Advertisement

Hydrogeology Journal

, Volume 24, Issue 6, pp 1593–1605 | Cite as

Groundwater abstraction management in Sana’a Basin, Yemen: a local community approach

  • Taha M. TaherEmail author
Report

Abstract

Overexploitation of groundwater resources in Sana’a Basin, Yemen, is causing severe water shortages associated water quality degradation. Groundwater abstraction is five times higher than natural recharge and the water-level decline is about 4–8 m/year. About 90 % of the groundwater resource is used for agricultural activities. The situation is further aggravated by the absence of a proper water-management approach for the Basin. Water scarcity in the Wadi As-Ssirr catchment, the study area, is the most severe and this area has the highest well density (average 6.8 wells/km2) compared with other wadi catchments. A local scheme of groundwater abstraction redistribution is proposed, involving the retirement of a substantial number of wells. The scheme encourages participation of the local community via collective actions to reduce the groundwater overexploitation, and ultimately leads to a locally acceptable, manageable groundwater abstraction pattern. The proposed method suggests using 587 wells rather than 1,359, thus reducing the well density to 2.9 wells/km2. Three scenarios are suggested, involving different reductions to the well yields and/or the number of pumping hours for both dry and wet seasons. The third scenario is selected as a first trial for the communities to action; the resulting predicted reduction, by 2,371,999 m3, is about 6 % of the estimated annual demand. Initially, the groundwater abstraction volume should not be changed significantly until there are protective measures in place, such as improved irrigation efficiency, with the aim of increasing the income of farmers and reducing water use.

Keywords

Groundwater management Socio-economic aspects Well retirement Over-abstraction Yemen 

Gestion de l’exploitation des eaux souterraines dans le Bassin de Sana’a, Yemen: approche d’une collectivité locale

Résumé

La surexploitation des ressources en eaux souterraines dans le Bassin de Sana’a, Yémen, est la cause de pénuries sévères d’eau associées à une dégradation de la qualité de l’eau. L’exploitation d’eau souterraine est cinq fois plus élevée que la recharge naturelle et la baisse du niveau de l’eau est d’environ 4–8 m/an. La ressource en eau souterraine est utilisée à 90 % environ pour des activités agricoles. La situation est encore aggravée par l’absence d’une approche adaptée de la gestion de l’eau pour le Bassin. C’est dans le bassin du Wadi As-Ssirr, la région d’étude, que le manque d’eau est le plus sévère et c’est cette région qui a la densité de puits la plus élevée en comparaison avec les bassins versants d’autres oueds (une moyenne de 6.8 puits au km2). Un programme local de redistribution de l’exploitation de l’eau est proposé, impliquant la suppression d’un nombre substantiel de puits. Le programme encourage la participation de la collectivité locale, à travers des actions collectives visant à réduire la surexploitation de l’eau souterraine et conduit finalement à un modèle d’exploitation de l’eau souterraine localement acceptable et gérable. La méthode proposée préconise d’exploiter 587 puits plutôt que 1,359, en réduisant ainsi la densité de puits à 2.9 puits au km2. Trois scénarios ont été proposés, intégrant différentes réductions des débits d’exploitation et/ou du nombre d’heures de pompage aussi bien en saison sèche qu’en saison humide. Le troisième scénario est retenu comme premier essai de mise en œuvre par les collectivités; la réduction prévisible résultante, près de 2,371,999 m3, correspond à environ 6 % de la demande annuelle estimée. Au début, le volume d’eau souterraine extrait ne serait pas changé significativement, jusqu’à ce que des mesures de protection soient mises en place, telle qu’une efficacité améliorée de l’irrigation, dans le but d’augmenter le revenu des agriculteurs et de réduire l’utilisation de l’eau.

