Skip to main content
Log in

River–groundwater connectivity in a karst system, Wellington, New South Wales, Australia

Connectivité entre rivière et eaux souterraines d’un système karstique, Wellington, New South Wales, Australie

Conectividad agua subterránea–río en un sistema kárstico, Wellington, New South Wales, Australia

澳大利亚新南威尔士州威灵顿地区喀斯特系统的河流与地下水连通性研究

Conectividade rio–água subterrânea em um sistema cárstico, Wellington, Nova Gales do Sul, Austrália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The characterization of river–aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.

Résumé

La caractérisation de la connectivité entre rivière et aquifères dans les environnements karstiques est difficile du fait de la présence de conduits et de cavités. Ce travail démontre comment l’imagerie géophysique combinée à des données hydrogéologiques peut améliorer la conceptualisation des interactions entre les eaux de surface et les eaux souterraines en région karstique. L’objectif de cette étude est de comprendre les relations entre la rivière Bell et l’aquifère karstique alluvial à Wellington, Australie. Les niveaux de la rivière et des eaux souterraines ont été enregistrés en continu, et l’imagerie de la résistivité électrique et un suivi de la qualité de l’eau ont été réalisés. L’image en 2D de la résistivité cartographie la transition entre les alluvions et le karst. Ceci est important pour mettre en évidence la proximité des sédiments alluviaux saturés en eau aux cavités et conduits remplis d’eau. Dans la zone non saturée, l’imagerie de la résistivité permet de différencier des remplissages des objets karstiques par l’air et par les sédiments, et dans la zone saturée il est possible de cartographier la localisation des cavités possiblement remplies d’eau et de sédiments. Les niveaux d’eau souterraine sont dynamiques et répondent rapidement aux changements d’état hydrique de la rivière, ce qui implique qu’il y a une forte connexion hydraulique, et que la rivière par des pertes recharge l’aquifère adjacent. Les volumes d’eau souterraine extraits (1,370 ML, mégalitres, annuellement) de l’aquifère alluvial peut causer une chute du niveau d’eau souterraine jusqu’à 1.5 m en une année. Cependant, suite à des événements pluvieux significatifs dans la partie amont du bassin versant de la rivière Bell, les pertes de la rivière rechargent rapidement les aquifères alluviaux et karstiques. Ce travail démontre que dans des contextes hydrogéologiques complexes, l’utilisation combinée de l’imagerie géophysique, l’analyse des hydrographes et des mesures géochimiques donnent un aperçu de l’hydrologie karstique au niveau local et des processus qui prennent place dans les eaux souterraines, ce qui permettra une meilleure gestion des ressources en eau et du karst.

Resumen

La caracterización de la conectividad acuífero–río en ambientes kársticos es dificultosa debido a la presencia de conductos y cavernas. Este trabajo demuestra como imágenes geofísicas combinadas con datos hidrogeológicos pueden mejorar la conceptualización de las interacciones agua subterránea – agua superficial en terrenos kársticos. El objetivo de este estudio es comprender la asociación entre el Río Bell y el acuífero aluvial en Wellington, Australia. Los niveles de agua subterránea y del río fueron monitoreados en forma continua, y se llevaron a cabo relevamientos de imágenes de resistividad eléctrica y de calidad de agua. Las imágenes de resistividad eléctrica bidimensionales mapearon la transición entre el karst y el aluvio. Esto es importante para resaltar la proximidad de los sedimentos aluviales saturados a los conductos y cavernas llenos de agua. En la zona no saturada las imágenes de resistividad diferenciaron entre aire y las características kársticas rellenas por sedimentos, y en la zona saturada se mapeó la ubicación de posibles cavernas rellenas de agua y sedimento. Los niveles de agua subterránea responden rápidamente a los cambios en el estado del río, implicando que hay una fuerte conexión hidráulica, y que el río es perdedor y recarga el acuífero adyacente. Las extracciones de agua subterránea (1,370 ML, megalitros, anuales) a partir del acuífero aluvial pueden causar una caída del nivel de agua subterránea tanto como 1.5 m en un año. Sin embargo, cuando el Rio Bell fluye después de una precipitación significativa en la cuenca superior, la filtración del río recarga rápidamente los acuíferos aluviales y kársticos. Este trabajo demuestra que en un marco hidrogeológico complejo, el uso combinado de imágenes geofísicas, el análisis de hidrogramas y las mediciones geoquímicas aporta conocimientos sobre los procesos hidrológicos y del agua subterránea, lo cual posibilita un mejor manejo del recurso agua y karst.

