Advertisement

Hydrogeology Journal

, Volume 25, Issue 4, pp 969–979 | Cite as

Drinking-water treatment, climate change, and childhood gastrointestinal illness projections for northern Wisconsin (USA) communities drinking untreated groundwater

  • Christopher K. Uejio
  • Megan Christenson
  • Colleen Moran
  • Mark Gorelick
Paper

Abstract

This study examined the relative importance of climate change and drinking-water treatment for gastrointestinal illness incidence in children (age <5 years) from period 2046–2065 compared to 1991–2010. The northern Wisconsin (USA) study focused on municipalities distributing untreated groundwater. A time-series analysis first quantified the observed (1991–2010) precipitation and gastrointestinal illness associations after controlling for seasonality and temporal trends. Precipitation likely transported pathogens into drinking-water sources or into leaking water-distribution networks. Building on observed relationships, the second analysis projected how climate change and drinking-water treatment installation may alter gastrointestinal illness incidence. Future precipitation values were modeled by 13 global climate models and three greenhouse-gas emissions levels. The second analysis was rerun using three pathways: (1) only climate change, (2) climate change and the same slow pace of treatment installation observed over 1991–2010, and (3) climate change and the rapid rate of installation observed over 2011–2016. The results illustrate the risks that climate change presents to small rural groundwater municipalities without drinking water treatment. Climate-change-related seasonal precipitation changes will marginally increase the gastrointestinal illness incidence rate (mean: ∼1.5%, range: −3.6–4.3%). A slow pace of treatment installation somewhat decreased precipitation-associated gastrointestinal illness incidence (mean: ∼3.0%, range: 0.2–7.8%) in spite of climate change. The rapid treatment installation rate largely decreases the gastrointestinal illness incidence (mean: ∼82.0%, range: 82.0–83.0%).

Keywords

USA Climate change Health Rainfall/runoff Municipal groundwater 

Traitement de l’eau potable, changement climatique, et projections des maladies gastro-intestinales chez l’enfant dans les collectivités du nord du Wisconsin (Etats-Unis d’Amérique) buvant de l’eau souterraine non traitée

Résumé

Cette étude a examiné l’importance relative du changement climatique et du traitement de l’eau potable pour l’incidence de la maladie gastro-intestinale chez les enfants (<5 ans) de la période 2046–2065 par rapport à 1991–2010. L’étude du nord du Wisconsin (Etats-Unis d’Amérique) a porté sur les municipalités qui distribuent de l’eau souterraine non traitée. Une analyse de séries chronologiques a d’abord quantifié les précipitations observées (1991–2010) et les associations avec des maladies gastro-intestinales après un contrôle de la saisonnalité et les tendances temporelles. Les précipitations ont probablement transporté des pathogènes vers des sources d’eau potable ou vers des réseaux de distribution d’eau comportant des fuites. S’appuyant sur les relations observées, la deuxième analyse a montré comment le changement climatique et des installations de traitement de l’eau potable pourraient modifier l’incidence des maladies gastro-intestinales. Les précipitations futures ont été modélisées à l’aide de 13 modèles climatiques globaux et trois niveaux d’émissions de gaz à effet de serre. La deuxième analyse a été relancée en utilisant trois voies : (1) le changement climatique seulement, (2) le changement climatique et la même allure lente de déploiement des installations de traitement observée sur la période 1991–2010, et (3) le changement climatique et un rythme rapide de déploiement d’installations de traitement observé sur la période 2011–2016. Les résultats illustrent les risques que présentent le changement climatique pour les petites municipalités rurales alimentées par les eaux souterraines sans traitement d’eau potable. Les changements de précipitations saisonniers liés au changement climatique augmenteront légèrement le taux d’incidence de la maladie gastro-intestinale (moyenne: ∼1.5%, gamme: −3.6–4.3%). Un lent déploiement des installations de traitement conduit à une légère diminution de l’incidence de la maladie gastro-intestinale associée aux précipitations (moyenne: ∼ 3.0%, gamme: 0.2–7.8%) malgré le changement climatique. Un taux rapide d’installations de traitement de l’eau diminue largement l’incidence de la maladie gastro-intestinale (moyenne: ∼82.0%, gamme: 82.0–83.0%).

