Abstract
Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.
Résumé
La contamination des eaux souterraines par des agents pathogènes entériques a souvent été associée à l’apparition de maladies. Une gestion adéquate et un traitement des sources des agents pathogènes sont des prérequis importants pour prévenir d’une contamination des eaux souterraines. Cependant, les sources diffuses de contaminations pathogènes sont fréquemment difficiles à identifier, et des approches existantes pour la détection des agents pathogènes sont coûteuses et ne fournissement que seulement des informations semi-quantitative. Des indicateurs microbiens qui sont facilement quantifiables souvent ne sont pas corrélés avec la présence d’agents pathogènes. Les agents pathogènes constituant une nouvelle préoccupation et l’augmentation des détections de la résistance aux antibiotiques parmi les pathogènes bactériens dans les eaux souterraines sont des sujets de préoccupation croissante. Une élimination adéquate des agents pathogènes pendant le passage dans le sol est donc essentielle pour une exploitation de eaux souterraines en toute sécurité. Les processus susceptibles de favoriser le transport d’agents pathogènes (par exemple, des zones de vitesse élevée et d’écoulements préférentiels) et de diminuer l’élimination des agents pathogènes (par exemple, la rétention réversible et une survie accrue) sont particulièrement préoccupants, car ils augmentent le risque de contamination des eaux souterraines, mais sont encore mal compris. L’amélioration de la théorie et des outils de modélisation sont nécessaires pour analyser des données expérimentales, tester des hypothèses, comprendre les processus couplés et les mécanismes de contrôle, prédire la variabilité spatiale et/ou temporelle des paramètres des modèles et de l’incertitude des concentrations en agents pathogènes, évaluer le risque, et développer des mesures d’atténuation et de meilleures méthodes de gestion pour protéger les eaux souterraines.
Resumen
La contaminación del agua subterránea por patógenos entéricos se ha asociado comúnmente con brotes de enfermedades. La gestión y el tratamiento adecuados de las fuentes de patógenos son requisitos previos importantes para prevenir la contaminación del agua subterránea. Sin embargo, las fuentes no puntuales de contaminación de patógenos son a menudo difíciles de identificar, y los enfoques existentes para su detección son costosos y sólo proporcionan información semicuantitativa. Los indicadores microbianos que se cuantifican fácilmente a menudo no se correlacionan con la presencia de patógenos. Los patógenos de preocupación emergente y la creciente detección de la resistencia a los antibióticos entre los patógenos bacterianos en el agua subterránea son temas de creciente preocupación. La eliminación adecuada de patógenos durante el pasaje en el suelo es por lo tanto crítica en la extracción segura del agua subterránea. Los procesos que aumentan el transporte de patógenos (por ejemplo, zonas de alta velocidad y flujo preferencial) y disminuyen la eliminación de patógenos (por ejemplo, retención reversible y supervivencia mejorada) son de especial preocupación porque aumentan el riesgo de contaminación del agua subterránea, pero todavía no son comprendidos. Se necesitan herramientas mejoradas de la teoría y modelado para analizar los datos experimentales, probar hipótesis, entender los procesos acoplados y los mecanismos de control, predecir la variabilidad espacial y/o temporal de los parámetros del modelo y la incertidumbre en las concentraciones de los patógenos, la evaluación de riesgos y el desarrollo de la mitigación y una mejor gestión de los enfoques para proteger el agua subterránea.
