Hydrogeology Journal

, Volume 24, Issue 8, pp 2157–2170 | Cite as

High-yielding aquifers in crystalline basement: insights about the role of fault zones, exemplified by Armorican Massif, France

  • Clément Roques
  • Olivier Bour
  • Luc Aquilina
  • Benoît Dewandel
Paper

Abstract

While groundwater constitutes a crucial resource in many crystalline-rock regions worldwide, well-yield conditions are highly variable and barely understood. Nevertheless, it is well known that fault zones may have the capacity to ensure sustainable yield in crystalline media, but there are only a few and disparate examples in the literature that describe high-yield conditions related to fault zones in crystalline rock basements. By investigating structural and hydraulic properties of remarkable yielding sites identified in the Armorican Massif, western France, this study discusses the main factors that may explain such exceptional hydrogeological properties. Twenty-three sites, identified through analysis of databases available for the region, are investigated. Results show that: (1) the highly transmissive fractures are related to fault zones which ensure the main water inflow in the pumped wells; (2) the probability of intersecting such transmissive fault zones does not vary significantly with depth, at least within the range investigated in this study (0–200 m); and (3) high yield is mainly controlled by the structural features of the fault zones, in particular the fault dip and the presence of a connected storage reservoir. Conceptual models that summarize the hydrological properties of high-yield groundwater resources related to fault zones in crystalline basement are shown and discussed.

Keywords

Crystalline rocks Fault zone Hydraulic properties Well yield France 

Aquifères à haut rendement en contexte de socle cristallin: aperçu du rôle des zones de failles, illustré par le massif armoricain, France

Résumé

Alors que les eaux souterraines constituent une ressource cruciale dans de nombreuses régions de socle dans le monde, les conditions de rendement sont très variables et à peine comprises. Néanmoins, il est bien connu que les zones de failles peuvent avoir la capacité d’assurer un rendement durable dans les milieux cristallins, mais il n’y a que quelques exemples disparates dans la littérature qui décrivent les conditions à haut rendement liées aux zones de failles dans les roches cristallines de socle. En étudiant les propriétés structurelles et hydrauliques de sites remarquables du point de vue du rendement, identifiés dans le Massif armoricain, Ouest de la France, cette étude examine les principaux facteurs qui peuvent expliquer de telles propriétés hydrogéologiques exceptionnelles. Vingt-trois sites, identifiés par l’analyse des bases de données disponibles pour la région, sont étudiés. Les résultats montrent que: (1) les fractures très transmissives sont associées aux principales zones de failles qui assurent les venues d’eau principales dans les puits pompés; (2) la probabilité de recouper de telles zones de failles transmissives ne varie pas significativement avec la profondeur, au moins dans la gamme étudiée dans cette étude (0–200 m); et (3) un rendement élevé est principalement contrôlé par les caractéristiques structurelles des zones de failles, notamment le pendage des failles et la présence d’un réservoir de stockage connecté. Les modèles conceptuels qui résument les propriétés hydrologiques des ressources en eaux souterraines à haut rendement liées aux zones de failles dans le socle cristallin sont présentés et discutés.

Acuíferos de alto rendimiento en el basamento cristalino: conocimientos acerca del papel de las zonas de falla, ejemplificado por el Armorican Massif, Francia

Resumen

Mientras que el agua subterránea constituye un recurso fundamental en muchas regiones de rocas cristalinas en todo el mundo, las condiciones de los rendimientos de los pozos son muy variables y apenas comprendidas. Sin embargo, es bien sabido que las zonas de fallas pueden tener la capacidad para garantizar un rendimiento sostenible en medios cristalinos, pero sólo hay unos pocos y dispares ejemplos en la literatura que describen las condiciones de alto rendimiento relacionados con zonas de fallas en rocas del basamento cristalino. A partir de la investigación de las propiedades estructurales e hidráulicas de sitios con rendimientos extraordinarios identificados en el Armorican Massif, en el oeste de Francia, este estudio analiza los principales factores que pueden explicar estas propiedades hidrogeológicas excepcionales. Se investigaron veintitrés sitios, identificados a través del análisis de bases de datos disponibles para la región. Los resultados muestran que: (1) las fracturas altamente transmisoras están relacionados con las principales zonas de fallas que aseguran el ingreso principal de agua a los pozos de bombeo; (2) la probabilidad de intersección de dichas zonas de fallas transmisivas no varía significativamente con la profundidad, por lo menos dentro del intervalo investigado en este estudio (0–200 m); y (3) el alto rendimiento es controlado principalmente por las características estructurales de las zonas de falla, en particular, el buzamiento de la falla y la presencia de un reservorio de almacenamiento conectado. Se muestran y discuten los modelos conceptuales que resumen las propiedades hidrológicas de los recursos de agua subterránea de alto rendimiento relacionados con las zonas de fallas en el basamento cristalino.

