Skip to main content

Advertisement

Log in

Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China

Modélisation de la réponse des niveaux d’eau souterraine peu profonds à des scénarios climatiques combinés à des scénarios de dérivation d’eau dans la plaine de Beijing-Tianjin-Hebei, Chine

Modelado de la respuesta de los niveles someros de agua subterránea a escenarios combinados de clima y desvío de agua en la llanura de Beijing-Tianjin-Hebei, China

中国京津冀平原区浅层地下水水位对气候变化和调水活动的响应模拟

Modelando a resposta de níveis rasos de águas subterrâneas para cenários combinados de clima e transposição de águas na Planície de Pequim-Tianjin-Hebei, China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011–2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961–2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.

Résumé

Un modèle tri dimensionnel d’écoulement d’eau souterraine a été développé pour quantifier la variation temporelle des niveaux d’eau souterraine peu profonds en réponse à des scénarios climatiques combinés à des scénarios de dérivation d’eau pour les 40 prochaines années (2011–2050) dans la plaine de Beijing-Tinajin-Heibei, en Chine. L’eau souterraine joue un rôle clé dans l’alimentation en eau, mais la plaine de Jing-Jin-Ji fait face à une crise de l’eau. Les niveaux d’eau souterraine ont décliné de manière continue au cours des cinq dernières décennies (1961–2010) à cause de pompages intensifs et du changement climatique, ce qui a conduit à une diminution de la recharge. La mise en œuvre du projet de dérivation du Sud-au-Nord (SNWDP) fournira une occasion de reconstituer les ressources en eau souterraine. La réponse des niveaux piézométriques aux scénarios climatiques combinés aux scénarios de dérivation d’eau a été quantifiée en utilisant un modèle d’écoulement des eaux souterraines. Les impacts du changement climatique sont basés sur les ensembles de données des modèles multiples de la phase 3 du projet d’inter-comparaison des modèles couplés (CMIP3) du programme de recherche climatique à l’échelle mondiale (WCRP), pour les scénarios de gaz à effet de serre élevés (A2), moyens (A1B) et faibles (B1); les données de précipitations de CMIP3 ont été appliquées au modèle. Les résultats montrent que le changement climatique va ralentir le taux de diminution des niveaux piézométriques peu profonds pour les trois scénarios de changement climatique pour les 40 prochaines années par rapport au scénario de base. Cependant, les niveaux piézométriques peu profonds vont augmenter de manière significative (maximum de 6.71 m) en considérant des scénarios qui combinent le changement climatique et des restrictions d’exploitation des eaux souterraines. Les restrictions de l’exploitation des eaux souterraines pour la gestion des ressources en eau sont essentielles pour contrôler le déclin des niveaux d’eau dans la zone de Jing-Jin-Ji.

Resumen

Se implementó un modelo tridimensional de flujo de agua subterránea para cuantificar la variación temporal de los niveles someros de agua subterránea en respuesta a escenarios combinados de clima y desvío de agua durante los próximos 40 años (2011–2050) en la llanura de Beijing-Tianjin-Hebei (Jing-Jin-Ji ), China. El agua subterránea juega un papel clave para el abastecimiento de agua, pero la llanura de Jing-Jin-Ji se enfrenta a una crisis de agua. Los niveles del agua subterránea se han profundizado continuamente durante las últimas cinco décadas (1961–2010) debido a un bombeo intenso y al cambio climático, que ha dado lugar a una disminución en la recarga. La implementación del Proyecto de Desviación de Agua Sur-Norte (SNWDP) proporcionará una oportunidad para restaurar los recursos de agua subterránea. La respuesta de los niveles del agua subterránea a los escenarios combinados de clima y desvío del agua se ha cuantificado utilizando un modelo de flujo de agua subterránea. Los impactos del cambio climático se basaron en el conjunto de datos de modelos múltiples de la fase 3 (CMIP3) del World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project (CMIP3) para los futuros escenarios de gases de efecto invernadero alto (A2), medio (A1B) y bajo (B1); los datos de precipitación de CMIP3 se aplicaron en el modelo. Los resultados muestran que el cambio climático disminuirá el ritmo de profundización de los niveles someros del agua subterránea bajo los tres escenarios de cambio climático durante los próximos 40 años en comparación con el escenario base. Sin embargo, los niveles de agua subterránea someros aumentarán significativamente (máximo 6.71 m) al considerar los escenarios que combinan el cambio climático y las restricciones en la explotación de agua subterránea. Las restricciones en la explotación de agua subterránea para la gestión de los recursos hídricos son imprescindibles para controlar la profundización de los niveles en el área de Jing-Jin-Ji.