Gestión de extracción de agua subterránea en la cuenca del Sana’a, Yemen: un enfoque de la comunidad local

Resumen

La sobreexplotación de los recursos de agua subterránea en la Cuenca Sana’a, Yemen, está provocando una grave escasez de agua asociada a la degradación de la calidad del agua. La extracción de agua subterránea es cinco veces mayor que la recarga natural y la disminución del nivel del agua es de aproximadamente 4–8 m/año. Alrededor del 90 % de los recursos de agua subterránea se utilizan para actividades agrícolas. La situación se agrava aún más por la ausencia de un enfoque adecuado en la gestión del agua para la cuenca. La escasez de agua en la cuenca de Wadi As-Ssirr, el área de estudio, es la más grave y esta área tiene la mayor densidad de pozos (media 6.8 pozos/km2), en comparación con otras cuencas en wadis. Se propone un esquema de redistribución local de la extracción de agua subterránea, que implica el retiro de un considerable número de pozos. El esquema fomenta la participación de la comunidad local a través de acciones colectivas para reducir la sobreexplotación del agua subterránea, y en última instancia conduce a un patrón de extracción de agua subterránea local apropiado, manejable. El método propuesto sugiere el uso de 587 pozos en lugar de 1,359, lo que reduce la densidad de pozos a 2.9 pozos/ km2. Tres escenarios se sugieren, que involucra diferentes reducciones en los rendimientos de pozos y/o el número de horas de bombeo para las estaciones secas y húmedas. El tercer escenario es seleccionado como un primer ensayo por las comunidades para la operación; la reducción prevista resultante, en 2,371,999 m3, es aproximadamente el 6 % de la demanda anual estimada. Inicialmente, el volumen de extracción de agua subterránea no debe ser cambiado de manera significativa hasta que haya medidas de protección en el lugar, como la mejora de la eficiencia del riego, con el objetivo de aumentar los ingresos de los agricultores y reducir el consumo de agua.

也门萨那盆地地下水开采管理:一个当地社区的方法

摘要

也门萨那盆地地下水资源的超采引起了严重的水短缺,并伴有水质下降。地下水开采量是天然补给量的5倍多,水位每年下降大约4–8米。大约90%的地下水资源用于农业。由于盆地缺乏适当的水管理方法,形势进一步恶化。As-Ssirr干谷流域为研究区,与其它干谷流域相比,这里的水短缺最严重,水井密度最大(平均每平方千米6.8口井)。提出了一项本地的地下水抽取再分配计划,包括大量水井的退役。该计划鼓励当地社区通过集体行动参与,减少地下水超采,最终实现当地可接受的、管理的地下水抽取模式。所提出的方法建议使用587口井,而不是1,359口井,从而降低井的密度到每平方千米2.9口。提出了三种方案,包括差异降低水井出水量及/或旱季和雨季减少抽水时间。选择了第三个方案作为初次实验让社区付诸行动;作为结果的预测抽水量减少了2,371,999立方米,大约为估算的每年需求量的6 %。初期,在一些防护措施如提高灌溉效率等措施到位前,地下水抽取量不应该大幅改变,目的就是增加农民的收入、减少用水量。

Gerenciamento da abstração das águas subterrâneas na Bacia Sana’a, Iémen: uma abordagem da comunidade local

Resumo

Sobre-exploração das águas subterrâneas na Bacia Sana’a, Iémen, tem causado grave escassez de água associada com a degradação da qualidade das águas. Abstração das águas subterrâneas é cinco vezes superior do que a recarga natural e o declínio do nível da água é de aproximadamente 4–8 m/ano. Aproximadamente 90 % dos recursos hídricos subterrâneos são usados para atividades agrícolas. A situação fica mais agravada por ausência de uma abordagem própria de gerenciamento das águas para a Bacia. A escassez na captação de água na bacia Wadi As-Ssirr, a área de estudo, é a mais grave e esta área tem a maior densidade de poços (média 6.8 poços/km2) comparado com outras bacias wadi. Um esquema local de abstração e redistribuição das águas subterrâneas é proposto, envolvendo a retirada de um número substancial de poços. O projeto estimula a participação da comunidade local via ações coletivas para reduzir a sobre-exploração das águas subterrâneas, e por fim conduzir para um padrão de abstração das águas subterrâneas manejável, localmente aceitável. O método proposto sugere um uso de 587 poços ao invés de 1,359, reduzindo assim a densidade de poços para 2.9 poços/km2. Três cenários são sugeridos envolvendo reduções diferentes para poços de rendimento e/ou o número de horas de bombeamento para ambas estações secas e húmidas. O terceiro cenário é selecionado como a primeira tentativa para as comunidades à ação; o resultado previu redução, de 2,371,999 m3, que é aproximadamente 6 % da demanda anual estimada. Inicialmente, o volume de abstração das águas subterrâneas não deve ser modificado significantemente até existirem medidas protetoras em vigor, tais como a melhoria da eficiência da irrigação, com o objetivo de aumentar a renda o dos fazendeiros e reduzir do uso da água.