高出水量的结晶岩基岩含水层:有关断层带作用的思考,法国阿摩力运动地块研究实例

摘要

地下水在世界范围内许多结晶岩地区构成了至关重要的资源,然而,井出水量条件变化非常大,对此人们知之甚少。众所周知,断层带可能有能力保证结晶介质中可持续的出水量,但文献中只有几个不同的描述与结晶岩基岩断层带相关的高出水量条件。通过调查法国西部阿摩力运动地块显著产水区结构和水力特性,本研究论述了可能解释此种特殊水文地质特性的主要因素。通过本地区现有的数据库分析确认了二十三个地点,对这些点进行了调查。结果显示,(1)输水性高的断裂与主要断层带相关,这能确保大量的水涌入抽水井;(2)贯穿这样的输水断层带可能性随深度变化不大,至少在本研究调查的范围内如此(0–200 米);(3)高产水量主要受断层带的结构特点控制,特别是受断层下倾及是否存在连接的蓄水库的控制。展示和论述了概述结晶岩基岩断层带高出水量地下水源的水文特性概念模型。

Aquiferos altamente produtivos no embasamento cristalino: novas percepções sobre o papel de zonas de falha, exemplificado pelo Maciço Armoricano, França

Resumo

Enquanto que a água subterrânea é um recurso crucial em muitas regiões de rochas cristalinas a nível mundial, as condições de produtividade das captações são altamente variáveis e pouco compreendidas. De qualquer forma, é bem conhecido que zonas de falha têm a capacidade para garantir a exploração sustentável em meios cristalinos, mas existem poucos e disparos exemplos na literatura que descrevem condições de alta produtividade em zonas de falha em embasamentos cristalinos. Investigando as propriedades estruturais e hidráulicas de casos com produtividades notáveis no Maciço Armoricano, no oeste da França, este estudo examina os principais fatores que poderão explicar as suas propriedades hidrogeológicas excepcionais. Vinte e três casos, identificados através da análise de bases de dados disponíveis para a região, são investigados. Resultados mostram que: (1) as fraturas altamente transmissíveis estão relacionadas com as maiores zonas de falha, que garantem o fluxo principal de água para as captações; (2) a probabilidade de intersectar estas zonas de falha transmissivas não varia significativamente com a profundidade, pelo menos na gama investigada pelo presente estudo (0–200 m); e (3) produtividade alta é controlada pelas características estruturais das zonas de falhas, em particular a inclinação e a existência de uma conexão com um reservatório. Modelos conceptuais que resumem as propriedades hidrológicas de recursos hídricos subterrâneos de produtividade alta são apresentados e discutidos.

Notes

Acknowledgements

Some of the data are freely available from the French Water Agency (Agence de l’eau Loire Bretagne 2016) and the BRGM databases (French Geological Survey, BRGM 2016). Most funding came from the CASPAR project in collaboration with OSUR and BRGM and co-funded by the European Regional Development Funding (FEDER), the Regional Council of French Brittany, the French Water Agency of Loire-Brittany (AELB), the Department of Ile-et-Vilaine, and the French Ministry for Education and Research. We also wish to thank the European INTERREG IV project CLIMAWAT and the network of hydrogeological research sites H+ (SOERE H+) which provided some of the data. We are grateful to Yvon Georget, Gilles Lucas and Phillippe Bardy for sharing with us their knowledge regarding the sites. Diana Warwick is also warmly acknowledged for her detailed English editing. The authors greatly appreciate constructive remarks from the editor Jean-Michel Lemieux, the associate editor, and the two anonymous reviewers, which considerably improved the quality of the manuscript.