摘要

喀斯特地区由于地下河道和洞穴的共同存在,其河流与蓄水层的连通性显得尤其复杂。本研究采用了地球物理成像与水文地质数据,研究结果可以提升人们对于喀斯特地区地表水与地下水交互作用的概念认知。本研究目的是理解澳大利亚威灵顿地区的贝尔河与喀斯特冲积蓄水层的之间的联系。我们持续监测了河流与地下水的水位变化情况,并开展了电阻率成像和水质调查。二维的电阻率成像技术显示了冲积层和喀斯特之间的过渡,这对于突显饱和冲积层沉积物与蓄水洞穴和河谷的相似度具有重要作用。在不饱和蓄水层,电阻率成像技术可以区分空气填充和沉积物填充的岩溶特征;在饱和蓄水层,电阻率成像可描述水填充洞穴和沉积物填充洞穴的大致分布。地下水位的变化是动态的,并且对河流不同阶段的变化具有快速的响应,说明该地区存在着较强的水动力学联系,并且河流正在流失并补充临近的蓄水层。冲积蓄水层的地下水提取(每年1,370兆升)可造成地下水位每年下降1.5米。然而,当贝尔河上游出现显著的降水之后,河流泄漏可以快速补充冲积蓄水层与岩溶蓄水层的水分流失。本研究表明,在复杂的水文地质环境下,通过结合地质物理成像、水文分析以及地质化学研究,可揭示区域喀斯特及地下水的水文过程,从而有利于喀斯特地区的水资源管理工作。

Resumo

A caracterização da conectividade rio–aquífero em ambientes cársticos é difícil devido à presença de condutos e cavernas. Este trabalho demonstra como imageamentos geofísicos combinados com dados hidrogeológicos podem melhorar a conceitualização das interações das águas superficial e subterrânea em terrenos cársticos. O objetivo deste estudo é compreender a associação entre o Rio Bell e o aquífero cárstico-aluvial em Wellington, Austrália. Foram continuamente monitorados os níveis do rio e das águas subterrâneas, e realizado imageamento da resistividade elétrica e pesquisa de qualidade da água. O imageamento bidimensional da resistividade mapeou a transição entre o aluvião e o cárste. Isto é importante para destacar a proximidade dos sedimentos saturados aluviais com as cavernas e condutos preenchidos por água. Na zona não-saturada, o imageamento da resistividade diferenciou entre ar e feições cársticas cheia de sedimentos, e na zona saturada mapeou-se a localização de possíveis águas e cavernas cheias de sedimentos. Os níveis das águas subterrâneas são dinâmicos e respondem rapidamente a mudanças na nível do rio, implicando em uma forte ligação hidráulica e indicando que o rio está perdendo água e recarregando o aquífero adjacente. Extrações de águas subterrâneas (1,370 ML, megalitros, anualmente) do aquífero aluvial podem fazer com que o nível do lençol freático rebaixe em até 1.5 m em um ano. No entanto, quando o Rio Bell flui após chuvas significativas na bacia superior, a fuga de água desse rio rapidamente recarrega o aluvião e o aquíferos cársticos. Este trabalho demonstra que, em ambientes hidrogeológicos complexos, o uso combinado de imagens geofísicas, análise de hidrograma e medições geoquímicas fornecem conhecimentos sobre os processos hidrológicos cársticos e subterrâneos locais, permitindo uma gestão dos recursos hídricos e do cárste melhor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acworth RI, Dasey GR (2003) Mapping of the hyporheic zone around a tidal creek using a combination of borehole logging, borehole electrical tomography and cross-creek electrical imaging, New South Wales, Australia. Hydrogeol J 11(3):368–377. doi:10.1007/s10040-003-0258-4