Tratamiento de agua potable, cambio climático y enfermedades gastrointestinales infantiles en las comunidades del norte de Wisconsin (EE.UU.) que beben agua subterránea no tratada

Resumen

Este estudio examinó la importancia relativa del cambio climático y el tratamiento del agua potable para la incidencia de enfermedades gastrointestinales en niños (edad <5 años) del período 2046–2065 en comparación con 1991–2010. El estudio en Wisconsin del norte (EE UU), se centró en los municipios que distribuían agua subterránea no tratada. Un análisis de series de tiempo cuantificó primero las asociaciones de precipitación y enfermedad gastrointestinal observadas (1991–2010) después de controlar la estacionalidad y las tendencias temporales. Es probable que la precipitación transportara patógenos a fuentes de agua potable o a redes de distribución de agua con filtraciones. Sobre la base de las relaciones observadas, el segundo análisis proyecta cómo el cambio climático y la instalación de tratamiento de agua potable puede alterar la incidencia de enfermedades gastrointestinales. Los futuros valores de precipitación fueron modelados por 13 modelos climáticos globales y tres niveles de emisiones de gases de efecto invernadero. El segundo análisis se reanudó utilizando tres trayectorias: (1) sólo el cambio climático, (2) el cambio climático y el mismo ritmo lento de instalación de tratamiento observado durante 1991–2010, y (3) el cambio climático y la rápida instalación observada durante el período 2011–2016. Los resultados ilustran los riesgos que el cambio climático presenta a las pequeñas municipalidades rurales con agua potable de aguas subterráneas sin tratamiento. Los cambios de precipitación estacional relacionados con el cambio climático aumentarán marginalmente la tasa de incidencia de la enfermedad gastrointestinal (media: ∼ 1.5%, rango: −3.6–4.3%). Un ritmo lento de la instalación de tratamiento disminuyó ligeramente la incidencia de la enfermedad gastrointestinal asociada a la precipitación (media: ∼ 3.0%, rango: 0.2–7.8%) a pesar del cambio climático. La tasa de instalación rápida del tratamiento disminuye en gran medida la incidencia de la enfermedad gastrointestinal (media: ∼ 82.0%, rango: 82.0–83.0%).

对(美国)威斯康星州北部社区饮用未处理的地下水进行的饮用水处理、气候变化及童年胃肠疾病的预测

摘要

本研究论述了2046–2065年与1991–2010年相比,气候变化和童年(小于5岁)期胃肠疾病发生率饮用水处理的相对重要性。在(美国)威斯康星州北部进行的研究集中在提供未处理地下水的社区。时间序数分析首次量化了观测到(1991–2010年)的降水和季节性及时间趋势控制后胃肠疾病的关联性。降水很可能传输病原体到饮用水源中或渗漏的供水网络中。在观测的关系基础上,二阶分析预测了气候变化和饮用水处理装置是怎样可能改变胃肠疾病发生率的。采用13个全球气候模型和三个温室气体排放标准模拟了未来的降水值。采用三个途径再进行二阶分析:(1)单单气候变化;(2)气候变化及1991–2010年观测到的处理装置相同的缓慢步伐;(3)气候变化及2011–2016年观测到的快速的装置比率。结果描述了气候变化对饮用水未处理的、采用地下水的小的乡村社区的风险。气候变化相关的季节性降水变化将最低限度地增加胃肠疾病的发病率(平均值:∼1.5%,范围:–3.6–4.3%)。 尽管有气候变化,但处理装置的缓慢步伐多少降低了降水相关的胃肠疾病发病率(平均值:∼3.0%,范围:0.2–7.8%)。快速的处理装置率大大降低了胃肠疾病的发病率(平均值:∼82.0%,范围:82.0–83.0%)

