Skip to main content

Advertisement

Log in

Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data

Etude de la variabilité spatiale des flux verticaux d’eau à travers le lit d’une rivière, pour différentes morphologies de cours d’eau, en utilisant les données de température et de charge hydraulique

Investigación de la variabilidad espacial de los flujos verticales de agua a través de un lecho en morfologías características de una corriente usando datos de temperatura y de carga hidráulica

基于温度和水头法测试分析不同河流地貌河床垂直渗流量空间变化特性

Investigando a variabilidade espacial dos fluxos de água verticais através do leito de rio em morfologias de correntes distintas utilizando dados de temperatura e carga hidráulica

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Investigating the interaction of groundwater and surface water is key to understanding the hyporheic processes. The vertical water fluxes through a streambed were determined using Darcian flux calculations and vertical sediment temperature profiles to assess the pattern and magnitude of groundwater/surface-water interaction in Beiluo River, China. Field measurements were taken in January 2015 at three different stream morphologies including a meander bend, an anabranching channel and a straight stream channel. Despite the differences of flux direction and magnitude, flux directions based on vertical temperature profiles are in good agreement with results from Darcian flux calculations at the anabranching channel, and the Kruskal-Wallis tests show no significant differences between the estimated upward fluxes based on the two methods at each site. Also, the upward fluxes based on the two methods show similar spatial distributions on the streambed, indicating (1) that higher water fluxes at the meander bend occur from the center of the channel towards the erosional bank, (2) that water fluxes at the anabranching channel are higher near the erosional bank and in the center of the channel, and (3) that in the straight channel, higher water fluxes appear from the center of the channel towards the depositional bank. It is noted that higher fluxes generally occur at certain locations with higher streambed vertical hydraulic conductivity (K v) or where a higher vertical hydraulic gradient is observed. Moreover, differences of grain size, induced by stream morphology and contrasting erosional and depositional conditions, have significant effects on streambed K v and water fluxes.

Résumé

L’étude des relations nappe-rivière est la clé de compréhension des processus de la zone hyporhéique. Les flux verticaux d’eau à travers le lit d’un cours d’eau sont déterminés en utilisant les lois d’écoulement de Darcy et les profils verticaux de température dans les sédiments, pour évaluer les modalités et l’importance des relations nappe-rivière pour la rivière Beiluo, en Chine. Des mesures de terrain ont été réalisées en janvier 2015 pour trois sites avec une morphologie différente comprenant un méandre en coude, un chenal anastomosé, et un chenal rectiligne. Malgré les différences en termes de direction et d’importance des flux, les directions des flux basées sur les profils verticaux de température sont cohérentes avec les résultats des calculs basés sur la loi de Darcy pour le chenal anastomosé, et les tests de Kruskal-Wallis ne montrent pas de différences significatives entre les flux ascendants estimés, basés sur les deux méthodes, pour chaque site. Par ailleurs, les flux ascendants basés sur les deux méthodes montrent des distributions spatiales similaires dans le lit de la rivière, indiquant (1) que des flux d’eau plus importants se produisent pour le méandre en coude, entre le centre du chenal et la rive soumise à l’érosion, (2) que les flux d’eau sont plus importants pour le chenal anastomosé, près de la rive soumise à l’érosion et au centre du chenal, et (3) que pour le chenal rectiligne, des flux d’eau plus importants apparaissent entre le centre du chenal et la rive soumise aux dépôts. Il est noté que les flux les plus importants apparaissent généralement dans certaines zones où la conductivité hydraulique verticale (K v) du lit de la rivière est plus élevée, ou pour les zones où un gradient hydraulique vertical plus élevé est observé. De plus, des différences de granulométrie, liées à la morphologie du cours d’eau et aux conditions contrastées d’érosion et de dépôt, ont des effets significatifs sur le K v du lit du cours d’eau et sur les flux d’eau.