References

  1. Amiotte Suchet P, Probst J-L, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cycles 17:1–13. doi: 10.1029/2002GB001891 CrossRefGoogle Scholar
  2. Anderson RS (2015) Pinched topography initiates the critical zone. Science 350(6260):506–507. doi: 10.1126/science.aad2266 CrossRefGoogle Scholar
  3. Ayraud V, Aquilina L, Labasque T, Pauwels H, Molenat J, Pierson-Wickmann A-C, Durand V, Bour O, Tarits C, Le Corre P (2008) Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses. Appl Geochem 23:2686–2707. doi: 10.1016/j.apgeochem.2008.06.001 CrossRefGoogle Scholar
  4. Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Compt Rendus Geosci 341:174–201. doi: 10.1016/j.crte.2008.11.009 CrossRefGoogle Scholar
  5. Banks D (1998) Predicting the probability distribution of yield from multiple boreholes in crystalline bedrock. Ground Water 36:269–274. doi: 10.1111/j.1745-6584.1998.tb01092.x CrossRefGoogle Scholar
  6. Banks D, Robins NS, Robins N (2002) An introduction to groundwater in crystalline bedrock. Norges Geologiske Undersokelse, Trondheim, NorwayGoogle Scholar
  7. Banks EW, Simmons CT, Love AJ, Cranswick R, Werner AD, Bestland E a, Wood M, Wilson T (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeol J 17:1969–1989. doi: 10.1007/s10040-009-0490-7 CrossRefGoogle Scholar
  8. Barton C, Zoback M, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686. doi: 10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2 CrossRefGoogle Scholar
  9. Batu V (1998) Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. Wiley, Chichester, UK, 752 ppGoogle Scholar
  10. Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth Sci Rev 127:171–192. doi: 10.1016/j.earscirev.2013.09.008 CrossRefGoogle Scholar
  11. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884. doi: 10.1016/S0309-1708(02)00042-8 CrossRefGoogle Scholar
  12. Bessin P, Guillocheau F, Robin C, Schroëtter JM, Bauer H (2015) Planation surfaces of the Armorican Massif (western France): denudation chronology of a Mesozoic land surface twice exhumed in response to relative crustal movements between Iberia and Eurasia. Geomorphology 233:75–91. doi: 10.1016/j.geomorph.2014.09.026 CrossRefGoogle Scholar
  13. Blatt H, Jones R (1975) Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geol Soc Am Bull 86:1085–1088. doi: 10.1130/0016-7606(1975)86<1085:POEIMA>2.0.CO;2 CrossRefGoogle Scholar
  14. Bonnet S, Guillocheau F, Brun J-P, Van Den Driessche J (2000) Large-scale relief development related to Quaternary tectonic uplift of a Proterozoic-Paleozoic basement: the Armorican Massif, NW France. J Geophys Res 105:19273–19288. doi: 10.1029/2000JB900142 CrossRefGoogle Scholar
  15. Bourdet D, Ayoub J (1989) Use of pressure derivative in well test interpretation. SPE Form Eval 4:293–302CrossRefGoogle Scholar
  16. Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18:1839–1854. doi: 10.1007/s10040-010-0640-y CrossRefGoogle Scholar
  17. Butler JJ, Liu WZ (1991) Pumping tests in non-uniform aquifers: the linear strip case. J Hydrol 128:69–99. doi: 10.1016/0022-1694(91)90132-2 CrossRefGoogle Scholar
  18. Caine J, Evans J, Forster C (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028. doi: 10.1130/0091-7613(1996)024<1025 CrossRefGoogle Scholar
  19. Chantraine J, Egal E, Thiéblemont D, Le Goff E, Guerrot C, Ballèvre M, Guennoc P (2001) The Cadomian active margin (North Armorican Massif, France): a segment of the North Atlantic Panafrican belt. Tectonophysics 331:1–18. doi: 10.1016/S0040-1951(00)00233-X CrossRefGoogle Scholar
  20. Chilton PJ, Foster SDS (1995) Hydrogeological characterization and water-supply potential of basement aquifers in tropical Africa. Hydrogeol J 3:36–49. doi: 10.1007/s100400050061 CrossRefGoogle Scholar