    Article  Google Scholar 

  • Allison G, Hughes M (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Soil Res 16(2):181–195. doi:10.1071/SR9780181

    Article  Google Scholar 

  • Andersen MS, Acworth RI (2009) Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol J 17:2005–2021. doi:10.1007/s10040-009-0500-9

    Article  Google Scholar 

  • Anderson AN, McKenzie DC, Friend JJ (1999) SOILpak for dryland farmers on the red soil of Central Western NSW. NSW Agriculture. http://www.dpi.nsw.gov.au/content/agriculture/resources/soils/guides/soilpak/central-west. Accessed 5 Aug 2015

  • Australian Government Bureau of Meteorology (BOM) (2015) Latest weather observations for Parramatta. http://www.bom.gov.au/products/IDN60801/IDN60801.94723.shtml. Accessed 1 Feb 2015

  • Bailly-Comte V, Jourde H, Pistre S (2009) Conceptualization and classification of groundwater–surface water hydrodynamic interactions in Karst watersheds: case of the Karst watershed of the Coulazou River (southern France). J Hydrol 376(3–4):456–462. doi:10.1016/j.jhydrol.2009.07.053

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160. doi:10.1007/s10040-004-0402-9

    Article  Google Scholar 

  • Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Water and Science Technology Library, Springer, Dordrecht, The Netherlands, pp 129–156

    Chapter  Google Scholar 

  • Blyth AJ, Jex C, Baker A, Khan SJ, Schouten S (2014) Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGTs) in speleothems and associated soils. Org Geochem 69:1–10. doi:10.1016/j.orggeochem.2014.01.013

    Article  Google Scholar 

  • Bonacci O (2015) Surface waters and groundwater in Karst. In: Stevanović Z (Ed) Karst Aquifers: characterization and engineering. Professional Practice in Earth Sciences. Springer, Heidelberg, Germany, pp 149–169

  • Bonacci O, Ljubenkov I, Roje-Bonacci T (2006) Karst flash floods: an example from the Dinaric karst (Croatia). Nat Hazards Earth Syst Sci 6(2):195–203. doi:10.5194/nhess-6-195-2006

    Article  Google Scholar 

  • Brown AL, Martin JB, Screaton EJ, Ezell JE, Spellman P, Gulley J (2014) Bank storage in Karst aquifers: the impact of temporary intrusion of river water on carbonate dissolution and trace metal mobility. Chem Geol 385:56–69. doi:10.1016/j.chemgeo.2014.06.015

    Article  Google Scholar 

  • Carroll D, Hathaway JC (1953) Clay minerals in a limestone soil profile. Second National Conference on Clays and Clay Minerals, Columbia, MO, October 1953, pp 171–182

  • Chatterton BDE, Johnson BD, Campbell KSW (1979) Silicified lower Devonian trilobites from New South Wales. Palaeontology 22:799–837

    Google Scholar 

  • Cook KL, Van Nostrand RG (1954) Interpretation of resistivity data over filled sinks. Geophysics 19(4):761–790. doi:10.1190/1.1438048

    Article  Google Scholar 

  • Cox MH, Su GW, Constantz J (2007) Heat, chloride, and specific conductance as ground water tracers near streams. Ground Water 45(2):187–195. doi:10.1111/j.1745-6584.2006.00276.x

