Hydrogeology Journal

, Volume 25, Issue 5, pp 1357–1375 | Cite as

Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

  • Syed Md. Touhidul Mustafa
  • Khodayar Abdollahi
  • Boud Verbeiren
  • Marijke Huysmans
Report

Abstract

Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

Keywords

Groundwater depletion Groundwater drought Groundwater recharge/water budget Over-abstraction Bangladesh 

Identification des facteurs influençant la sécheresse et le rabattement des eaux souterraines au nord-ouest du Bangladesh

Résumé

La sécheresse en eaux souterraines est un type spécifique de sécheresse hydrologique qui concerne les systèmes aquifères. Elle peut avoir un effet nuisible significatif sur les conditions socio-économiques, agricoles, et environnementales. L’étude de l’effet de différents facteurs climatiques et anthropiques sur la sécheresse en eaux souterraines fournit une information essentielle pour la planification et la gestion durable de ces ressources. Le but de cette étude est d’identifier les facteurs influençant la sécheresse en eau souterraine au nord-ouest du Bangladesh, pour comprendre les mécanismes de forçage. On propose une méthodologie en plusieurs étapes pour atteindre cet objectif. L’indice des précipitations normalisées (SPI) et l’indice de reconnaissance de la sècheresse (RDI) ont été employés pour mesurer le déficit agrégé entre la précipitation et la demande évaporatoire de l’atmosphère, c.-à-d. la sécheresse météorologique. L’influence de l’occupation du sol sur la sécheresse en eaux souterraines a été identifiée en calculant la distribution spatiale de la recharge en fonction de l’occupation du sol. La sécheresse en eaux souterraines est définie par une méthode de seuil. Les résultats prouvent que les déficits d’évapotranspiration et de précipitations déterminent la sécheresse météorologique qui montre une relation directe avec les déficits de recharge d’eaux souterraines. Les changements dans l’occupation du sol ont un léger effet sur la recharge d’eaux souterraines mais ils ne semblent pas être la cause principale du déclin du niveau (rabattement) des eaux souterraines dans le secteur d’étude. La profondeur des eaux souterraines et le déficit de niveau des eaux souterraines (sécheresse) augmente sans interruption montrant peu de corrélation avec les anomalies de sècheresse météorologique ou de recharge. La surexploitation des eaux souterraines pour l’irrigation semble être la cause principale du déclin du niveau des eaux souterraines dans le secteur d’étude. Une gestion efficace de l’irrigation est essentielle pour réduire la pression croissante sur les ressources en eaux souterraines et pour assurer la gestion durable de l’eau.

Identificación de los factores que influyen en la sequía y el agotamiento del agua subterránea en el noroeste de Bangladesh

Resumen

La sequía del agua subterránea es un tipo específico de sequía hidrológica que afecta a los cuerpos de agua subterránea. Puede tener un efecto adverso significativo en las condiciones socioeconómicas, agrícolas y ambientales. La investigación del efecto de los diferentes factores climáticos y antropogénicos sobre la sequía del agua subterránea proporcionan información esencial para la planificación y gestión sostenible de los recursos hídricos subterráneos. El objetivo de este estudio es identificar los factores que influyen en la sequía del agua subterránea en el noroeste de Bangladesh, para comprender los mecanismos forzantes. Para alcanzar este objetivo se propone una metodología en varias etapas. El índice de precipitación estandarizado (SPI) y el índice de reconocimiento de la sequía (RDI) se han utilizado para cuantificar el déficit total entre la precipitación y la demanda de evaporación de la atmósfera, es decir, la sequía meteorológica. La influencia de los patrones de cobertura del suelo en la sequía del agua subterránea se han identificado mediante el cálculo de la recarga de agua subterránea espacialmente distribuida en función de la cobertura del suelo. La sequía del agua subterránea se define mediante un método umbral. Los resultados muestran que la evapotranspiración y el déficit pluviométrico están determinando una sequía meteorológica que muestra una relación directa con los déficit de recarga del agua subterránea. El cambio en la cobertura del suelo tiene un pequeño efecto sobre la recarga del agua subterránea, pero no parece ser la principal causa de disminución (agotamiento) del nivel del agua subterránea en el área de estudio. La profundidad del agua subterránea y el déficit a nivel del agua subterránea (sequía) está aumentando continuamente con poca correlación con las sequías meteorológicas o las anomalías de recarga. La sobreexplotación del agua subterránea para el riego parece ser la principal causa de la disminución del nivel del agua subterránea en el área de estudio. La gestión eficaz del riego es esencial para reducir la creciente presión sobre los recursos hídricos subterráneos y garantizar una gestión sostenible del agua.

