Advertisement

Hydrogeology Journal

, Volume 25, Issue 1, pp 55–66 | Cite as

Sources of dissolved oxygen in monitoring and pumping wells

  • Matthijs BonteEmail author
  • Bas Wols
  • Kees Maas
  • Pieter Stuyfzand
Paper

Abstract

Groundwater monitoring and pumping wells set in anoxic aquifers require attention to keep the groundwater free of dissolved oxygen (DO). In properly constructed monitoring or pumping wells, two processes can however still introduce oxygen to anoxic groundwater: (1) permeation of oxygen through polymer materials such as silicone, PVC, HDPE or Teflon, and (2) thermally driven convection, which can occur in all types of piezometers or wells, regardless of construction material, when the water table or pressure head is close (<10 m) to the land surface. Here, field measurements (temperature and DO well loggings) from a monitoring well in Bilthoven, the Netherlands, are combined with analytical and numerical modelling to investigate the role of both processes on oxygenation of anoxic groundwater in wells. The results of numerical and analytical modeling show that both permeation and convection can introduce oxygen into anoxic wells to near saturation concentrations. In the field data gathered, convection is primarily responsible for oxygen intrusion up to a depth of around 12 m. Oxygen intrusion through convection and permeation in monitoring and pumping wells may influence groundwater sampling and analyses, and may contribute to well clogging, depending on site conditions. The combination of field and modelling provides new insights into these processes, which can be used for both groundwater sampling and pumping well design.

Keywords

Dissolved oxygen Numerical modeling Thermal convection Groundwater monitoring 

Les sources d’oxygène dissous dans les puits de contrôle et de pompage

Résumé

La surveillance de l’eau souterraine et le dispositif des puits de pompage dans des aquifères anoxiques exigent attention pour garder une eau souterraine exempte d’oxygène dissous (OD). Dans les puits de contrôle ou de pompage correctement construits, deux processus peuvent encore malgré tout introduire de l’oxygène dans une eau souterraine anoxique : (1) la perméation de l’oxygène à travers des matériaux polymères tels que les silicones, le PVC, le PEHD ou le Téflon et (2) la convection thermique qui peut se produire dans tous types de piézomètres ou de puits, quel que soit le matériau constitutif, quand la surface de la nappe ou la charge hydraulique est proche (< 10 m) de la surface du sol. Ici, des mesures de terrain (diagraphies en forage de la température et de l’oxygène dissous OD) sur un puits de surveillance à Bilthoven, Pays Bas, ont été combinées à un modèle analytique et numérique dans le but d’étudier le rôle des deux processus d’oxygénation d’une eau souterraine anoxique dans les puits. Les résultats de la modélisation analytique et numérique montrent que la perméation et la convection peuvent toutes deux introduire de l’oxygène dans des puits anoxiques à des concentrations proches de la saturation. Parmi les données de terrain collectées, la convection est la principale cause de la pénétration de l’oxygène jusqu’à une profondeur d’environ 12 m. L’introduction d’oxygène par convection et perméation dans les puits de contrôle et de pompage peut influencer l’échantillonnage des eaux souterraines et les résultats d’analyses et contribuer, selon les conditions de site, à l’obturation du puits. La combinaison des observations de terrain et de la modélisation fournit de nouvelles connaissances concernant ces processus, qui peuvent être utilisées à la fois pour l’échantillonnage de l’eau souterraine et la conception d’un puits de pompage.

Fuentes de oxígeno disuelto en pozos de monitoreo y de bombeo

Resumen

Los pozos de monitoreo y de bombeo de agua subterránea en los acuíferos anóxicos requieren atención para mantener el agua subterránea libre de oxígeno disuelto (OD). Sin embargo, dos procesos, en pozos de monitoreo o de bombeo adecuadamente construidos, pueden introducir oxígeno en el agua subterránea anóxica: (1) permeación de oxígeno a través de materiales de polímeros tales como silicona, PVC, HDPE o Teflon, y (2) convección impulsada térmicamente, que puede ocurrir en todos los tipos de piezómetros o pozos, independientemente del material de construcción, cuando el nivel freático o la carga hidráulica está cerca (<10 m) de la superficie del terreno. En este caso, las mediciones de campo (temperatura y registros de OD en los pozos) de un pozo de monitoreo en Bilthoven, Holanda, se combinan con el modelado analítico y numérico para investigar el papel de ambos procesos en la oxigenación de los pozos de agua subterránea anóxica. Los resultados de los modelos numéricos y analíticos muestran que tanto la permeabilidad como la convección pueden introducir oxígeno en pozos anóxicos en concentraciones cercanas a la saturación. En los datos de campo recolectados, la convección es la principal responsable de la intrusión de oxígeno hasta una profundidad de unos 12 m. La intrusión de oxígeno a través de convección y de permeación en los pozos de monitoreo y de bombeo de agua subterránea pueden influir en el muestreo y análisis, y pueden contribuir así a la obstrucción, dependiendo de las condiciones del lugar. La combinación de los datos campo y el modelado proporciona nuevos conocimientos sobre estos procesos, que pueden ser utilizados tanto para la toma de muestras de aguas subterráneas como para el diseño de bombeo de los pozos.