Projeções de tratamento de água para consumo, mudança climática e doenças gastrointestinais em comunidades do Norte de Winsconsin (EUA) consumindo água subterrânea não tratada

Resumo

Esse estudo investigou a importância relativa das mudanças climáticas e do tratamento da água para abastecimento na incidência de doenças gastrointestinais em crianças (idade < 5 anos) para o período 2046–2065 comparado a 1991–2010. O estudo no norte de Winsconsin (EUA) focou em municípios que distribuem água subterrânea não tratada. Uma análise de séries temporais quantificou as associações entre precipitação e doenças gastrointestinais observadas (1991–2010) após controle da sazonalidade e tendências temporais. A precipitação provavelmente transportou patógenos nas fontes de água para abastecimento ou nas redes de distribuição de água com vazamentos. Construída a partir de relações observadas, a segunda análise previu como as mudanças climáticas e a instalação do tratamento da água para abastecimento podem alterar a incidência de doenças gastrointestinais. Valores futuros de precipitação foram modelados por 13 modelos climáticos globais e três níveis de emissões de gases de efeito estufa. A segunda análise foi refeita utilizando três caminhos: (1) apenas mudanças climáticas, (2) mudanças climáticas e o mesmo passo lento na instalação do tratamento observado de 1991 a 2010, e (3) mudanças climáticas e a taxa rápida de instalação observadas de 2011 a 2016. Os resultados ilustram os riscos que as mudanças climáticas apresentam para municípios rurais que utilizam águas subterrâneas sem tratamento de água para abastecimento. Mudanças na precipitação sazonal relacionada às mudanças climáticas aumentarão marginalmente a taxa de incidência de doenças gastrointestinais (média: ∼1.5%, alcance: –3.6–4.3%). Um passo lento na instalação do tratamento de alguma forma diminui a incidência de doenças gastrointestinais associadas a precipitação (média: ∼3.0%, alcance: 0.2–7.8%) apesar das mudanças climáticas. Uma taxa rápida de instalação do tratamento diminui profundamente a incidência de doenças gastrointestinais (média: ∼82.0%, alcance: 82.0–83.0%).

Notes

Acknowledgements

This work was partially supported by the Centers for Disease Control and Prevention (grant 1U01EH000428-01) and National PERISHIP Dissertation Fellowship funded by The National Science Foundation, University of Colorado Natural Hazards Center, Swiss Re, and the Public Entity Risk Institute. Stephen Vavrus, Kevin Braun, and Ruben Behnke kindly shared the Wisconsin Initiative on Climate Change Impacts climate projections. We thank Mark A. Borchardt, Joan B. Rose, and anonymous reviewers whose comments significantly improved the article.

