wang Z, Wang J (2007) Tritium age calculation of groundwater in Guanzhong Basin. J Xi’an Univ Sci Technol 27(3):382–385Google Scholar
  72. Tyler SW, Chapman JB, Conrad SH, Hammermeister DP, Blout DO, Miller JJ, Sully MJ, Ginanni JM (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years. Water Resour Res 32:1481–1499CrossRefGoogle Scholar
  73. Vogel JC (1967) Investigation of groundwater flow with radiocarbon. In: Isotopes in hydrology, IAEA, ViennaGoogle Scholar
  74. Vogel JC (1970) Carbon-14 dating of groundwater. In: Isotope hydrology, IAEA Symposium 129, Vienna, March 1970, pp 225–239Google Scholar
  75. Vogel JC (1993) Variability of carbon isotope fractionation during photosynthesis. In: Saugier B, Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic, San Diego, pp 29–46CrossRefGoogle Scholar
  76. Vogel JC, Urk HV (1975) Isotopic composition of groundwater in semi-arid regions of southern Africa. J Hydrol 25:23–36CrossRefGoogle Scholar
  77. Walker GR, Jolly ID, Cook PG (1991) A new chloride leaching approach to the estimation of diffuse recharge following a change in land use. J Hydrol 128:49–67CrossRefGoogle Scholar
  78. Walvoord MA, Stonestrom DA, Andraski BJ, Striegl RG (2004) Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert. Vadose Zone J 3:502–512CrossRefGoogle Scholar
  79. Walvoord MA, Striegl RG, Prudic DE, Stonestrom DA (2005) CO2 dynamics in the Amargosa Desert: fluxes and isotopic speciation in a deep unsaturated zone. Water Resour Res 41:W02006. doi:10.1029/2004WR003599 CrossRefGoogle Scholar
  80. Wan H, Liu W (2016) An isotope study (δ18O and δD) of water movements on the Loess Plateau of China in arid and semiarid climates. Ecol Eng 93:226–233CrossRefGoogle Scholar
  81. Wang J (1993) Shallow groundwater recharge time in loess tableland. Shaanxi Geol Sci Inform 18(1–2):25–28Google Scholar
  82. Wang R (2007) Study on interaction among precipitation, soil water and groundwater in a loess plain based on environmental isotopes. PhD Thesis, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Xi’an, ChinaGoogle Scholar
  83. Wei K, Lin R (1994) The influence of the monsoon climate on the isotopic composition of precipitation in China. Geochimica 23(1):33–41Google Scholar
  84. Winograd IJ, Robertson FN (1982) Deep oxygenated groundwater: anomaly or common occurrence? Science 216:1227–1230CrossRefGoogle Scholar
  85. Wood C, Cook PG, Harrington GA, Meredith K, Kipfer R (2014) Factors affecting carbon-14 activity of unsaturated zone CO2 and implications for groundwater dating. J Hydrol 519:465–475CrossRefGoogle Scholar
  86. Wu J, Zhang R, Yang J (1996) Analysis of rainfall–recharge relationships. J Hydrol 177:143–160CrossRefGoogle Scholar
  87. Xia Y, Wang N, Huang S, Yu X, Li X (2004) Hydrogeology condition analyse in the Qingyang. Internal report, City of Qingyang, Gansu, ChinaGoogle Scholar
  88. Xu Z, Zhao Y, Chen J (1993) The role of loess fissure in water flow in the unsaturated zone. J Changchun Univ Earth Sci 23(3):326–329Google Scholar
  89. Xue G (1995) Discussion on groundwater recharge in loess aquifer. Hydrogeol Eng Geol 34(1):38–39Google Scholar
  90. Yan T (1986) Discussion on recharge time of shallow groundwater in the Loess Plain of China. Hydrogeol Eng Geol 25(3):42–44Google Scholar
  91. Yang S, Ding Z, Li Y, Wang X, Jiang W, Huang X (2015) Warming-induced northwestward migration of the East Asian monsoon rain belt from the last glacial maximum to the mid-Holocene. P Natl Acad Sci USA 112:13178–13183CrossRefGoogle Scholar
  92. Zhang Z, Liu F, Zhang H, Liu E (1990) Study of soil water movement and recharge rate of rainfall infiltration in aeration zone of loess by measuring natural tritium. Hydrogeol Eng Geol 29(3):5–7Google Scholar
  93. Zhang W, Tian Z, Zhang N, Li X (1996) Nitrate pollution of groundwater in northern China. Agric Ecosyst Environ 59:223–231CrossRefGoogle Scholar
  94. Zhang H, Lu H, Gu Z, Li X, Zhang Z, Chen Y, Zhang W, Lü A, Zhao L (2015) Organic matter stable isotopic composition of loess deposits in semiarid to humid climate regions of China and the vegetation variations since the last interglaciation. Quat Sci 35:809–818Google Scholar
  95. Zheng F (2009) Analysis of hydrogeological setting and groundwater resources evaluation in Longdong region. MSc Thesis, Chang’an University, Xi’an, ChinaGoogle Scholar
  96. Zimmermann U, Munnich KO, Roether W (1967) Downward movement of soil moisture traced by means of hydrogen isotopes. In: Isotope techniques in the hydrologic cycle. Geophysical Monograph Series 11, American Geophysical Union, Washington, DC, pp 28–36Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tianming Huang
    • 1
    • 2
  • Zhonghe Pang
    • 1
    • 2
  • Jilai Liu
    • 3
  • Jinzhu Ma
    • 4
  • John Gates
    • 5
  1. 1.Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of Geoscience and Surveying EngineeringChina University of Mining TechnologyBeijingChina
  4. 4.Key Laboratory of Western China’s Environmental Systems (Ministry of Education)Lanzhou UniversityLanzhouChina
  5. 5.The Climate CorporationSan FranciscoUSA

Personalised recommendations