    Article  Google Scholar 

  • Dahlin T (2001) The development of DC resistivity imaging techniques. Comput Geosci 27(9):1019–1029. doi:10.1016/S0098-3004(00)00160-6

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52(5):379–398. doi:10.1111/j.1365-2478.2004.00423.x

    Article  Google Scholar 

  • Dawson L (1985) Marsupial fossils from Wellington Caves, New South Wales: the historic and scientific significance of the collections in the Australian Museum, Sydney. Rec Aust Mus 37(2):55–69. doi:10.3853/j.0067-1975.37.1985.335

    Article  Google Scholar 

  • Dey A, Morrison H (1979) Resistivity modelling for arbitrarily shaped two-dimensional structures. Geophys Prospect 27:106–136

    Article  Google Scholar 

  • Dragovich D, Dominis M (2008) Dryland salinity and rainfall patterns: a preliminary investigation in central west New South Wales (Australia). Land Degrad Dev 19(5):564–573. doi:10.1002/ldr.866

    Article  Google Scholar 

  • Dubois C, Quinif Y, Baele J-M, Dagrain F, Deceuster J, Kaufmann O (2014) The evolution of the mineralogical and petrophysical properties of a weathered limestone in southern Belgium. Geol Belg 17:1–8

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Greenfield RJ, Lavin PM, Parizek RR (1976) Geophysical methods for location of voids and caves. Proceedings of the Anaheim Symposium, Anaheim, CA, December 1976, IAHS, Wallingford, UK

  • Gulley J, Martin JB, Screaton EJ, Moore PJ (2011) River reversals into Karst springs: a model for cave enlargement in eogenetic Karst aquifers. Geol Soc Am Bull 123(3–4):457–467. doi:10.1130/b30254.1

    Article  Google Scholar 

  • Habberjam GM (1969) The location of spherical cavities using a tripotential resistivity technique. Geophysics 34:780–784. doi:10.1190/1.1440049

    Article  Google Scholar 

  • Haron M, Dragovich D (2010) Climatic influences on dryland salinity in central west New South Wales, Australia. J Arid Environ 74(10):1216–1224. doi:10.1016/j.jaridenv.2010.04.014

    Article  Google Scholar 

  • Harvey RW, George LH, Smith RL, LeBlanc DR (1989) Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural- and forced-gradient tracer experiments. Environ Sci Technol 23(1):51–56. doi:10.1021/es00178a005

    Article  Google Scholar 

  • Hem JD (1985) Study and Interpretation of the chemical characteristics of natural water, 3rd edn. US Geological Survey, Reston, VA

  • Ivkovic KM (2009) A top-down approach to characterise aquifer–river interaction processes. J Hydrol 365(3–4):145–155. doi:10.1016/j.jhydrol.2008.11.021

    Article  Google Scholar 

  • Johnson BD (1975) The Garra formation (Early Devonian) at Wellington, NSW. J Proc R Soc NSW 108(December):111–118

  • Kaufman WJ, Orlob GT (1956) An evaluation of ground‐water tracers. EOS Trans Am Geophys Union 37(3):297–306. doi:10.1029/TR037i003p00297

    Article  Google Scholar 

  • Kaufmann O, Deceuster J (2014) Detection and mapping of ghost-rock features in the Tournaisis area through geophysical methods: an overview. Geol Belg 17(1):17–26

    Google Scholar 

  • Kaufmann G, Romanov D (2009) Geophysical investigation of a sinkhole in the northern Harz foreland (North Germany). Environ Geol 58(2):401–405. doi:10.1007/s00254-008-1598-0

    Article  Google Scholar 

  • Kaufmann O, Deceuster J, Quinif Y (2012) An electrical resistivity imaging-based strategy to enable site-scale planning over covered palaeokarst features in the Tournaisis area (Belgium). Eng Geol 133–134:49–65. doi:10.1016/j.enggeo.2012.01.017