监测井和抽水井中溶解氧的来源

摘要

缺氧含水层中地下水监测井和抽水井需要注意保持地下水没有溶解氧。在正确建造的监测井和抽水井中,两个过程仍然能把氧气带到缺氧的地下水中:(1) 氧气通过聚合物材料诸如硅树脂、PVC、 HDPE或者特氟龙的渗透;(2) 热源驱动的对流。当水位或者压力水头接近 (<10 m) 地表时,不管何种建筑材料,热源驱动的对流会出现在所有类型的测压计或者井中。在此,把从荷兰Bilthoven地区监测井得到的室外测量结果 (温度和溶解氧井记录) 与解析和数值模拟结合起来,研究两个过程对井中缺氧地下水氧化的作用。数值和解析模拟结果显示,渗透和对流可把氧气带入到缺氧经中,达到几乎饱和浓度。在收集的室外资料中, 大约12米的深度内,氧气进入水中主要是对流造成的。监测井和抽水井中通过对流和渗透的氧气进入可影响地下水采样 和分析,可有助于录井,这取决于现场条件。室外工作和模拟的结合对这些过程提供了新的认识,这些认识可用于地下水采样和抽水井设计。

Fontes de oxigênio dissolvido em poços de monitoramento e bombeamento

Resumo

Poços de monitoramento e bombeamento instalados em aquíferos anóxicos requerem atenção para manter as águas subterrâneas livre de oxigênio dissolvido (OD). Mesmo em poços de monitoramento ou bombeamento devidamente construídos, dois processos podem introduzir oxigênio às águas subterrâneas anóxicas: (1) penetração/permeação de oxigênio através de materiais poliméricos como silicone, PVC, PEAD ou Teflon, e (2) convecção impulsionada termicamente, que pode ocorrer em todos os tipos de piezômetros ou poços, independentemente do material de construção, quando o nível freático ou carga de pressão for próximo (<10 m) à superfície do terreno. Neste trabalho, combinaram-se medições de campo (registros de temperatura e OD no poço) realizadas em poços de monitoramento em Bilthoven, Holanda, com modelagens analítica e numérica visando investigar o papel desempenhado por ambos processos na oxigenação das águas subterrâneas em poços. Os resultados das modelagens numérica e analítica mostram que tanto a penetração/permeação de oxigênio quanto a convecção podem introduzir oxigênio nos poços anóxicos até concentrações próximas à de saturação. Nos dados de campo coletados, a convecção é responsável principalmente pela intrusão de oxigênio até uma profundidade em torno de 12 m. A introdução de oxigênio por meio de convecção e penetração/permeação em poços de monitoramento e bombeamento podem influenciar amostras de água subterrânea e suas análises, e podem contribuir para a colmatação de poços, dependendo das condições locais. A combinação de dados de campo e modelagem fornecem novas perspectivas para com esses processos, os quais podem ser usados tanto para amostragem de água subterrânea quanto para projetar poços de bombeamento

Notes

Acknowledgments

The authors acknowledge Diego Bustos-Medina (KWR Watercycle Research Institute) for his help in using the optical DO sensor and Patrick van Beelen (RIVM) for his practical assistance during field work in Bilthoven.

Supplementary material

10040_2016_1477_MOESM1_ESM.pdf (390 kb)
ESM 1 (PDF 390 kb)