References

  1. Abbaszadegan M, Lechevallier M, Gerba C (2003) Occurrence of viruses in US groundwaters. Am Water Works Assoc J 95:107Google Scholar
  2. Beaudeau P, Valdes D, Mouly D, Stempfelet M, Seux R (2010) Natural and technical factors in faecal contamination incidents of drinking water in small distribution networks, France, 2003–2004: a geographical study. J Water Health 8:20–34CrossRefGoogle Scholar
  3. Borchardt MA, Chyou PH, DeVries EO, Belongia EA (2003) Septic system density and infectious diarrhea in a defined population of children. Environ Health Perspect 111(5):742–748Google Scholar
  4. Borchardt MA, Spencer SK, Kieke BA, Lambertini E, Loge FJ (2012) Viruses in nondisinfected drinking water from municipal wells and community incidence of acute gastrointestinal illness. Environ Health Perspect 120:1272–1279CrossRefGoogle Scholar
  5. Bradbury KR, Borchardt MA, Gotkowitz M, Spencer SK, Zhu J, Hunt RJ (2013) Source and transport of human enteric viruses in deep municipal water supply wells. Environ Sci Technol 47:4096–4103CrossRefGoogle Scholar
  6. Colford JM, Roy S, Beach MJ, Hightower A, Shaw SE, Wade TJ (2006) A review of household drinking water intervention trials and an approach to the estimation of endemic waterborne gastroenteritis in the United States. J Water Health 4:71–88CrossRefGoogle Scholar
  7. Corsi SR, Borchardt M, Spencer S, Hughes PE, Baldwin AK (2014) Human and bovine viruses in the Milwaukee River watershed: hydrologically relevant representation and relations with environmental variables. Sci Total Environ 490:849–860CrossRefGoogle Scholar
  8. Craun GF, Calderon RL (2006) Observational epidemiologic studies of endemic waterborne risks: cohort, case-control, time-series, and ecologic studies. J Water Health 4(Suppl 2):101–119CrossRefGoogle Scholar
  9. Curriero FC, Patz JA, Rose JB, Lele S (2001) The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Am J Public Health 91:1194–1199CrossRefGoogle Scholar
  10. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064CrossRefGoogle Scholar
  11. DeStefano F, Eaker ED, Broste SK, Nordstrom DL, Peissig PL, Vierkant RA, Konitzer KA, Gruber RL, Layde PM (1996) Epidemiologic research in an integrated regional medical care system: the Marshfield epidemiologic study area. J Clin Epidemiol 49:643–652CrossRefGoogle Scholar
  12. Drayna P, McLellan SL, Simpson P, Li SH, Gorelick MH (2010) Association between rainfall and pediatric emergency department visits for acute gastrointestinal illness. Environ Health Perspect 118:1439–1443CrossRefGoogle Scholar
  13. Dwight RH, Semenza JC, Baker DB, Olson BH (2002) Association of urban runoff with coastal water quality in orange county, California. Water Environ Res 74:82–90CrossRefGoogle Scholar
  14. Egan-Robertson D (2014) Vintage 2013 state and county age-sex projection methodology: some salient points. Wisconsin Department of Administration Demographic Services Center. http://doa.wi.gov/Documents/DIR/Demographic%20Services%20Center/Projections/ProjMethod_StCo_pop_v13.pdf. Accessed 27 Jan 2017
  15. Ercumen A, Gruber JS, Colford JM Jr (2014) Water distribution system deficiencies and gastrointestinal illness: a systematic review and meta-analysis. Environ Health Perspect 122:651Google Scholar
  16. Gangarosa RE, Glass RI, Lew JF, Boring JR (1992) Hospitalizations involving gastroenteritis in the United States, 1985: the special burden of the disease among the elderly. Am J Epidemiol 135:281–290CrossRefGoogle Scholar
  17. Gorelick MH, McLellan SL, Wagner D, Klein J (2011) Water use and acute diarrhoeal illness in children in a United States metropolitan area. Epidemiol Infect 139:295–301CrossRefGoogle Scholar
  18. Hales S, Kovats S, Lloyd S, Campbell-Lendrum D (2014) Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. World Health Organization 128, WHO, GenevaGoogle Scholar
  19. Harper SL, Edge VL, Schuster-Wallace CJ, Berke O, McEwen SA (2011) Weather, water quality and infectious gastrointestinal illness in two Inuit communities in Nunatsiavut, Canada: potential implications for climate change. EcoHealth 8:93–108CrossRefGoogle Scholar