摘要
肠道病原体造成的地下水污染通常与疾病爆发有关。病原体源的恰当管理和处理是预防地下水污染的重要先决条件。然而,病原体非点源污染常常难以确定,现有的病原体检测方法费用昂贵,并且仅仅提供半定量信息。容易量化的微生物指标常常与病原体的存在没有对应关系。新兴的对病原体的关注及地下水中细菌性病原体抗生素抗性的越来越多的检测成为越来越受到关注的主题。因此,病原体在土壤通道中被充分除去对于安全的地下水开采至关重要。增强病原体运移的过程(例如高速带和优先流)及减少消除病原体的过程(例如可逆滞留及增强的存活时间)受到特别关注,因为这些过程增加了地下水污染的风险,然而,这些过程仍然没有被完全了解。需要改进的理论和模拟工具来分析实验数据,检验假设,了解耦合过程和控制机理,预测模型参数中空间和/或时间上的变化及病原体含量的不确定,评价风险性以及开发缓解和最佳管理方法,以保护地下水。
Resumo
A contaminação das águas subterrâneas por patógenos entéricos tem sido frequentemente associada a surtos de doença. A gestão e o tratamento adequados de fontes de patógenos são requisitos importantes na prevenção da contaminação das águas subterrâneas. No entanto, as origens não pontuais de contaminação por patógenos são frequentemente difíceis de identificar e as abordagens existentes para a detecção de patógenos são dispendiosas e somente fornecem informação semi-quantitativa. Os indicadores microbianos que são facilmente quantificados, com frequência não se correlacionam com a presença de patógenos. São tópicos de inquietação crescente os problemáticos patógenos emergentes e a crescente detecção de patógenos bacterianos com resistência antibiótica em águas subterrâneas. A adequada remoção de patógenos durante a passagem pelos solos é consequentemente crítica para a extração de água subterrânea segura. Os processos que favorecem o transporte de patógenos (p.e., zonas de alta velocidade ou de fluxo preferencial) e os que atenuam a remoção de patógenos (p.e., retenção reversível e aumento de sobrevivência) são dignos de preocupação especial porque aumentam o risco de contaminação das águas subterrâneas, mas ainda estão incompletamente compreendidos. São necessárias novas ferramentas teóricas e de modelagem para analisar os dados experimentais, testar hipóteses, compreender processos acoplados e mecanismos de controle, predizer a variabilidade espacial e/ou temporal nos parâmetros do modelo e a incerteza nas concentrações de patógenos, avaliar o risco e desenvolver abordagens de mitigação e de gestão otimizada para a proteção das águas subterrâneas.
This is a preview of subscription content, access via your institution.

References
Akoachere JF, Masalla TN, Njom HA (2013) Multi-drug resistant toxigenic Vibrio cholerae O1 is persistent in water sources in New Bell-Douala, Cameroon. BMC Infect Dis 13(1):366
Alley WM (2006) Tracking US groundwater: reserves for the future? Environment 48:10–25
Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121(9):993
Bech TB, Rosenbom AE, Kjaer J, Amin MM, Olsen P, Jacobsen CS (2014) Factors influencing the survival and leaching of tetracycline-resistant bacteria and Escherichia coli through structured agricultural fields. Agric Ecosyst Environ 195:10–17
Beer KD, Gargano JW, Roberts VA, Hill VR, Garrison LE, Kutty PK, Hilborn ED, Wade TJ, Fullerton KE, Yoder JS (2015) Surveillance for waterborne disease outbreaks associated with drinking water: United States, 2011–2012. MMWR Morb Mortal Wkly 64:842–848
Binder S, Levitt AM, Hughes JM (1999) Preventing emerging infectious diseases as we enter the 21st century: CDC’s strategy. Public Health Rep 114(2):130–134
Blackburn BG, Craun GF, Yoder JS, Hill V, Calderon RL, Chen N, Lee SH, Levy DA, Beach MJ (2004) Surveillance for waterborne-disease outbreaks associated with drinking water: United States, 2001–2002. MMWR Surveill Summ 53(8):23–45
Böckelmann U, Dörries HH, Ayuso-Gabella MN, de Marçay MS, Tandoi V, Levantesi C, Masciopinto C, Van Houtte E, Szewzyk U, Wintgens T, Grohmann E (2009) Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 75(1):154–163
Borchardt MA, Bradbury KR, Alexander EC, Kolberg RJ, Alexander SC, Archer JR, Braatz LA, Forest BM, Green JA, Spencer SK (2011) Norovirus outbreak caused by a new septic system in a dolomite aquifer. Ground Water 49(1):85–97
Bradford SA, Torkzaban S (2015) Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir 31(44):12096–12105
Bradford SA, Morales VL, Zhang W, Harvey RW, Packman AI, Mohanram A, Welty C (2013) Transport and fate of microbial pathogens in agricultural settings. Crit Rev Environ Sci Technol 43(8):775–893
Bradford SA, Wang Y, Kim H, Torkzaban S, Šimůnek J (2014) Modeling microorganism transport and survival in the subsurface. J Environ Qual 43(2):421–440
Bradford SA, Kim H, Headd B, Torkzaban S (2016) Evaluating the transport of bacillus subtilis spores as a potential surrogate for cryptosporidium parvum oocysts. Environ Sci Technol 50:1295–1303