摘要

地下水资源是中国京津冀平原区重要的供水水源,地下水过度开采和气候变化引起的地下水补给量衰减,已经使得地下水水位在过去50年(1961–2010)呈现出持续下降态势,该地区面临着水危机,而南水北调工程的实施将为该区地下水涵养提供保障。为了分析京津冀平原区浅层地下水水位在气候变化和南水北调工程作用下的演化趋势,本文建立了京津冀平原区的地下水三维流动数值模型,模型中的降水演化数据依据了未来高(A1B)、中等(A2)和低(B1)排放三种情景下世界气候研究计划(WCRP)的耦合模式比较计划—阶段3 的多模式数据。模拟结果表明,相较于基准情景,未来40年(2011–2050),气候变化会缓减平原区浅层地下水位的下降速率;气候变化和调水限采的共同作用下,浅层地下水水位会明显回升(回升幅度可达6.71 m),可见,在实施调水工程的基础上,合理地限采地下水是控制京津冀地区地下水位下降及水资源科学管理的有效手段。

Resumo

Um modelo tridimensional de fluxo das águas subterrâneas foi implementado para quantificar a variação temporal de níveis rasos de água subterrânea em resposta a cenários combinados de clima e transposição de águas ao longo dos próximos 40 anos (2011–2050) na Planície de Pequim-Tianjin-Hebei (Jing-Jin-Ji), China. A água subterrânea desempenha um papel fundamental no abastecimento de água, entretanto a Planície Jing-Jin-Ji está enfrentado uma crise de água. Os níveis das águas subterrâneas diminuíram continuamente nas últimas cinco décadas (1961–2010) devido ao bombeamento extensivo e às mudanças climáticas, que resultaram na redução da recarga. A implementação do Projeto de Transposição de Águas Sul-para-Norte (PTASN) irá providenciar uma oportunidade de restaurar os recursos hídricos subterrâneos. A resposta dos níveis das água subterrâneas a cenários combinados de clima e transposição de água foram quantificados utilizando um modelo de fluxo da água subterrânea. Os impactos da mudança climática foram baseados no conjunto de dados multimodelos do Projeto de Intercomparação de Modelos Fase 3 (CMIP3) do Programa Mundial de Pesquisas Climáticas (WCRP) para cenários futuros de alta (A2), média (A1B), e baixa (B1) concentração de gases de efeito estufa; dados de precipitação do PIMF3 foram aplicados no modelo. Os resultados demonstram que a mudança climática ira retardar a taxa de diminuição dos níveis rasos de águas subterrâneas sob três cenários climáticos nos próximos 40 anos em comparação ao cenário base. Entretanto, os níveis rasos de águas subterrâneas irão subir significativamente (máximo de 6.71 m) quando se considera cenários que combinam mudança climática e restrições na explotação de água subterrânea. Restrições na explotação de águas subterrâneas, para a gestão dos recursos hídricos, são indispensáveis para controlar o declínio dos níveis na área de Jing-Jin-Ji.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bouraoui F, Vachaud G, Li L, Le Treut H, Chen T (1999) Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Clim Dynam 15(2):153–161. doi:10.1007/s003820050274

    Article  Google Scholar 

  • Burn DH (1994) Hydrologic effects of climatic change in west-central Canada. J Hydrol 160(1):53–70. doi:10.1016/0022-1694(94)90033-7

    Article  Google Scholar 

  • Cao G, Zheng C, Scanlon BR, Liu J, Li W (2013) Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour Res 49(1):159–175. doi:10.1029/2012WR011899