Resumen

Investigar la interacción del agua subterránea y el agua superficial es clave para comprender los procesos hiporreicos. Los flujos verticales de agua a través del lecho se determinaron usando cálculos de flujos darcianos y perfiles verticales de temperatura de sedimentos para evaluar el patrón y la magnitud de la interacción agua subterránea / agua de superficie en el río Beiluo, China. Las mediciones de campo se realizaron en enero de 2015 en tres morfologías con diferentes flujos, incluyendo una curva de meandro, un canal entrelazado y un canal recto. A pesar de las diferencias de dirección y magnitud del flujo, las direcciones de flujo basadas en perfiles de temperatura verticales están en una buena concordancia con los resultados de los cálculos de flujo darciano en el canal entrelazado y los ensayos de Kruskal-Wallis no muestran diferencias significativas entre la estimación de los flujos ascendentes en base a los dos métodos en cada sitio. Además, los flujos ascendentes basados en los dos métodos muestran distribuciones espaciales similares en el lecho del río, lo que indica (1) que los flujos de agua más altos en la curva del meandro ocurren desde el centro del canal hacia el banco erosivo, (2) que los flujos de agua en el canal entrelazado son más altos cerca del banco erosivo y en el centro del canal y (3) que en el canal recto, los flujos de agua más altos aparecen desde el centro del canal hacia el banco de sedimentación. Se observa que los flujos más altos generalmente ocurren en ciertos lugares con mayor conductividad hidráulica vertical (K v) del lecho o donde se observa un gradiente hidráulico vertical más alto. Además, las diferencias en el tamaño de los granos, inducidas por la morfología del curso y las condiciones contrastantes de erosión y sedimentación, tienen efectos significativos en el lecho K v y en los flujos de agua.

摘要

调查研究地下水和地表水之间的相互作用是深入理解潜流带过程的关键。于2015年1月,以中国北洛河三个不同河流地貌类型(弯曲河道、分叉河道和直河道)为研究对象,在河床上,采用竖管水头下降法对沉积物垂直渗透系数与垂直水力梯度进行原位测试,并通过达西定律计算河床垂直渗流量。同时,在渗透系数测试点位附近,采用不同深度温度同步测定技术,进行潜流带沉积物不同深度的温度原位测定,并基于一维稳态垂直热扩散对流方程计算河床垂直渗流量。通过以上两种方法研究北洛河地下水-地表水相互作用的补给方式和大小。结果表明:两种方法在垂直渗流量方向和大小的测试结果上存在不一致,但在分叉河道渗流量的方向较为一致,而且Kruskal-Wallis非参数检验表明在三种类型河道两种方法计算的上升流没有显著差异,也有相似的空间分布特征:在弯曲河道中间靠近侵蚀岸,渗流量较大;在分叉河道,靠近侵蚀岸和河道中间的渗流量较大;在直河道中间靠近沉积岸,渗流量较大。在每一类型的河道,渗流量较大的测试点位有较大的河床垂直渗透系数或垂直水力梯度。侵蚀沉积过程导致河道的侵蚀岸和沉积岸的沉积物具有不同的颗粒组成,进而影响河床垂直渗透系数和渗流量的变化。

Resumo

A investigação da interação entre águas subterrâneas e superficiais é chave para entender processos hiporreicos. Os fluxos de água verticais através do leito do rio foram determinados utilizando cálculos de fluxo Darcyano e perfis verticais da temperatura dos sedimentos para avaliar o padrão e magnitude da interação das águas subterrâneas/superficiais no Rio Beiluo, China. Medidas de campo foram obtidas em Janeiro de 2015 em três morfologias de corrente diferentes incluindo a curva do meandro, um canal anastamosado e um canal retilíneo. Apesar das diferenças de direção e magnitude de fluxo, direções de fluxo baseadas nos perfis de temperatura verticais têm boa concordância com os resultados dos cálculos de fluxo Darcyano no canal anastamosado, e os testes de Kruskalo-Wallis não demonstram diferenças significativas entre os fluxos ascendentes estimados nos dois métodos em cada local. Além disso, os fluxos ascendentes baseados nos dois métodos demonstram distribuição espacial similar no leito do rio, indicando (1) que os fluxos de água mais elevados nas curvas dos meandros ocorrem do centro do canal em direção ao banco erosivo, (2) que os fluxos de água no canal anastamosado são maiores próximos ao banco erosivo e no centro do canal, e (3) que no canal retilíneo, fluxos de água mais elevados aparecem no centro do canal em direção ao banco deposicional. É notável que os fluxos mais elevados geralmente ocorrem em certas localidades com condutividade hidráulica (K v) vertical no leito mais elevada ou onde um gradiente hidráulico mais elevado é observado. Além do mais, diferenças no tamanho da partícula, induzido pela morfologia da corrente e contrastando as condições erosivas e deposicionais, tem efeitos significantes na K v do leito do rio e nos fluxos de água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968. doi:10.1111/j.1745-6584.2005.00052.x

  • Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange. Hydrol Processes 23:2165–2177. doi:10.1002/hyp.7289

    Article  Google Scholar 

  • Anibas C, Buis K, Verhoeven R, Meire P, Batelaan O (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J Hydrol 397:93–104. doi:10.1016/j.jhydrol.2010.11.036

    Article  Google Scholar 

  • Arriaga MA, Leap DI (2004) Using solver to determine vertical groundwater velocities by temperature variations, Purdue University, Indiana, USA. Hydrogeol J 14:253–263. doi:10.1007/s10040-004-0381-x

    Article  Google Scholar 

  • Bartsch S, Frei S, Ruidisch M, Shope CL, Peiffer S, Kim B, Fleckenstein JH (2014) River-aquifer exchange fluxes under monsoonal climate conditions. J Hydrol 509:601–614. doi:10.1016/j.jhydrol.2013.12.005

    Article  Google Scholar 

  • Becker MW, Georgian T, Ambrose H, Siniscalchi J, Fredrick K (2004) Estimating flow and flux of groundwater discharge using water temperature and velocity.J Hydrol 296(1–4):221–233. doi:10.1016/j.jhydrol.2004.03.025

  • Bencala KE, Gooseff MN, Kimball BA (2011) Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resour Res 47(3). doi:10.1029/2010WR010066

  • Binley A, Ullah S, Heathwaite AL, Heppell C, Byrne P, Lansdown K, Trimmer M, Zhang H (2013) Revealing the spatial variability of water fluxes at the groundwater-surface water interface. Water Resour Res 49:3978–3992. doi:10.1002/wrcr.20214

    Article  Google Scholar 

  • Birkel C, Soulsby C, Irvine DJ, Malcolm I, Lautz LK, Tetzlaff D (2016) Heat-based hyporheic flux calculations in heterogeneous salmon spawning gravels. Aquat Sci 78(2):203–213. doi:10.1007/s00027-015-0417-4

    Article  Google Scholar 

  • Blaschke AP, Steiner KH, Schmalfuss R, Gutknecht D, Sengschmitt D (2003) Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. Int Rev Hydrobiol 88:397–413

    Article  Google Scholar 

  • Bredehoeft J, Papaopulos I (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1:325–328

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Bruno MC, Maiolini B, Carolli M, Silveri L (2009) Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy). Annal Limnol 45:157–170

  • Calver A (2001) Riverbed permeabilities: information from pooled data. Groundwater 39:546–553

    Article  Google Scholar 

  • Cardenas MB, Wilson JL, Zlotnik VA (2004) Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resour Res 40. doi:10.1029/2004wr003008

  • Cey EE, Rudolph DL, Parkin GW, Aravena R (1998) Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. J Hydrol 210:21–37. doi:10.1016/S0022-1694(98)00172-3

  • Chapman SW, Parker BL, Cherry JA, Aravena R, Hunkeler D (2007) Groundwater–surface water interaction and its role on TCE groundwater plume attenuation. J Contam Hydrol 91:203–232