孟加拉西北部影响地下水短缺和枯竭因素的确定

摘要

地下水干旱是一种特别的有关地下水体的水干旱。它可对社会-经济、农业和环境状况产生负面影响。调查不同气候和人为因素对地下水干旱的影响能够为(地)下水资源的可持续规划和管理提供基本信息。本研究的目的就是确定影响孟加拉西北部地下水干旱的因素,了解其机理。为了达到这个目标,提出了一个多步骤方法。采用标准化的降水指数(SPI)及勘测干旱指数(RDI)对降水和大气蒸发需求,也就是气象干旱之间的聚合赤字进行了量化。通过计算作为土地盖层函数的空间分布的地下水补给,确定了土地覆盖层模式对地下水干旱的影响。通过阈值方法定义了地下水干旱。结果显示,蒸发蒸腾和降雨赤字决定了气象干旱,而气象干旱显示和地下水补给赤字有直接关系。土地盖层变化对地下水补给有很小的影响,但似乎不是研究区地下水位下降(枯竭)的主要原因。地下水深度和地下水位赤字(干旱)持续增加,与气象干旱和补给异常相关性很小。用于灌溉的地下水超采似乎是研究区地下水位下降的主要原因。有效灌溉管理对于降低地下水资源日益增长的压力以及确保可持续水管理至关重要。

Identificação de fatores de influência na estiagem e depleção das águas subterrâneas no noroeste de Bangladesh

Resumo

A estiagem das águas subterrâneas é um tipo específico de estiagem hidrológica que se refere aos aquíferos. Isso pode ter um significativo efeito adverso em condições socioeconômicas, agrícolas e ambientais. Investigar os efeitos de diferentes fatores climáticos e antropogênicos na estiagem das águas subterrâneas prove informações essenciais para um planejamento e gerenciamento sustentável dos recursos hídricos (subterrâneos). O objetivo desse estudo é identificar os fatores de influência na estiagem das águas subterrâneas no noroeste de Bangladesh, para entender os mecanismos forçantes. Uma metodologia multipasso é proposta para atingir esse objetivo. O índice de precipitação padronizado (SPI) e o índice de reparação de seca (RDI) foram usados para quantificar o déficit agregado entre a precipitação e a demanda evaporativa da atmosfera, p. ex. seca meteorológica. A influência dos padrões de cobertura da terra na estiagem das águas subterrâneas foi identificada pelo cálculo da recarga distribuída das águas subterrâneas como uma função da cobertura da terra. A estiagem das águas subterrâneas é definida por um método de intervalos. Os resultados mostram que os déficits na evapotranspiração e precipitação são secas meteorológicas determinantes que mostram uma relação direta com os déficits da recarga das águas subterrâneas. Mudanças na cobertura da terra tiveram um pequeno efeito na recarga das águas subterrâneas, mas não parecem ser a principal causa do declínio (depleção) das águas subterrâneas na área de estudo. A profundidade das águas subterrâneas e o déficit nos níveis das águas subterrâneas (estiagem) estão aumentando continuamente com uma pequena correlação com a seca meteorológica ou anomalias na recarga. Superexploração das águas subterrâneas para irrigação parece ser a principal causa do declínio dos níveis das águas subterrâneas na área de estudo. Gestão eficiente da irrigação é essencial para reduzir a pressão crescente nos recursos hídricos subterrâneos e garantir um gerenciamento sustentável da água.