    Article  Google Scholar 

  • Chen W (1999) Groundwater in Hebei Province. Earthquake Publishing House, Beijing

    Google Scholar 

  • Chen Y, Takeuchi K, Xu C, Chen Y, Xu Z (2006) Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol Process 20(10):2207–2216. doi:10.1002/hyp.6200

    Article  Google Scholar 

  • Chen HR, Gao ZY, Wang SL et al (2012) Modeling on impacts of climate change and human activities variability on the shallow groundwater level using MODFLOW. J Hydraulic Eng 43(3):344–363

    Google Scholar 

  • Chung I, Kim N, Lee J, Sophocleous M (2010) Assessing distributed groundwater recharge rate using integrated surface water–groundwater modelling: application to Mihocheon watershed, South Korea. Hydrogeol J 18(5):1253–1264. doi:10.1007/s10040-010-0593-1

    Article  Google Scholar 

  • Crosbie RS, Mccallum JL, Walker GR, Chiew FHS (2010) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18(7):1639–1656. doi:10.1007/s10040-010-0625-x

    Article  Google Scholar 

  • Crosbie RS, Dawes WR, Charles SP, Mpelasoka FS, Aryal S, Barron O et al (2011) Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys Res Lett 38. doi:10.1029/2011gl047657

  • Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280. doi:10.1029/WR015i002p00269

    Article  Google Scholar 

  • Ding Y, Guoyu R, Shi G, Deliang C (2006) National assessment report of climate change (I): climate change in China and its future trend. Adv Clim Change Res 2(1):3–8

  • Ding Y, Ren G, Zhao Z, Xu Y, Luo Y, Li Q, Zhang J (2007) Detection, causes and projection of climate change over China: an overview of recent progress. Adv Atmos Sci 24(6):954–971. doi:10.1007/s00376-007-0954-4

  • Falkenmark M, Lundqvist J, Widstrand C (1989) Macro-scale water scarcity requires micro-scale approaches. Nat Resour Forum 13(4):258–267. doi:10.1111/j.1477-8947.1989.tb00348.x

    Article  Google Scholar 

  • Fei Y (2006) Evolution and conservation of groundwater in Hebei Plain to the south of Beijing and Tjianjin. Hohai University, Nanjing, China

    Google Scholar 

  • Fu G, Charles SP, Yu J, Liu C (2009) Decadal climatic variability, trends, and future scenarios for the North China Plain. J Clim 22(8):2111–2123. doi:10.1175/2008JCLI2605.1

    Article  Google Scholar 

  • Goderniaux P, Brouyère S, Blenkinsop S, Burton A, Fowler HJ, Orban P et al (2011) Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resour Res 47. doi:10.1029/2010wr010082

  • Hao X, Chen Y, Xu C, Li W (2008) Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years. Water Resour Manage 22(9):1159–1171. doi:10.1007/s11269-007-9218-4

    Article  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, The US Geological Survey modular ground-water model: the Ground-Water Flow Process. US Geological Survey, Reston, VA

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The US Geological Survey modular ground-water model: user guide to modularization concepts and the Ground-Water Flow Process. US Geological Survey, Reston, VA

    Google Scholar 

  • Holman IP (2006) Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Hydrogeol J 14(5):637–647. doi:10.1007/s10040-005-0467-0

    Article  Google Scholar 

  • Holman IP, Tascone D, Hess TM (2009) A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeol J 17(7):1629–1641. doi:10.1007/s10040-009-0457-8

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis—contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jackson CR, Meister R, Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. J Hydrol 399(1):12–28. doi:10.1016/j.jhydrol.2010.12.028

    Article  Google Scholar 

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol 338(3):237–250. doi:10.1016/j.jhydrol.2007.02.036

    Article  Google Scholar 

  • Kabiri R, Bai VR, Chan A (2015) Assessment of hydrologic impacts of climate change on the runoff trend in Klang Watershed, Malaysia. Environ Earth Sci 73(1):27–37. doi:10.1007/s12665-014-3392-5