  20. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418CrossRefGoogle Scholar
  21. Howard G, Charles K, Pond K, Brookshaw A, Hossain R, Bartram J (2010) Securing 2020 vision for 2030: climate change and ensuring resilience in water and sanitation services. J Water Clim Change 1:2–16CrossRefGoogle Scholar
  22. Hoxie NJ, Davis JP, Vergeront JM, Nashold RD, Blair KA (1997) Cryptosporidiosis-associated mortality following a massive waterborne outbreak in Milwaukee, Wisconsin. Am J Public Health 87:2032–2035CrossRefGoogle Scholar
  23. Jagai JS, Li Q, Wang S, Messier KP, Wade TJ, Hilborn ED (2015) Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: an analysis of Massachusetts data, 2003–2007. Environ Health Perspect 123:873Google Scholar
  24. Kolstad EW, Johansson KA (2011) Uncertainties associated with quantifying climate change impacts on human health: a case study for diarrhea. Environ Health Perspect 119:299CrossRefGoogle Scholar
  25. Kuusi M, Aavitsland P, Gondrosen B, Kapperud G (2003) Incidence of gastroenteritis in Norway: a population-based survey. Epidemiol Infect 131:591–597CrossRefGoogle Scholar
  26. Lambertini E, Borchardt MA, Kieke BA Jr, Spencer SK, Loge FJ (2012) Risk of viral acute gastrointestinal illness from nondisinfected drinking water distribution systems. Environ Sci Technol 46:9299–9307CrossRefGoogle Scholar
  27. Lee RM, Lessler J, Lee RA, Rudolph KE, Reich NG, Perl TM, Cummings DA (2013) Incubation periods of viral gastroenteritis: a systematic review. BMC Infect Dis 13:1CrossRefGoogle Scholar
  28. McMichael AJ, Campbell-Lendrum D, Kovats S, Edwards S, Wilkinson P, Wilson T (2004) Global climate change. In: Ezzati M, Lopez AD, Rodgers A et al (eds) Comparative quantification of health risks: global and regional burden of disease due to selected major risk factors, vol 2. World Health Organization, Geneva, pp 1543–1649Google Scholar
  29. Messner M, Shaw S, Regli S, Rotert K, Blank V, Soller J (2006) An approach for developing a national estimate of waterborne disease due to drinking water and a national estimate model application. J Water Health 4:201–240CrossRefGoogle Scholar
  30. Nakicenovic N, Swart R (2000) Special report on emissions scenarios. In: Nakicenovic N et al (eds) Special report on emissions scenarios. Cambridge University Press, Cambridge, UK, 612 ppGoogle Scholar
  31. National Research Council (2002) Estimating the public health benefits of proposed air pollution regulations. NRC, Ottawa, 192 ppGoogle Scholar
  32. National Research Council (US) (2006) Drinking water distribution systems: assessing and reducing risks. National Academies Press, Washington, DCGoogle Scholar
  33. Naumova E, Christodouleas J, Hunter P, Syed Q (2005) Effect of precipitation on seasonal variability in cryptosporidiosis recorded by the North West England surveillance system in 1990–1999. J Water Health 3:185–196Google Scholar
  34. Nevers MB, Whitman RL (2011) Efficacy of monitoring and empirical predictive modeling at improving public health protection at Chicago beaches. Water Res 45:1659–1668CrossRefGoogle Scholar
  35. Nicosia L, Rose J, Stark L, Stewart MT (2001) A field study of virus removal in septic tank drainfields. J Environ Qual 30:1933–1939CrossRefGoogle Scholar
  36. NOAA National Centers for Environmental Information (2016) Global Historical Climatology Network (GHCN). NOAA National Centers for Environmental Information, Asheville, NC. https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn. Accessed December 2016
  37. Pang L (2009) Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores. J Environ Qual 38:1531–1559CrossRefGoogle Scholar
  38. Patz JA, Vavrus SJ, Uejio CK, McLellan SL (2008) Climate change and waterborne disease risk in the Great Lakes region of the US. Am J Prev Med 35:451–458CrossRefGoogle Scholar
  39. Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect 119:701CrossRefGoogle Scholar