    Article  Google Scholar 

  • Keshavarzi M, Graham P, Baker A, Kelly BF, Andersen M, Rau G, Acworth RI, Smithson A (2014) Understanding river–groundwater interactions in a Karst system, Wellington, NSW. Presented at “Sustainable Australia”. Australian Earth Science Convention 2014, Newcastle, Australia, 7–10 July 2014. http://aesc2014.gsa.org.au/assets/Various-reg-partner-opp-workshop-summ-/AESC-Abstract-Proceedings.pdf. Accessed 20 Feb 2016

  • Kim J-H, Yi M-J, Cho S-J, Son J-S, Song W-K (2006) Anisotropic Crosshole resistivity tomography for ground safety analysis of a high-storied building over an abandoned mine. J Environ Eng Geophys 11(4):225–235. doi:10.2113/jeeg11.4.225

    Article  Google Scholar 

  • Leucci G, De Giorgi L (2005) Integrated geophysical surveys to assess the structural conditions of a Karstic cave of archaeological importance. Nat Hazards Earth Syst Sci 5(1):17–22. doi:10.5194/nhess-5-17-2005

    Article  Google Scholar 

  • Lindsey BD, Berndt MP, Katz BG, Ardis AF, Skach KA (2009) Factors affecting water quality in selected carbonate aquifers in the United States, 1993–2005. US Geol Surv Sci Invest Rep 2008-5240, 117 pp

  • Loke MH (1999) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2-D and 3-D surveys. http://www.abem.se/. Accessed November 2016

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophys 60(6):1682–1690. doi:10.1190/1.1443900

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34(3):182–187. doi:10.1071/EG03182

    Article  Google Scholar 

  • Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156. doi:10.1016/j.jappgeo.2013.02.017

    Article  Google Scholar 

  • Mawson R, Talent JA, Bear VC, Benson DS, Brock GA, Farrell JR, Hyland KA, Pyemont BD, Sloan TR, Sorentino L, Stewart MI, Trotter JA, Wilson GA, Simpson AG (1988) Conodont data in relation to resolution of stage and zonal boundaries for Devonian of Australia. In: McMillan NJ, Embry AF, Glass DJ (eds) Devonian of the world: Proceedings of the Second International Symposium on the Devonian System, Calgary, Canada. CSPG Spec Publ 14(3):485–527

  • Musgrove M, Katz BG, Fahlquist LS, Crandall CA, Lindgren RJ (2014) Factors affecting public-supply well vulnerability in two Karst aquifers. Ground Water 52:63–75. doi:10.1111/gwat.12201

    Article  Google Scholar 

  • Nicollin F, Gibert D, Lesparre N, Nussbaum C (2010) Anisotropy of electrical conductivity of the excavation damaged zone in the Mont Terri Underground Rock Laboratory. Geophys J Int 181(1):303–320. doi:10.1111/j.1365-246X.2010.04517.x

    Article  Google Scholar 

  • Nouioua I et al (2013) The application of GPR and electrical resistivity tomography as useful tools in detection of sinkholes in the Cheria Basin (northeast of Algeria). Environ Earth Sci 68(6):1661–1672. doi:10.1007/s12665-012-1859-9

    Article  Google Scholar 

  • NSW Department of Primary Industries (2012) Water sharing plan for the Macquarie Bogan unregulated and alluvial water sources: background document. http://www.water.nsw.gov.au. Accessed 15 Mar 2015

  • Osborne RAL (2001) Karst geology of wellington caves: a review. Helictite 37(1):3–12

    Google Scholar 

  • Osborne RAL (2007) Cathedral cave, Wellington caves, New South Wales, Australia: a multiphase, non-fluvial cave. Earth Surf Process Landf 32(14):2075–2103. doi:10.1002/esp.1507

    Article  Google Scholar 

  • Osborne RAL (2010) Rethinking eastern Australian caves. Geol Soc Lond Spec Publ 346(1):289–308. doi:10.1144/sp346.15