    Article  Google Scholar 

  • Chen XH (2004) Streambed hydraulic conductivity for rivers in south-central Nebraska. J Am Water Resour Assoc 40:561–573

    Article  Google Scholar 

  • Chen XH, Song JX, Cheng C, Wang DM, Lackey SO (2009) A new method for mapping variability in vertical seepage flux in streambeds. Hydrogeol J 17:519–525. doi:10.1007/s10040-008-0384-0

    Article  Google Scholar 

  • Chen X, Dong W, Ou G, Wang Z, Liu C (2013) Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns. Hydrol Earth Syst Sci 17:2569–2579. doi:10.5194/hess-17-2569-2013

    Article  Google Scholar 

  • Conant B (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Groundwater 42:243–257. doi:10.1111/j.1745-6584.2004.tb02671.x

    Article  Google Scholar 

  • Constantz J, Stewart AE, Niswonger R, Sarma L (2002) Analysis of temperature profiles for investigating stream losses beneath ephemeral channels. Water Resour Res. 38:52-51–52-13. doi:10.1029/2001wr001221

  • Dujardin J, Anibas C, Bronders J, Jamin P, Hamonts K, Dejonghe W, Brouyère S, Batelaan O (2014) Combining flux estimation techniques to improve characterization of groundwater–surface-water interaction in the Zenne River, Belgium. Hydrogeol J 22:1657–1668. doi:10.1007/s10040-014-1159-4

    Article  Google Scholar 

  • Duque C, Müller S, Sebok E, Haider K, Engesgaard P (2015) Estimating groundwater discharge to surface waters using heat as a tracer in low flux environments: the role of thermal conductivity. Hydrol Processes. doi:10.1002/hyp.10568

    Google Scholar 

  • Essaid HI, Zamora CM, McCarthy KA, Vogel JR, Wilson JT (2008) Using heat to characterize streambed water flux variability in four stream reaches. J Environ Qual 37:1010–1023. doi:10.2134/jeq2006.0448

    Article  Google Scholar 

  • Fleckenstein J, Anderson M, Fogg G, Mount J (2004) Managing surface water–groundwater to restore fall flows in the Consumnes River. J Water Res Pl-ASCE 130(4):301–310. doi:10.1016/(ASCE)0733-9496(2004)130:4(301)

  • Flewelling SA, Herman JS, Hornberger GM, Mills AL (2012) Travel time controls the magnitude of nitrate discharge in groundwater bypassing the riparian zone to a stream on Virginia’s coastal plain. Hydrol Process 26:1242–1253. doi:10.1002/hyp.8219

  • Freeze RA, Cherry J (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 pp

  • Frei S, Lischeid G, Fleckenstein JH (2010) Effects of micro-topography on surface–subsurface exchange and runoff generation in a virtual riparian wetland: a modeling study. Adv Water Res 33:1388–1401. doi:10.1016/j.advwatres.2010.07.006

    Article  Google Scholar 

  • Gariglio FP, Tonina D, Luce CH (2013) Spatiotemporal variability of hyporheic exchange through a pool-riffle-pool sequence. Water Resour Res 49:7185–7204. doi:10.1002/wrcr.20419

    Article  Google Scholar 

  • Genereux DP, Leahy S, Mitasova H, Kennedy CD, Corbett DR (2008) Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J Hydrol 358:332–353. doi:10.1016/j.jhydrol.2008.06.017

    Article  Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of streambed topography on surface‐subsurface water exchange in mountain catchments. Water Resour Res 29:89–98

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Hester ET, Gooseff MN (2010) Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environ Sci Technol 44:1521–1525. doi:10.1021/es902988n

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. US Army Bull 36, Waterways Experiment Station, US Corps of Eng., Vicksburg, MI

  • Hyun Y, Kim H, Lee S-S, Lee K-K (2011) Characterizing streambed water fluxes using temperature and head data on multiple spatial scales in Munsan stream, South Korea. J Hydrol 402:377–387