    Article  Google Scholar 

  • Kendy E, Zhang Y, Liu C, Wang J, Steenhuis T (2004) Groundwater recharge from irrigated cropland in the North China Plain: case study of Luancheng County, Hebei Province, 1949–2000. Hydrol Process 18(12):2289–2302. doi:10.1002/hyp.5529

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J Hydrol 211(1):69–85. doi:10.1016/S0022-1694(98)00198-X

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB (2013) The uncertainty associated with estimating future groundwater recharge: a summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. J Hydrol 492:244–253. doi:10.1016/j.jhydrol.2013.03.043

    Article  Google Scholar 

  • Li X, Li G, Zhang Y (2014) Identifying major factors affecting groundwater change in the North China Plain with grey relational analysis. Water 6(6):1581–1600. doi:10.3390/w6061581

    Article  Google Scholar 

  • Liu C, Du W (1985) Areal reallocation of China’s water resources. GeoJournal 10(2):157–162. doi:10.1007/BF00150734

    Article  Google Scholar 

  • Liu C, Zheng H (2002) South-to-north water transfer schemes for China. Int J Water Resour Dev 18(3):453–471. doi:10.1080/0790062022000006934

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):633–650. doi:10.1029/2009RG000314

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1984) A modular three-dimensional finite-difference ground-water flow model. US Geological Survey, Reston, VA

  • Meng S, Fei Y, Zhang Z, Lei T, Qian Y, Li Y (2013) Research on spatial and temporal distribution of the precipitation infiltration amount over the past 50 years in North China Plain. Adv Earth Sci 28(8):923–929

    Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grab JC et al (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change 49(1–2):105–128. doi:10.1023/A:1010784727448

  • Mileham LRG, Taylor M, Tindimugaya TC, Thompson J (2009) The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrol Sci J 54(4):727–738. doi:10.1623/hysj.54.4.727

  • Murphy JM, Sexton DM, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430(7001):768–772. doi:10.1038/nature02771

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51. doi:10.1038/nature09364

  • Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Processes 16(6):1137–1150. doi:10.1002/hyp.1054

    Article  Google Scholar 

  • Qian W, Zhu Y (2001) Climate change in China from 1880 to 1998 and its impact on the environmental condition. Clim Change 50(4):419–444. doi:10.1023/A:1010673212131

    Article  Google Scholar 

  • Risbey JS, Hamza K, Marsden JS (2007) Use of climate scenarios to aid in decision analysis for interannual water supply planning. Water Resour Manage 21(6):919–932. doi:10.1007/s11269-006-9064-9

    Article  Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689. doi:10.1002/joc.1287

    Article  Google Scholar 

  • Scibek J, Allen D (2006) Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42(11), W11405. doi:10.1029/2005WR004742

    Article  Google Scholar 

  • Shao J, Li L, Cui Y, Zhang Z (2013) Groundwater flow simulation and its application in groundwater resource evaluation in the North China Plain, China. Acta Geol Sin 87(1):243–253. doi:10.1111/1755-6724.12045

    Article  Google Scholar 

  • Srivastava R (2013) Groundwater resources under a changing climate. J Indian Institute Sci 93(2):251–263

    Google Scholar 

  • Stoll S, Franssen HJH, Butts M, Kinzelbach W (2011) Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods. Hydrol Earth Syst Sci 15(1):21–38. doi:10.5194/hess-15-21-2011

    Article  Google Scholar 

  • Trenberth KE (1997) The use and abuse of climate models. Nature 386(6621):131–133. doi:10.1038/386131a0

    Article  Google Scholar 

  • Vano JA, Nijssen B, Lettenmaier DP (2015) Seasonal hydrologic responses to climate change in the Pacific Northwest. Water Resour Res 51(4):1959–1976. doi:10.1002/2014WR015909

    Article  Google Scholar 

  • Waibel MS, Gannett MW, Chang H, Hulbe CL (2013) Spatial variability of the response to climate change in regional groundwater systems: examples from simulations in the Deschutes Basin, Oregon. J Hydrol 486:187–201. doi:10.1016/j.jhydrol.2013.01.019

  • Wetterhall F, Halldin S, Xu CY (2005) Statistical precipitation downscaling in central Sweden with the analogue method. J Hydrol 306(1–4):174–190. doi:10.1016/j.jhydrol.2004.09.008