    Article  Google Scholar 

  • Palmer A (1986) Prediction of contaminants paths in Karst aquifers. Proceedings of the conference Environmental Problems in Karst Terranes and their Solutions, Bowling Green, KY, 28–30 October 1986, pp 32–53

  • Pánek T et al (2010) Gravitationally induced caves and other discontinuities detected by 2D electrical resistivity tomography: case studies from the Polish Flysch Carpathians. Geomorphology 123(1–2):165–180. doi:10.1016/j.geomorph.2010.07.008

    Article  Google Scholar 

  • Qarqori KH, Rouai M, Moreau F, et al (2012) Geoelectrical tomography investigating and modeling of fractures network around Bittit Spring (Middle Atlas, Morocco). Int J Geophys 2012, 489634, 13 pp. doi 10.1155/2012/489634

  • Redhaounia B, Ilondo BO, Gabtni H, Sami K, Bédir M (2016) Electrical Resistivity Tomography (ERT) applied to Karst carbonate aquifers: case study from Amdoun, northwestern Tunisia. Pure Appl Geophys 173(4):1289–1303. doi:10.1007/s00024-015-1173-z

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, Chichester, UK

    Google Scholar 

  • Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240(3–4):147–186. doi:10.1016/S0022-1694(00)00340-1

    Article  Google Scholar 

  • Soupios P, Papadopoulos N, Papadopoulos I, et al (2007) Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environ Geol 51(7):1249–1261. doi:10.1007/s00254-006-0418-7

  • Spate A, Gough JS, Thurgate M (2001) Karstic groundwater ecosystems in the Murray-Darling and Otway groundwater basins. Helictite 37(1):22–22

    Google Scholar 

  • Spiegel RJ, Sturdivant VR, Owen TE (1980) Modeling resistivity anomalies from localized voids under irregular terrain. Geophysics 45:1164–1183. doi:10.1190/1.1441115

    Article  Google Scholar 

  • Strusz D (1965) A note on the stratigraphy of the Devonian Garra Beds of NSW. J Proc R Soc NSW 98:85–90

    Google Scholar 

  • Šumanovac F, Weisser M (2001) Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains. J Appl Geophys 47(1):13–28. doi:10.1016/S0926-9851(01)00044-1

    Article  Google Scholar 

  • Thurgatel ME, Gough JS, Spate A, Eberhard S (2001) Subterranean biodiversity in New South Wales: from rags to riches. Rec West Aust Mus Suppl 64:37–47

    Google Scholar 

  • Ward SH (1990) Resistivity and induced polarization methods. Geotech Environ Geophys 1:147–189

    Google Scholar 

  • Wilkinson PB, Chambers JE, Lelliott M, Wealthall GP, Ogilvy RD (2008) Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors. Geophys J Int 173(1):49–62. doi:10.1111/j.1365-246X.2008.03725.x

    Article  Google Scholar 

  • Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. Rev Geophys 33(S2):985–994. doi:10.1029/95rg00115

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Groundwater and surface water: a single resource. US Geol Surv Circ 1139

  • Zhou W, Beck B, Adams A (2002) Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ Geol 42(8):922–928. doi:10.1007/s00254-002-0594-z

    Article  Google Scholar 

Download references

Acknowledgements

Bore BH1 was installed utilising funding from the Federal Government NCRIS Groundwater Infrastructure Program. Funding was also received from the National Centre for Groundwater Research and Training (NCGRT), and help was provided by Dr. Gabriel C Rau, Dr Hoori Ajami, Mr. Amir Abas Hayati, the Wellington Council and staff at Wellington Caves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Keshavarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarzi, M., Baker, A., Kelly, B.F.J. et al. River–groundwater connectivity in a karst system, Wellington, New South Wales, Australia. Hydrogeol J 25, 557–574 (2017). https://doi.org/10.1007/s10040-016-1491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1491-y

Keywords

Navigation