    Article  Google Scholar 

  • Irvine DJ, Cranswick RH, Simmons CT, Shanafield MA, Lautz LK (2015) The effect of streambed heterogeneity on groundwater–surface water exchange fluxes inferred from temperature time series. Water Resour Res 51(1):198–212. doi:10.1002/2014WR015769

    Article  Google Scholar 

  • Jiang WW, Song JX, Zhang JL, Wang YY, Zhang N, Zhang XH, Long YQ, Li JX, Yang XG (2015) Spatial variability of streambed vertical hydraulic conductivity and its relation to distinctive stream morphologies in the Beiluo River, Shaanxi Province, China. Hydrogeol J 23:1617–1626. doi:10.1007/s10040-015-1288-4

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887. doi:10.5194/hess-10-873-2006

    Article  Google Scholar 

  • Kasahara T, Wondzell SM (2003) Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resour Res 39. doi:10.1029/2002WR001386

  • Käser DH, Binley A, Heathwaite AL, Krause S (2009) Spatio-temporal variations of hyporheic flow in a riffle-step-pool sequence. Hydrol Process 23(15):2138–2149. doi:10.1002/hyp.7317

  • Kennedy CD, Genereux DP, Corbett DR, Mitasova H (2009) Spatial and temporal dynamics of coupled groundwater and nitrogen fluxes through a streambed in an agricultural watershed. Water Resour Res 45. doi:10.1029/2008wr007397

  • Kennedy CD, Murdoch LC, Genereux DP, Corbett DR, Stone K, Pham P, Mitasova H (2010) Comparison of Darcian flux calculations and seepage meter measurements in a sandy streambed in North Carolina, United States. Water Resour Res 46. doi:10.1029/2009wr008342

  • Leek R, Wu JQ, Wang L, Hanrahan TP, Barber ME, Qiu HX (2009) Heterogeneous characteristics of streambed saturated hydraulic conductivity of the Touchet River, south eastern Washington, USA. Hydrol Process 23:1236–1246

    Article  Google Scholar 

  • Lewandowski J, Putschew A, Schwesig D, Neumann C, Radke M (2011) Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Sci Total Environ 409:1824–1835

    Article  Google Scholar 

  • Loheide SP, Gorelick SM (2006) Quantifying stream–aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories. Environ Sci Technol 40(10):3336–3341. doi:10.1021/es0522074

  • Malard F, Tockner K, Dole‐Olivier MJ, Ward J (2002) A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshw Biol 47:621–640

    Article  Google Scholar 

  • Malcolm IA, Youngson AF, Greig S, Soulsby C (2008) Hyporheic influences on spawning success. In: Sear D, DeVries P (eds) Salmon spawning habitat in rivers: physical controls, biological responses and approaches to remediation. American Fisheries Society, Symposium 65, Bethesda, pp 225–248

  • Merwade VM, Maidment DR, Goff JA (2006) Anisotropic considerations while interpolating river channel bathymetry. J Hydrol 331(3):731–741. doi:10.1016/j.jhydrol.2006.06.018

    Article  Google Scholar 

  • Packman AI, Marion A, Zaramella M, Chen C, Gaillard JF, Keane DT (2006) Development of layered sediment structure and its effects on pore water transport and hyporheic exchange. Water Air Soil Pollut Focus 6(5–6):433–442. doi:10.1007/s11267-006-9057-y

    Article  Google Scholar 

  • Rau GC, Andersen MS, McCallum AM, Acworth RI (2010) Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records. Hydrogeol J 18:1093–1110. doi:10.1007/s10040-010-0586-0

    Article  Google Scholar 

  • Roque AJ, Didier G (2006) Calculating hydraulic conductivity of fine-grained soils to leachates using linear expressions. Eng Geol 85(1):147–157

    Article  Google Scholar 

  • Rosenberry DO, Pitlick J (2009) Effects of sediment transport and seepage direction on hydraulic properties at the sediment–water interface of hyporheic settings. J Hydrol 373:377–391. doi:10.1016/j.jhydrol.2009.04.030