    Article  Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geog 21(4):530–548. doi:10.1177/030913339702100403

    Article  Google Scholar 

  • Xu X (2006) A study of numerical simulation for groundwater flow in the Beijing plain, China. University of Geosciences, Beijing

    Google Scholar 

  • Xu Y, Gao X, Giorgi F (2010) Upgrades to the REA method for producing probabilistic climate change projections. Clim Res 41(1):61–81. doi:10.3354/cr00835

    Article  Google Scholar 

  • Xue L, Li W, Yang W, Li J, Zhu X (2010) Numerical modelling on exploited shallow groundwater flow in the plain of Haihe River basin. Geotech Investig Surv 3:50–55

    Google Scholar 

  • Yang Y, Li X, Wang L, Li C, Liu Z (2011) Characteristics of the groundwater level regime and effect factors in the plain region of Tianjin City. Geolog Surv Res 34(4):313–320

    Google Scholar 

  • Yang Y, Guo-Min L, Yan-Hui D, Fan-Dong Z (2012) Influence of south to north water transfer on groundwater dynamic change in Beijing plain. Environ Earth Sci 65(4):1323–1331. doi:10.1007/s12665-011-1381-5

  • Ye A, Duan Q, Chu W, Xu J, Mao Y (2014) The impact of the south–north water transfer project (ctp)’s central route on groundwater table in the Hai River Basin, North China. Hydrol Process 28(23):5755–5768. doi:10.1002/hyp.10081

    Article  Google Scholar 

  • Zhang G, Fei Y, Wang J, Yan M et al (2012) Adaptation between irrigation and groundwater in North China. Science Press, Beijing

  • Zhang G, Fei Y, Liu C, Yan M, Wang J (2013) Adaptation between irrigation intensity and groundwater carrying capacity in North China Plain. Trans Chin Soc Agr Eng 29(1):1–10

    Google Scholar 

  • Zhang X, Pei D, Hu C (2003) Conserving groundwater for irrigation in the North China Plain. Irrigation Sci 21(4):159–166. doi:10.1007/s00271-002-0059-x

    Google Scholar 

  • Zhang Y, Li G (2013) Long-term evolution of cones of depression in shallow aquifers in the North China Plain. Water 5(2):677–697. doi:10.3390/w5020677

    Article  Google Scholar 

  • Zhang Y, Li G (2014) Influence of south-to-north water diversion on major cones of depression in North China Plain. Environ Earth Sci 71(9):3845–3853. doi:10.1007/s12665-013-2771-7

    Article  Google Scholar 

  • Zhang Z, Fei Y (2009) Atlas of sustainable utilization of groundwater resources in the North China Plain. SinoMaps Press, Beijing

    Google Scholar 

  • Zhang Z, Shen Z, Xue Y (2000) Groundwater environment evolution in the North China Plain. Geological Publishing House, Beijing

    Google Scholar 

  • Zhang Z, Fei YH, Chen ZY (2009) Investigation and assessment of sustainable utilization of groundwater resources in the North China Plain. Geological Publishing House, Beijing

  • Zhu L, Gong H, Li X, Li Y, Su X, Guo G (2013) Comprehensive analysis and artificial intelligent simulation of land subsidence of Beijing, China. Chin Geogra Sci 23(2):237–248. doi:10.1007/s11769-013-0589-6

    Article  Google Scholar 

Download references

Acknowledgements

This study was jointly funded by the Key Program for International S&T Cooperation Projects of China (2016yee0109600), Governmental Public Research Funds of China (No. DD20160144) and the Natural Science Foundation of Science and Technology Department in Hebei Province (No. D2016403044). We acknowledge several modelling groups for providing their data for the analysis, including the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project for collecting and archiving the model output and organizing the model data analysis activity. The data were collected, analysed, and provided by the National Climate Center.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ye, SY., Wei, AH. et al. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China. Hydrogeol J 25, 1733–1744 (2017). https://doi.org/10.1007/s10040-017-1574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1574-4

Keywords

Navigation