Cho HG, Lee SG, Kim WH, Lee JS, Park PH, Cheon DS, Jheong WH, Jho EH, Lee JB, Paik SY (2014) Acute gastroenteritis outbreaks associated with ground-waterborne norovirus in South Korea during 2008–2012. Epidemiol Infect 142(12):2604–2609
Craun GF (2012) The importance of waterborne disease outbreak surveillance in the United States. Ann Ist Super Sanita 48(4):447–459
Craun GF, Brunkard JM, Yoder JS, Roberts VA, Carpenter J, Wade T, Calderon RL, Roberts JM, Beach MJ, Roy SL (2010) Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clin Microbiol Rev 23(3):507–528
Daszak P, Epstein JH, Kilpatrick AM, Aguirre AA, Karesh WB, Cunningham AA (2007) Collaborative research approaches to the role of wildlife in zoonotic disease emergence. In: Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission. Springer, Heidelberg, Germany, pp 463–475
Economides C, Liapi M, Makris KC (2012) Antibiotic resistance patterns of Salmonella and Escherichia coli in the groundwater of Cyprus. Environ Geochem Health 34(4):391–397
Ferguson AS, Layton AC, Mailloux BJ, Culligan PJ, Williams DE, Smartt AE, Sayler GS, Feighery J, McKay LD, Knappett PS, Alexandrova E (2012) Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. Sci Total Environ 431:314–322
Fong TT, Mansfield LS, Wilson DL, Schwab DJ, Molloy SL, Rose JB (2007) Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio. Environ Health Perspect 115:856–864
Gallay A, De Valk H, Cournot M, Ladeuil B, Hemery C, Castor C, Bon F, Megraud F, Le Cann P, Desenclos JC (2006) A large multi‐pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clin Microbiol Infect 12(6):561–570
Gerba CP, Smith JE (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34(1):42–48
Gerba CP, Blair BL, Sarkar P, Bright KR, MacLean RC, Marciano-Cabral F, Ortega-Pierres G, Cacciò S, Fayer R, Mank TG, Smith HV (2009) Occurrence and control of Naegleria fowleri in drinking water wells, chap 19. In: Ortega-Pierres G, Caccio S, Fayer R, Mank TG, Smith HW, Thompson RCA (eds) Giardia and cryptosporidium: from molecule to disease. CAB, Oxfordshire UK, pp 238–247
Giammanco GM, Di Bartolo I, Purpari G, Costantino C, Rotolo V, Spoto V, Geraci G, Bosco G, Petralia A, Guercio A, Macaluso G (2014) Investigation and control of a Norovirus outbreak of probable waterborne transmission through a municipal groundwater system. J Water Health 12(3):452–464
Ginn TR, Wood BD, Nelson KE, Scheibe TD, Murphy EM, Clement TP (2002) Processes in microbial transport in the natural subsurface. Adv Water Resour 25(8):1017–1042
Guzman-Herrador B, Carlander A, Ethelberg S, de Blasio BF, Kuusi M, Lund V, Lofdahl M, MacDonald E, Nichols G, Schonning C, Sudre B (2015) Waterborne outbreaks in the Nordic countries, 1998 to 2012. Eurosurveillance: Eur Commun Dis Bull 20:24
Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108
Headd B, Bradford SA (2016) Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies. Water Res 90:185–202
Howard KWF (2006) Microbial pollution of groundwater in the town of Walkerton, Canada, in urban groundwater management and sustainability. Springer, Netherlands, pp 315–330
Hsu TTD, Lee J (2015) Global distribution and prevalence of Arcobacter in food and water. Zoonoses Public Health 62(8):579–589
Hynds PD, Thomas MK, Pintar KD (2014) Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: a review and pooled-analysis. PLoS One 9(5):e93301
Jakopanec I, Borgen K, Vold L, Lund H, Forseth T, Hannula R, Nygård K (2008) A large waterborne outbreak of campylobacteriosis in Norway: the need to focus on distribution system safety. BMC Infect Dis 8(1):1
Jin Y, Flury M (2002) Fate and transport of viruses in porous media. Adv Agron 77:39–102
Kang DK, Ali MM, Zhang KX, Huang SS, Peterson E, Digman MA, Gratton E, Zhao WA (2014) Rapid detection of single bacteria in unprocessed blood using integrated comprehensive droplet digital detection. Nat Commun 5:5427. doi:10.1038/ncomms6427
Kim SH, Cheon DS, Kim JH, Lee DH, Jheong WH, Heo YJ, Chung HM, Jee Y, Lee JS (2005) Outbreaks of gastroenteritis that occurred during school excursions in Korea were associated with several waterborne strains of norovirus. J Clin Microbiol 43(9):4836–4839
Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217
Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56
Maupin MA, Barber N (2005) Estimated withdrawals from principal aquifers in the United States. US Geol Surv Circ 1279
Maxwell RM, Welty C, Harvey RW (2007) Revisiting the Cape Cod bacteria injection experiment using a stochastic modeling approach. Environ Sci Technol 41(15):5548–5558