    Article  Google Scholar 

  • Saleem Z (1970) A computer method for pumping‐test analysis. Gound Water 8:21–24

    Article  Google Scholar 

  • Savant SA, Reible DD, Thibodeaux LJ (1987) Convective transport within stable river sediments. Water Resour Res 23:1763–1768

    Article  Google Scholar 

  • Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial heterogeneity of groundwater-streamwater interactions using multiple depth streambed temperature measurements at the reach scale. Hydrol Earth Syst Sci 10:849–859

  • Schmidt C, Conant B Jr, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347:292–307. doi:10.1016/j.jhydrol.2007.08.022

    Article  Google Scholar 

  • Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures: implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319. doi:10.1016/j.advwatres.2010.04.007

    Article  Google Scholar 

  • Sebok E, Duque C, Engesgaard P, Boegh E (2015) Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies: channel bend and straight channel. Hydrol Process 29:458–472. doi:10.1002/hyp.10170

    Article  Google Scholar 

  • Silliman SE, Ramirez J, McCabe RL (1995) Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J Hydrol 167:99–119

    Article  Google Scholar 

  • Smith JWN (2005) Groundwater-surface water interactions in the hyporheic zone. Environment Agency-Science Report SC030155/SR1, Bristol

  • Song JX, Chen XH, Cheng C, Summerside S, Wen FJ (2007) Effects of hyporheic processes on streambed vertical hydraulic conductivity in three rivers of Nebraska. Geophys Res Lett 34, L07409. doi:10.1029/2007gl029254

    Google Scholar 

  • Song JX, Jiang WW, Xu SF, Zhang GT, Wang LP, Wen M, Zhang B, Wang YY, Long YQ (2016) Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River, northwest China. Hydrol J: 1–14. doi:10.1007/s10040-016-1449-0

  • Stallman R (1965) Steady one‐dimensional fluid flow in a semi‐infinite porous medium with sinusoidal surface temperature. J Geophys Res 70:2821–2827

    Article  Google Scholar 

  • Storey RG, Howard KWF, Williams DD (2003) Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: a three-dimensional groundwater flow model. Water Resour Res 39. doi:10.1029/2002wr001367

  • Suzuki S (1960) Percolation measurements based on heat flow through soil with special reference to paddy fields. J Geophys Res 65:2883–2885

    Article  Google Scholar 

  • Swanson TE, Bayani Cardenas M (2010) Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnol Oceanogr 55(4):1741–1754. doi:10.4319/lo.2010.55.4.1741

    Article  Google Scholar 

  • Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah-Siakwan S, Kawashima S (1999) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1. an effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo Metropolitan Area, Japan. Water Resour Res 35:1507–1517. doi:10.1029/1999wr900009

    Article  Google Scholar 

  • Team RC (2016) R: a language and environment for statistical computing, Vienna, Austria,. https://www.r-project.org. Accessed 20 April 2016

  • Vandersteen G, Schneidewind U, Anibas C, Schmidt C, Seuntjens P, Batelaan O (2015) Determining groundwater-surface water exchange from temperature-time series: combining a local polynomial method with a maximum likelihood estimator. Water Resour Res 51:922–939. doi:10.1002/2014wr015994

    Article  Google Scholar 

  • Vaux W (1968) Intragravel flow and interchange of water in a streambed. US Fish Wildl Serv Fish Bull 66:479–489

    Google Scholar 

  • Winter TC (1998) Ground water and surface water: a single resource. Diane, Darby, PA

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant Nos. 51379175 51679200 and 51308457), Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20136101110001), Program for Key Science and Technology Innovation Team in Shaanxi Province (grant No. 2014KCT-27), The Hundred Talents Project of the Chinese Academy of Sciences (grant No. A315021406). We are especially grateful to the associate editor and three anonymous reviewers for their helpful suggestions, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxi Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jiang, W., Song, J. et al. Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data. Hydrogeol J 25, 1283–1299 (2017). https://doi.org/10.1007/s10040-017-1539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1539-7

Keywords

Navigation