References

  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The NetherlandsCrossRefGoogle Scholar
  2. Applin KR, Zhao N (1989) The kinetics of Fe(II) oxidation and well screen encrustation. Ground Water 27:168–174. doi: 10.1111/j.1745-6584.1989.tb00437.x CrossRefGoogle Scholar
  3. Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46. doi: 10.1029/2006RG000210
  4. Boode PVC (2014) Standard PVC casing & vertical slot screen 1″– 24″. http://www.boode.com/PHPpages/products-pvc.php. Accessed 1 May 2014
  5. Bustos Medina DA, van den Berg GA, van Breukelen BM, Juhasz-Holterman M, Stuyfzand PJ (2013) Iron-hydroxide clogging of public supply wells receiving artificial recharge: near-well and in-well hydrological and hydrochemical observations. Hydrogeol J 21:1393–1412. doi: 10.1007/s10040-013-1005-0 CrossRefGoogle Scholar
  6. COMSOL (2014) COMSOL Multiphysics 4.2. www.comsol.com. Accessed 1 Jan 2014
  7. Dubé J-S, Boudreault J-P (2011) A simplified dimensionless model of the passive diffusion of gases and solutes in groundwater through polymer tubing. Ground Water Monit Rem. doi: 10.1111/j.1745-6592.2011.01351.x Google Scholar
  8. Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New YorkGoogle Scholar
  9. George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26:985–1017. doi: 10.1016/s0079-6700(00)00036-8 CrossRefGoogle Scholar
  10. Holm TR, George GK, Barcelona MJ (1988) Oxygen transfer through flexible tubing and its effects on ground water sampling results. Ground Water Monit Rem 8:83–89. doi: 10.1111/j.1745-6592.1988.tb01089.x CrossRefGoogle Scholar
  11. Houben GJ (2003a) Iron oxide incrustations in wells, part 1: genesis, mineralogy and geochemistry. Appl Geochem 18:927–939. doi: 10.1016/s0883-2927(02)00242-1 CrossRefGoogle Scholar
  12. Houben GJ (2003b) Iron oxide incrustations in wells, part 2: chemical dissolution and modeling. Appl Geochem 18:941–954. doi: 10.1016/s0883-2927(02)00185-3 CrossRefGoogle Scholar
  13. Houben G, Trestakis C (2007) Water well rehabilitation and reconstruction. McGraw Hill, New YorkGoogle Scholar
  14. Hwang S-T, Tang TES, Kammermeyer K (1971) Transport of dissolved oxygen through silicone rubber membrane. J Macromol Sci Part B 5:1–10. doi: 10.1080/00222347108212517 CrossRefGoogle Scholar
  15. Ito A, Yamagiwa K, Tamura M, Furusawa M (1998) Removal of dissolved oxygen using non-porous hollow-fiber membranes. J Membr Sci 145:111–117. doi: 10.1016/s0376-7388(98)00068-4 CrossRefGoogle Scholar
  16. Kjeldsen P (1993) Evaluation of gas diffusion through plastic materials used in experimental and sampling equipment. Water Res 27:121–131CrossRefGoogle Scholar
  17. Klopffer MH, Flaconneche B (2001) Transport properties of gases in polymers: bibliographic review. Oil Gas Sci Technol Rev IFP 56:223–244CrossRefGoogle Scholar
  18. Love AJ, Simmons CT, Nield DA (2007) Double-diffusive convection in groundwater wells. Water Resour Res 43. doi: 10.1029/2007WR006001
  19. Puls RW, Powell RM (1992) Acquisition of representative ground water quality samples for metals. Ground Water Monit Rem 12:167–176. doi: 10.1111/j.1745-6592.1992.tb00057.x CrossRefGoogle Scholar
  20. Puls RW, Clark D, Bledsoe B, Powell RM, Paul CJ (1992) Metals in ground water: sampling artifacts and reproducibility. Hazard Waste Hazard Mater 9:149–162. doi: 10.1089/hwm.1992.9.149 CrossRefGoogle Scholar
  21. Refojo MF, Leong F-L (1978) Water-dissolved-oxygen permeability coefficients of hydrogel contact lenses and boundary layer effects. J Membr Sci 4:415–426. doi: 10.1016/s0376-7388(00)83317-7 CrossRefGoogle Scholar
  22. Roy S, Fouillac AM (2004) Uncertainties related to sampling and their impact on the chemical analysis of groundwater. TrAC Trends Anal Chem 23:185–193CrossRefGoogle Scholar
  23. Sammel EA (1968) Convective flow and its effect on temperature logging in small diameter wells. Geophysics 33:1004–1012CrossRefGoogle Scholar
  24. Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7:15–27CrossRefGoogle Scholar
  25. van Beek CGEM (2010) Cause and prevention of clogging of wells abstracting groundwater from unconsolidated aquifers. PhD Thesis, Vrei University, AmsterdamGoogle Scholar
  26. Vroblesky DA, Casey CC, Lowery MA (2007) Influence of dissolved oxygen convection on well sampling. Ground Water Monit Rem 27:49–58CrossRefGoogle Scholar
  27. Yang W-H, Smolen VF, Peppas NA (1981) Oxygen permeability coefficients of polymers for hard and soft contact lens applications. J Membr Sci 9:53–67. doi: 10.1016/s0376-7388(00)85117-0 CrossRefGoogle Scholar
  28. Zimmer M, Erzinger J, Kujawa C (2011) The gas membrane sensor (GMS): a new method for gas measurements in deep boreholes applied at the CO2SINK site. Int J Greenhouse Gas Control 5:995–1001. doi: 10.1016/j.ijggc.2010.11.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Matthijs Bonte
    • 1
    • 2
    Email author
  • Bas Wols
    • 1
  • Kees Maas
    • 3
  • Pieter Stuyfzand
    • 1
    • 4
  1. 1.KWR Watercycle Research InstituteNieuwegeinThe Netherlands
  2. 2.Shell Global SolutionsRijswijkThe Netherlands
  3. 3.Maas GAMiddelburgThe Netherlands
  4. 4.Faculty of Civil Engineering and GeosciencesTechnical University DelftDelftThe Netherlands

Personalised recommendations