  40. Ramakrishnan SK (2011) Adaptation cost of diarrhea and malaria in 2030 for India. Indian J Occup Environ Med 15:64–67CrossRefGoogle Scholar
  41. Reynolds KA, Mena KD, Gerba CP (2008) Risk of waterborne illness via drinking water in the United States. Rev Environ Contam Toxicol 192:117–158CrossRefGoogle Scholar
  42. Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, Kistemann T (2012) Climate change impact assessment of food-and waterborne diseases. Crit Rev Environ Sci Technol 42:857–890CrossRefGoogle Scholar
  43. Shadford CB, Joy D, Lee H, Whiteley H, Zelin S (1997) Evaluation and use of a biotracer to study ground water contamination by leaching bed systems. J Contam Hydrol 28:227–246CrossRefGoogle Scholar
  44. Stocker T, Qin D, Plattner G et al (2013) IPCC 2013: summary for policy makers. Cambridge University Press, New YorkGoogle Scholar
  45. Teschke K, Bellack N, Shen H, Atwater J, Chu R, Koehoorn M, MacNab YC, Schreier H, Isaac-Renton JL (2010) Water and sewage systems, socio-demographics, and duration of residence associated with endemic intestinal infectious diseases: a cohort study. BMC Public Health 10:767CrossRefGoogle Scholar
  46. Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339CrossRefGoogle Scholar
  47. Tulchinsky TH, Burla E, Clayman M, Sadik C, Brown A, Goldberger S (2000) Safety of community drinking-water and outbreaks of waterborne enteric disease: Israel, 1976–97. Bull World Health Organ 78:1466–1473Google Scholar
  48. US Census Bureau (2016) American factfinder. http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml. Accessed 9 Feb 2016
  49. US Environmental Protection Agency (2006) National primary drinking water regulations: ground water rule, final rule, vol 71, no. 216, pp 65574–65660Google Scholar
  50. US Environmental Protection Agency (2015) Challenges and treatment solutions for small drinking water and wastewater systems. US Environmental Protection Agency, Washington, DC. https://www.epa.gov/sites/production/files/2015-07/documents/epa816r13006.pdf. Accessed 14 May 2016
  51. Uejio CK, Yale SH, Malecki K, Borchardt MA, Anderson HA, Patz JA (2014) Drinking water systems, hydrology, and childhood gastrointestinal illness in central and northern Wisconsin. Am J Public Health 104:639–646CrossRefGoogle Scholar
  52. Vavrus SJ, Behnke RJ (2014) A comparison of projected future precipitation in Wisconsin using global and downscaled climate model simulations: implications for public health. Int J Climatol 34:3106–3124CrossRefGoogle Scholar
  53. Voigtlander AL (2008) Soil survey of Rusk County, Wisconsin: subset of major land resource areas 90A and 90B. Natural Resources Conservation Service, Washington, DCGoogle Scholar
  54. Wang LK, Hung Y, Shammas NK (2006) Advanced physicochemical treatment processes. Springer, Totowa, NJCrossRefGoogle Scholar
  55. WI Department of Natural Resources, Department of Administration (2015) State of Wisconsin safe drinking water loan program intended use plan. State of Wisconsin. http://dnr.wi.gov/Aid/documents/EIF/news/SDWLP_SFY_2016_FINAL_IUP.pdf. Accessed 20 April 2016
  56. Wisconsin State Legislature (2011). Wisconsin Act 19. 2011. Available at http://docs.legis.wisconsin.gov/2011/related/acts/19. Accessed 15 Nov 2011
  57. Wood SN (2006) Generalized additive models: an introduction with R. CRC, Boca Raton, FLGoogle Scholar
  58. Wood AW, Leung LR, Sridhar V, Lettenmaier D (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216CrossRefGoogle Scholar
  59. Yoder JS, Beach MJ (2010) Cryptosporidium surveillance and risk factors in the United States. Exp Parasitol 124:31–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Christopher K. Uejio
    • 1
  • Megan Christenson
    • 2
  • Colleen Moran
    • 2
  • Mark Gorelick
    • 3
  1. 1.Department of GeographyFlorida State UniversityTallahasseeUSA
  2. 2.Wisconsin Department of Health ServicesMadisonUSA
  3. 3.Children’s Hospital of Wisconsin-Milwaukee CampusMilwaukeeUSA

Personalised recommendations