  21. Dewandel B, Lachassagne P, Wyns R, Maréchal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284. doi: 10.1016/j.jhydrol.2006.03.026 CrossRefGoogle Scholar
  22. Dewandel B, Lachassagne P, Zaidi FK, Chandra S (2011) A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: example of a quartz reef in granitic terrain in South India. J Hydrol 405:474–487. doi: 10.1016/j.jhydrol.2011.05.050 CrossRefGoogle Scholar
  23. Dewandel B, Maréchal JC, Bour O, Ladouche B, Ahmed S, Chandra S, Pauwels H (2012) Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. J Hydrol 416–417:83–97. doi: 10.1016/j.jhydrol.2011.11.038 CrossRefGoogle Scholar
  24. Dewandel B, Aunay B, Maréchal JC, Roques C, Bour O, Mougin B, Aquilina L (2014) Analytical solutions for analysing pumping tests in a sub-vertical and anisotropic fault zone draining shallow aquifers. J Hydrol 509:115–131. doi: 10.1016/j.jhydrol.2013.11.014 CrossRefGoogle Scholar
  25. Folch A, Mas-Pla J (2008) Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems. Hydrol Process 22:3476–3487. doi: 10.1002/hyp.6956 CrossRefGoogle Scholar
  26. Gleeson T, Novakowski K (2009) Identifying watershed-scale barriers to groundwater flow: lineaments in the Canadian shield. Geol Soc Am Bull 121:333–347. doi: 10.1130/B26241.1 CrossRefGoogle Scholar
  27. Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH, van Beek LPH, Jellinek AM (2011) Mapping permeability over the surface of the Earth. Geophys Res Lett 38, L02401. doi: 10.1029/2010GL045565 CrossRefGoogle Scholar
  28. Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200. doi: 10.1038/nature11295 CrossRefGoogle Scholar
  29. Guihéneuf N, Boisson A, Bour O, Dewandel B, Perrin J, Dausse A, Viossanges M, Chandra S, Ahmed S, Maréchal JC (2014) Groundwater flows in weathered crystalline rocks: impact of piezometric variations and depth-dependent fracture connectivity. J Hydrol. doi: 10.1016/j.jhydrol.2014.01.061 Google Scholar
  30. Guillocheau F, Brault N, Thomas E, Barbarand J, Bonnet S, Bourquin S, Estéoule-Choux J, Guennoc P, Menier D, Néraudeau D, Proust J, Wyns R (2003) Histoire géologique du Massif Armoricain depuis 140 MA (Crétacé-Actuel) [Geological History of the Armorican Massif since 140 My (Cretaceous-Current)]. Bull Information Géol Bassin Paris 40:13–28Google Scholar
  31. Hencher SR, Lee SG, Carter TG, Richards LR (2011) Sheeting joints: characterisation, shear strength and engineering. Rock Mech Rock Eng 44:1–22. doi: 10.1007/s00603-010-0100-y CrossRefGoogle Scholar
  32. Henriksen H (2003) The role of some regional factors in the assessment of well yields from hard-rock aquifers of Fennoscandia. Hydrogeol J 11:628–645. doi: 10.1007/s10040-003-0277-1 CrossRefGoogle Scholar
  33. Henriksen H, Braathen A (2005) Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway. Hydrogeol J 14:444–461. doi: 10.1007/s10040-005-0444-7 CrossRefGoogle Scholar
  34. Kabala ZJ (1994) Measuring distributions of hydraulic conductivity and specific storativity by the double flowmeter test. Water Resour Res 30:685–690. doi: 10.1029/93WR03104 CrossRefGoogle Scholar
  35. Le Borgne T, Bour O, Paillet F, Caudal J (2006) Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J Hydrol 328:347–359. doi: 10.1016/j.jhydrol.2005.12.029 CrossRefGoogle Scholar
  36. Le Borgne T, De Dreuzy JR, Davy P, Bour O (2007) Characterization of the velocity field organization in heterogeneous media by conditional correlation. Water Resour Res 43:1–10. doi: 10.1029/2006WR004875 CrossRefGoogle Scholar
  37. Leray S, de Dreuzy J-R, Bour O, Bresciani E (2013) Numerical modeling of the productivity of vertical to shallowly dipping fractured zones in crystalline rocks. J Hydrol 481:64–75. doi: 10.1016/j.jhydrol.2012.12.014 CrossRefGoogle Scholar
  38. Mabee SB (1999) Factors influencing well productivity in glaciated metamorphic rocks. Ground Water 37:88–97. doi: 10.1111/j.1745-6584.1999.tb00961.x CrossRefGoogle Scholar
  39. Malgrange J, Gleeson T (2014) Shallow, old, and hydrologically insignificant fault zones in the Appalachian orogen. J Geophys Res Solid Earth 119:346–359. doi: 10.1002/2013JB010351 CrossRefGoogle Scholar
  40. Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40, W11508. doi: 10.1029/2004WR003137 CrossRefGoogle Scholar
  41. Mattila J, Tammisto E (2012) Stress-controlled fluid flow in fractures at the site of a potential nuclear waste repository, Finland. Geology 40:299–302. doi: 10.1130/G32832.1 CrossRefGoogle Scholar
  42. Mazabraud Y, Béthoux N, Guilbert J, Bellier O (2004) Evidence for short-scale stress field variations within intraplate central-western France. Geophys J Int 160:161–178. doi: 10.1111/j.1365-246X.2004.02430.x CrossRefGoogle Scholar
  43. Mazabraud Y, Béthoux N, Deroussi S (2005) Characterisation of the seismological pattern in a slowly deforming intraplate region: central and western France. Tectonophysics 409:175–192. doi: 10.1016/j.tecto.2005.08.021 CrossRefGoogle Scholar
  44. Meier PM, Carrera J, Sánchez-Vila X (1998) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34:1011–1025. doi: 10.1029/98WR00008 CrossRefGoogle Scholar
  45. Mougin B, Allier D, Blanchin R, Carn A, Courtois N, Gateau C, Putot E (2008) SILURES Bretagne (Système d’Information pour la Localisation et l’Utilisation des Ressources en Eaux Souterraines) [SILURES Bretagne (Information system for the location and use of groundwater resources in the Armorican Massif)]. Final report, BRGM/RP-56457. www.brgm.fr. Accessed July 2016
  46. Neves MA, Morales N (2006) Well productivity controlling factors in crystalline terrains of southeastern Brazil. Hydrogeol J 15:471–482. doi: 10.1007/s10040-006-0112-6 CrossRefGoogle Scholar
  47. Olesen O, Dehls J (2007) Aeromagnetic mapping of deep-weathered fracture zones in the Oslo Region: a new tool for improved planning of tunnels. Nor J Geol 87:253–267Google Scholar
  48. Paillet FL (1998) Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour Res 34:997–1010. doi: 10.1029/98WR00268 CrossRefGoogle Scholar
  49. Place J, Géraud Y, Diraison M, Herquel G, Edel J-B, Bano M, Le Garzic E, Walter B (2015) Structural control of weathering processes within exhumed granitoids: compartmentalisation of geophysical properties by faults and fractures. J Struct Geol 84:102–119. doi: 10.1016/j.jsg.2015.11.011 CrossRefGoogle Scholar
  50. Rafini S, Larocque M (2012) Numerical modeling of the hydraulic signatures of horizontal and inclined faults. Hydrogeol J 20:337–350. doi: 10.1007/s10040-011-0812-4 CrossRefGoogle Scholar
  51. Ranjram M, Gleeson T, Luijendijk E (2015) Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting? Geofluids 15:106–119. doi: 10.1111/gfl.12098 CrossRefGoogle Scholar
  52. Razack M, Lasm T (2006) Geostatistical estimation of the transmissivity in a highly fractured metamorphic and crystalline aquifer (Man-Danane Region, Western Ivory Coast). J Hydrol 325:164–178. doi: 10.1016/j.jhydrol.2005.10.014 CrossRefGoogle Scholar
  53. Renard P, Glenz D, Mejias M (2008) Understanding diagnostic plots for well-test interpretation. Hydrogeol J 17:589–600. doi: 10.1007/s10040-008-0392-0 CrossRefGoogle Scholar
  54. Roques C (2013) Hydrogéologie des zones de faille du socle cristallin: implications en terme de ressources en eau pour le Massif Armoricain (Fault zone hydrogeology in crystalline media: implication in term of groundwater ressources for the Armorican Massif). Numéro 148 des Mémoires de geosciences Rennes, Université Rennes 1, Rennes, FranceGoogle Scholar
  55. Roques C, Aquilina L, Bour O, Maréchal J-C, Dewandel B, Pauwels H, Labasque T, Vergnaud-Ayraud V, Hochreutener R (2014a) Groundwater sources and geochemical processes in a crystalline fault aquifer. J Hydrol 519:3110–3128. doi: 10.1016/j.jhydrol.2014.10.052 CrossRefGoogle Scholar
  56. Roques C, Bour O, Aquilina L, Dewandel B, Leray S, Schroetter JM, Longuevergne L, Le Borgne T, Hochreutener R, Labasque T, Lavenant N, Vergnaud-Ayraud V, Mougin B (2014b) Hydrological behavior of a deep sub-vertical fault in crystalline basement and relationships with surrounding reservoirs. J Hydrol 509:42–54. doi: 10.1016/j.jhydrol.2013.11.023 CrossRefGoogle Scholar
  57. Ruelleu S, Moreau F, Bour O, Gapais D, Martelet G (2010) Impact of gently dipping discontinuities on basement aquifer recharge: an example from Ploemeur (Brittany, France). J Appl Geophys 70:161–168. doi: 10.1016/j.jappgeo.2009.12.007 CrossRefGoogle Scholar
  58. Seebeck H, Nicol A, Walsh JJ, Childs C, Beetham RD, Pettinga J (2014) Fluid flow in fault zones from an active rift. J Struct Geol 62:52–64. doi: 10.1016/j.jsg.2014.01.008 CrossRefGoogle Scholar
  59. Singhal B, Gupta R (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer, Heidelberg, Germany. doi: 10.1007/978-90-481-8799-7
  60. Srivastav SK, Lubczynski MW, Biyani AK (2007) Upscaling of transmissivity, derived from specific capacity: a hydrogeomorphological approach applied to the Doon Valley aquifer system in India. Hydrogeol J 15:1251–1264. doi: 10.1007/s10040-007-0207-8 CrossRefGoogle Scholar
  61. St. Clair J, Moon S, Holbrook WS, Perron JT, Riebe CS, Martel SJ, Carr B, Harman C, Singha K, Richter DD (2015) Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350(6260):534–538.6260. doi: 10.1126/science.aab2210 CrossRefGoogle Scholar
  62. Stober I, Bucher K (2006) Hydraulic properties of the crystalline basement. Hydrogeol J 15:213–224. doi: 10.1007/s10040-006-0094-4 CrossRefGoogle Scholar
  63. Stober I, Bucher K (2014) Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks. Geofluids 15(2015):161–178. doi: 10.1111/gfl.12104 Google Scholar
  64. Taylor RG, Howard KWF (1999) Lithological evidence for the evolution of weathered mantles in Uganda by tectonically controlled cycles of deep weathering and stripping. CATENA 35:65–94. doi: 10.1016/S0341-8162(98)00118-0 CrossRefGoogle Scholar
  65. Taylor R, Howard K (2002) A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeol J 8:279–294. doi: 10.1007/s100400000069 CrossRefGoogle Scholar
  66. Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans Am Geophys Union 16:519. doi: 10.1029/TR016i002p00519 CrossRefGoogle Scholar
  67. Van Vliet-Lanoë B, Bonnet S, Hallegouët M, Laurent M (1997) Neotectonic and seismic activity in the Armorican and Cornubian Massifs: regional stress field with glacio-isostatic influence? J Geodyn 24(1–4):219–239. Retrieved from http://www.sciencedirect.com/science/article/pii/S026437079600035X
  68. Welch LA, Allen DM (2014) Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow. Hydrogeol J. doi: 10.1007/s10040-014-1121-5 Google Scholar
  69. Wyns R, Baltassat J, Lachassagne P, Legchenko A, Vairon J (2004) Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bull Soc Géol Fr 175:21–34. doi: 10.2113/175.1.21 CrossRefGoogle Scholar

Online database

  1. Agence de l’eau Loire-Bretagne (2016) French Water Agency, données prélèvement eau potable [Water supply database]. http://www.eau-loire-bretagne.fr/. Accessed July 2016
  2. BRGM (2016) Bureau de Recherches Géologiques et Minières (French Geological Survey), Infoterre database, Dossiers sur le Sous-Sol BSS [Underground database]. http://infoterre.brgm.fr/dossiers-sur-le-sous-sol-bss. Accessed July 2016

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.OSUR Research Federation – Géosciences, UMR 6118University of Rennes 1, CNRSRennesFrance
  2. 2.Department of Earth SciencesETH ZürichZürichSwitzerland
  3. 3.BRGM, Water Dept (D3E) – New Water Resource & Economy UnitMontpellierFrance

Personalised recommendations