Supplementary material

10040_2017_1547_MOESM1_ESM.pdf (494 kb)
ESM 1(PDF 493 kb)

References

  1. Abdollahi K (2015) Basin scale water balance modeling for variable hydrological regimes and temporal scales. PhD Dissertation, Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium, p 173Google Scholar
  2. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5:853–861CrossRefGoogle Scholar
  3. Aggarwal PK, Basu AR, Poreda RJ, Kulkarni KM, Froehlich K, Tarafdar SA, Ali M, Ahmed N, Hussain A, Rahman M, Ahmed SR (2000) A report on isotope hydrology of groundwater in Bangladesh: implications for characterization and mitigation of arsenic in groundwater. TC project BGD/8/016, International Atomic Energy Agency, ViennaGoogle Scholar
  4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Rome https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf. Accessed February 2017
  5. Asad-uz-Zaman M, Rushton KR (2006) Improved yield from aquifers of limited saturated thickness using inverted wells. J Hydrol 326:311–324CrossRefGoogle Scholar
  6. BADC (2002) Survey report on irrigation equipment and irrigated area in Boro/2001 season. Bangladesh Agricultural Development Corp, DhakaGoogle Scholar
  7. Batelaan O, De Smedt F (2007) GIS-based recharge estimation by coupling surface–subsurface water balances. J Hydrol 337:337–355CrossRefGoogle Scholar
  8. BBS (2009) Annual agricultural statistics 2008. Agricultural Wing, Bangladesh Bureau of Statistics, DhakaGoogle Scholar
  9. Bhuiyan C, Singh RP, Kogan FN (2006) Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int J Appl Earth Obs Geoinf 8:289–302CrossRefGoogle Scholar
  10. Chang TJ, Teoh CB (1995) Use of the kriging method for studying characteristics of ground water droughts. Water Resour Bull USA 31:1001–1007CrossRefGoogle Scholar
  11. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73Google Scholar
  12. Draper NR, Smith H (1966) Applied regression analysis. Wiley, New YorkGoogle Scholar
  13. Eheart JW, Tornil DW (1999) Low-flow frequency exacerbation by irrigation withdrawals in the agricultural Midwest under various climate change scenarios. Water Resour Res 35:2237–2246CrossRefGoogle Scholar
  14. Eltahir EA, Yeh PJ-F (1999) On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour Res 35:1199–1217CrossRefGoogle Scholar
  15. Faisal IM, Parveen S, Kabir MR (2005) Sustainable development through groundwater management: a case study on the Barind Tract. Int J Water Resour Dev 21:425–435CrossRefGoogle Scholar
  16. FAO (2009b) ET0 calculator. Land and Water Digital Media Series (no. 36). Food and Agricultural Organization, Rome, ItalyGoogle Scholar
  17. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201CrossRefGoogle Scholar
  18. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Wiley, Chichester, UKGoogle Scholar
  19. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379CrossRefGoogle Scholar
  20. Habiba U, Shaw R, Takeuchi Y (2012) Farmer’s perception and adaptation practices to cope with drought: perspectives from northwestern Bangladesh. Int J Disaster Risk Reduct 1:72–84CrossRefGoogle Scholar
  21. Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S, Ahmed MF (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228:112–136CrossRefGoogle Scholar
  22. Herrera-Pantoja M, Hiscock KM (2008) The effects of climate change on potential groundwater recharge in Great Britain. Hydrol Process 22:73–86CrossRefGoogle Scholar
  23. Jahani CS, Ahmed M (1997) Flow of groundwater in the Barind area, Bangladesh: implication of structural framework. Geol Soc India Bull 50:743–752Google Scholar
  24. Kirby JM, Mainuddin M, Mpelasoka F, Ahmad MD, Palash W, Quadir ME, Shah-Newaz SM, Hossain MM (2016) The impact of climate change on regional water balances in Bangladesh. Clim Change 135(3–4):481–491Google Scholar
  25. Krüger A, Ulbrich U, Speth P (2001) Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios. Phys Chem Earth Part B 26:853–861CrossRefGoogle Scholar
  26. Lanen HAJV, Peters E (2000) Definition, effects and assessment of groundwater droughts. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Springer, Amsterdam, pp 49–61Google Scholar
  27. Li X, Li G, Zhang Y (2014) Identifying major factors affecting groundwater change in the North China Plain with grey relational analysis. Water 6:1581–1600CrossRefGoogle Scholar
  28. Loáiciga HA, Maidment DR, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227:173–194CrossRefGoogle Scholar