Molnar IL, Johnson WP, Gerhard JI, Willson CS, O’Carroll DM (2015) Predicting colloid transport through saturated porous media: a critical review. Water Resour Res 51(9):6804–6845
Murphy HM, Pintar KD, McBean EA, Thomas MK (2014) A systematic review of waterborne disease burden methodologies from developed countries. J Water Health 12(4):634–655
Pazmino E, Trauscht J, Dame B, Johnson WP (2014) Power law size-distributed heterogeneity explains colloid retention on soda lime glass in the presence of energy barriers. Langmuir 30(19):5412–5421
Proctor RA, Von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4(4):295–305
Ramírez-Castillo FY, Loera-Muro A, Jacques M, Philippe G, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4(2):307–334
Rehmann LL, Welty C, Harvey RW (1999) Stochastic analysis of virus transport in aquifers. Water Resour Res 35(7):1987–2006
Rogan WJ, Brady MT (2009) Drinking water from private wells and risks to children. Pediatrics 123(6):e1123–e1137
Ryan M, Hamilton K, Hamilton M, Haas CN (2014) Evaluating the potential for a Helicobacter pylori drinking water guideline. Risk Anal 34(9):1651–1662
Schijven JF, Hassanizadeh SM (2000) Removal of viruses by soil passage: overview of modeling, processes, and parameters. Crit Rev Environ Sci Technol 30(1):49–127
Sidhu JP, Toze S, Hodgers L, Barry K, Page D, Li Y, Dillon P (2015) Pathogen decay during managed aquifer recharge at four sites with different geochemical characteristics and recharge water sources. J Environ Qual 44(5):1402–1412
Sobsey MD, Khatib LA, Hill VR, Alocilja E, Pillai S (2001) Pathogens in animal wastes and the impacts of waste management practices on their survival, transport and fate: white papers on animal agriculture and the environment. MidWest Plan Service (MWPS), Iowa State University, Ames, IA
Stevenson ME, Blaschke AP, Schauer S, Zessner M, Sommer R, Farnleitner AH, Kirschner AKT (2014) Enumerating microorganism surrogates for groundwater transport studies using solid-phase cytometry. Water Air Soil Pollut 225:1827
Torkzaban S, Bradford SA (2016) Critical role of surface roughness on colloid retention and release in porous media. Water Res 88:274–284
Toze S (1999) PCR and the detection of microbial pathogens in water and wastewater. Water Res 33(17):3545–3556
Treumann S, Torkzaban S, Bradford SA, Visalakshan RM, Page D (2014) An explanation for differences in the process of colloid adsorption in batch and column studies. J Contam Hydrol 164:219–229
Tufenkji N, Emelko MB (2011) Fate and transport of microbial contaminants in groundwater. Encycl Environ Health 2:715–726
US Environmental Protection Agency (2006) National primary drinking water regulations: ground water rule. Fed Regist 71:65574–65660
US Environmental Protection Agency (2010a) Impaired waters and total maximum daily loads. US EPA, Washington, DC
US Environmental Protection Agency (2010b). Long term 2 enhanced surface water treatment rule toolbox guidance manual, EPA 815-R-0e16, US EPA, Washington, DC
Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210
Wallender EK, Ailes EC, Yoder JS, Roberts VA, Brunkard JM (2014) Contributing factors to disease outbreaks associated with untreated groundwater. Groundwater 52(6):886–897
Wong K, Fong TT, Bibby K, Molina M (2012) Application of enteric viruses for fecal pollution source tracking in environmental waters. Environ Int 45:151–164
Zaleski KJ, Josephson KL, Gerba CP, Pepper IL (2005) Survival, growth, and regrowth of enteric indicator and pathogenic bacteria in biosolids, compost, soil, and land applied biosolids. J Residuals Sci Technol 2(1):49–63
Zhang W, Tang X, Weisbrod N, Guan Z (2012) A review of colloid transport in fractured rocks. J Mt Sci 9(6):770–787
Acknowledgements
We would like to thank Brendan Headd for helpful discussions concerning Fig. 1. This research was supported by the Climate Change, Soils, and Emissions (NP 212) of the USDA-ARS and the Toxics Hydrology Program of the USGS.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the special issue “Hydrogeology and Human Health”
Rights and permissions
About this article
Cite this article
Bradford, S.A., Harvey, R.W. Future research needs involving pathogens in groundwater. Hydrogeol J 25, 931–938 (2017). https://doi.org/10.1007/s10040-016-1501-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-016-1501-0
Keywords
- Microbial processes
- Contamination
- Groundwater monitoring
- Health
- Groundwater/surface-water relations