Notes

Acknowledgements

The author would like to thank Dr. Stephen Foster in particular, and acknowledgement is given to the World Bank-Groundwater Management Advisory Team (GW · MATE).

References

  1. Al-Sakkaf R, Zhou Y, Hall M (1999) A Strategy for controlling groundwater depletion in the Sa’dah plain, Yemen. Int J Water Resour Dev 15(3):349–365. doi: 10.1080/07900629948862 CrossRefGoogle Scholar
  2. Bruns B, Taher T (2009) Yemen water association study: findings and recommendations for a problem solving approach. Groundwater and Soil Conservation project. Ministry of Agriculture and Irrigation, Sana’a, YemenGoogle Scholar
  3. Christopher AS, Shah T (2004) Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico. Water Resour Dev 2(20):149–164Google Scholar
  4. FAO (2003) Groundwater management the search for practical approaches, Water Reports 25, FAO, RomeGoogle Scholar
  5. FAO (2009) Groundwater management in Yemen, a draft synthesis report. FAO, Rome. http://www.groundwatergovernance.org/fileadmin/user_upload/groundwatergovernance/docs/Country_studies/Yemen_Synthesis_Report_Final_Groundwater_Management.pdf. Accessed February 2015
  6. Foster S (2003) Yemen: rationalizing groundwater resource utilization in the Sana’a Basin. World Bank, Washington, DC. http://siteresources.worldbank.org/INTWRD/Resources/GWMATE_English_CP_02.pdf. Accessed February 2015
  7. Foster S, Evans R, Escolero O (2015) The groundwater management plan: in praise of a neglected ‘tool of our trade’. Hydrogeol J 23:847–850Google Scholar
  8. Frederiksen H (1992) Water resources institutions, some principles and practices. World Bank Technical Paper no. 191, World Bank, Washington, DCGoogle Scholar
  9. GAFAG (2007) Satellite imagery/data analysis study along with ground truth and meteorological monitoring. Sana’a Basin Water management Project (SBWMP). Ministry of Water and Environment, Sana’a, YemenGoogle Scholar
  10. Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–1248. doi: 10.1126/science.162.3859.1243 CrossRefGoogle Scholar
  11. Heathcote I (1998) Integrated watershed management: principles and practice. Wiley, New YorkGoogle Scholar
  12. Hydrosult (2010) Assessment of water resources potential of the Sana’a Basin: strategic options for the sustainable development and management of the basin’s water resources. Sana’a Basin Water Management Project (SBWMP), Ministry of Water and Environment, Sana’a, YemenGoogle Scholar
  13. JAICA (2007) Water resources management action plan for Sana’a Basin. National water Resources Authority (NWRA), Ministry of Water and Environment, Sana’a, YemenGoogle Scholar
  14. Karner M (2014) Water scarcity and human security in Yemen: assessing the causes and consequences of Yemen’s water crisis, MEI Perspectives series, Middle East Institute, National University of Singapore, SingaporeGoogle Scholar
  15. Lichtenthäler G (2000) Power, politics and patronage: adaptation of water rights among Yemen’s northern highland tribes. Études rurales 155–156:143–166Google Scholar
  16. Lichtenthäler G (2003) Political ecology and the role of water: environment, society and economy in northern Yemen. Ashgate, Surrey, UKGoogle Scholar
  17. MoPIC (2004) Statistical year-book. Ministry of Planning and International cooperation, Sana’a, YemenGoogle Scholar
  18. Moore S (2011) Parchedness, politics, and power: the state hydraulic in Yemen. J Polit Ecol U K 18:38–50, http://jpe.library.arizona.edu/volume_18/Moore.pdf. Accessed March 2015Google Scholar
  19. Ostrom E (1999) Collective action and the evolution of social norms. Workshop in Political Theory and Policy Analysis, Center for the Study of Institutions, Population, and Environmental Change, Indiana University, Bloomington, INGoogle Scholar
  20. Ostrom E, Burger J, Field C, Norgaard R, Policansk D (1999) Revisiting the commons: local lessons, global challenges. Science 284:278–282. doi: 10.1126/science.284.5412.278 CrossRefGoogle Scholar
  21. Taher T (2010) Community groundwater management: case study Shibam, Hadramout pilot area. The Ninth Gulf Water Conference. Water Sustainability in the GCC Countries, The Need for a Socio-economic and Environmental Definition. Sultanate of Oman, 22–25 March 2010. http://wstagcc.org/en/publications/conferences/wsta-9th-gulf-water-conference-oman-2010/. Accessed February 2015
  22. Taher T (2014) Quantity and quality considerations of rooftop rainwater harvesting as a substantial resource to face water supply shortages. Int J Water Resour Arid Environ 3(1):01–10CrossRefGoogle Scholar
  23. Taher T, Al-Sakkaf R (2008) Community groundwater abstraction redistribution policy in Wadi As Sirr: a task for the local water user associations, The 3rd International Conference on Water Resources and Arid Environments (ICWRAE) and the 1st Arab Water Forum, Riyadh, Saudi Arabia, November, 2008Google Scholar
  24. Taher T, Bruns B, Bamaga O, Al-Weshali A, van Steenbergen F (2012) Local groundwater governance in Yemen: building on traditions and enabling communities to craft new rules. Hydrogeol J 20(6):1177–1188. doi: 10.1007/s10040-012-0863-1 CrossRefGoogle Scholar
  25. Taher T, Ward C, Fadl N, Saleh A, Sultan M (2013) Planning for integrated water resources management: case study Sana’a Basin Yemen. Int Water Technol J (IWTJ) 3(4):232–248Google Scholar
  26. Theesfeld I (2010) Institutional challenges for national groundwater governance: policies and issues. Ground Water 48(1):131–142CrossRefGoogle Scholar
  27. UN-WATER (2006) Coping with water scarcity: a strategic issue and priority for system-wide action. http://www.un.org/waterforlifedecade/pdf/2006_unwater_coping_with_water_scarcity_eng.pdf. Accessed February 2015
  28. UN-WATER (2007) Coping with water scarcity: challenge of the twenty-first century. http://www.fao.org/nr/water/docs/escarcity.pdf. Accessed February 2015
  29. Van Steenbergen F (2006) Promoting local management in groundwater. Hydrogeol J 14:380–391CrossRefGoogle Scholar
  30. Varisco D (2009) Agriculture in al-Hamdani’s Yemen: a survey from early Islamic geographical texts. J Econ Soc Hist Orient 52:382–412CrossRefGoogle Scholar
  31. Ward C (2015) The water crisis in Yemen: managing extreme water scarcity in the Middle East. Tauris, London, pp 307–356Google Scholar
  32. Ward C (2009) Water conflict in Yemen: the case for strengthening local resolution mechanisms. In: Jagannathan NV, Mohamed AS, Kremer A (eds) Water in the Arab world: management perspectives and innovations. World Bank, Washington, DC, pp 233–267Google Scholar
  33. World Bank (2012) Implementation completion and results report (IDA-38600 IDA-H4200 TF-54230) for the groundwater and soil conservation project, Yemen. World Bank, Washington, DCGoogle Scholar
  34. World Bank (2013) World development indicators: freshwater. World Bank, Washington, DC, Online dataset. http://wdi.worldbank.org/table/3.5. Accessed March 2015
  35. Libecap G (1995) The conditions for successful collective action. In: Keohane RO, Ostrom E (eds) Local commons and global interdependence. SAGE, Thousand Oaks, CAGoogle Scholar
  36. WEC (2004) Well inventory of Sana’a Basin. University of Sana’a, Sana’a, YemenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Beykent University, Faculty of Engineering and ArchitectureCivil Engineering Department AyazağaMaslakTurkey

Personalised recommendations