  29. Marsh T, Lees M (1994) The 1988–92 drought. Institute of Hydrology, Wallingford, UKGoogle Scholar
  30. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society Boston, MA, January 1993, pp 179–183Google Scholar
  31. Michael HA, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J 17:1561–1577CrossRefGoogle Scholar
  32. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216CrossRefGoogle Scholar
  33. Mustafa SMT, Shamsudduha M, Huysmans M (2016) Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh. EGU General Assembly 2016, 17–22 April 2016, Vienna, p 13111Google Scholar
  34. Peters E, Torfs P, Van Lanen HAJ, Bier G (2003) Propagation of drought through groundwater: a new approach using linear reservoir theory. Hydrol Process 17:3023–3040CrossRefGoogle Scholar
  35. Rahman MM, Shahid S (2004) Modeling groundwater flow for the delineation of wellhead protection area around a water-well at Nachole of Bangladesh. J Spatial Hydrol 4(1)Google Scholar
  36. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002CrossRefGoogle Scholar
  37. Schwartz FW, Ibaraki M (2011) Groundwater: a resource in decline. Elements 7:175–179CrossRefGoogle Scholar
  38. Shahid S (2009) Spatial assessment of groundwater demand in northwest Bangladesh. Int J Water 5:267–283CrossRefGoogle Scholar
  39. Shahid S, Behrawan H (2008) Drought risk assessment in the western part of Bangladesh. Nat Hazards 46:391–413CrossRefGoogle Scholar
  40. Shahid S, Hazarika MK (2010) Groundwater drought in the northwestern districts of Bangladesh. Water Resour Manag 24:1989–2006CrossRefGoogle Scholar
  41. Shamsudduha M, Chandler RE, Taylor RG, Ahmed KM (2009) Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrology and Earth System Sciences 13(12):2373–2385Google Scholar
  42. Shamsudduha M, Taylor RG, Ahmed KM, Zahid A (2011) The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol J 19:901–916CrossRefGoogle Scholar
  43. Shamsudduha M, Taylor RG, Chandler RE (2015) A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh. Water Resour Res 51:685–703CrossRefGoogle Scholar
  44. Tate EL, Gustard A (2000) Drought definition: a hydrological perspective. Springer, Heidelberg, GermanyGoogle Scholar
  45. Tigkas D (2008) Drought characterisation and monitoring in regions of Greece. Eur Water Manag 23:29–39Google Scholar
  46. Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21:821–833CrossRefGoogle Scholar
  47. Tsakiris G, Nalbantis I, Pangalou D, Tigkas D, Vangelis H (2008) Drought meteorological monitoring network design for the reconnaissance drought index (RDI). In: Proceedings of the 1st International Conference “Drought management: scientific and technological innovations”. Zaragoza, Spain, June 2008, Option Méditerranéennes series A, pp 12–14Google Scholar
  48. UNDP (1982) Groundwater survey: the hydrogeological conditions of Bangladesh (no. DP/UN/BGD-74-009/1). United Nation Development Programme, New YorkGoogle Scholar
  49. USGS (2003) Ground-water depletion across the nation. USGS Fact Sheet 103–03. US Geological Survey, Reston, VAGoogle Scholar
  50. Van Loon AF, Gleeson T, Clark J, Van Dijk AIJM, Stahl K, Hannaford J, Baldassarre GD, Teuling AJ, Tallaksen LM, Uijlenhoet R, Hannah DM, Sheffield J, Svoboda M, Verbeiren B, Wagener T, Rangecroft S, Wanders N, Van Lanen HAJ (2016a) Drought in the Anthropocene. Nat Geosci 9:89–91CrossRefGoogle Scholar
  51. Van Loon AF, Gleeson T, Clark J, Van Dijk AIJM, Stahl K, Hannaford J, Baldassarre GD, Teuling AJ, Tallaksen LM, Uijlenhoet R, Hannah DM, Sheffield J, Svoboda M, Verbeiren B, Wagener T, Rangecroft S, Wanders N, Van Lanen HAJ (2016b) Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol Earth Syst Sci 20:3631–3650. doi:10.5194/hess-20-3631-2016 CrossRefGoogle Scholar
  52. Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15:891–901CrossRefGoogle Scholar
  53. World Bank TW (2000) Bangladesh: climate change and sustainable development. The World Bank, Washington, DCGoogle Scholar
  54. Yevjevich VM (1967) An objective approach to definitions and investigations of continental hydrologic droughts. Hydrology papers 23, Colorado State University, Fort Collins, COGoogle Scholar
  55. Zomlot Z, Verbeiren B, Huysmans M, Batelaan O (2015) Spatial distribution of groundwater recharge and base flow: assessment of controlling factors. J Hydrol Reg Stud 4:349–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Hydrology and Hydraulic EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations