Hydrogeology Journal

, Volume 24, Issue 6, pp 1463–1478 | Cite as

Improved regional groundwater flow modeling using drainage features: a case study of the central northern karst aquifer system of Puerto Rico (USA)

  • Reza Ghasemizadeh
  • Xue Yu
  • Christoph Butscher
  • Ingrid Y. Padilla
  • Akram Alshawabkeh
Paper
  • 395 Downloads

Abstract

In northern Puerto Rico (USA), subsurface conduit networks with unknown characteristics, and surface features such as springs, rivers, lagoons and wetlands, drain the coastal karst aquifers. In this study, drain lines connecting sinkholes and springs are used to improve the developed regional model by simulating the drainage effects of conduit networks. Implemented in an equivalent porous media (EPM) approach, the model with drains is able to roughly reproduce the spring discharge hydrographs in response to rainfall. Hydraulic conductivities are found to be scale dependent and significantly increase with higher test radius, indicating scale dependency of the EPM approach. Similar to other karst regions in the world, hydraulic gradients are steeper where the transmissivity is lower approaching the coastline. This study enhances current understanding of the complex flow patterns in karst aquifers and suggests that using a drainage feature improves modeling results where available data on conduit characteristics are minimal.

Keywords

Groundwater flow Conduit drainage Karst Discharge hydrograph Puerto Rico (USA) 

Verbesserte regionale Grundwassermodellierung durch die Verwendung von “Drainage Features” am Beispiel des zentralen nördlichen Karstaquifersystems in Puerto Rico (USA)

Zusammenfassung

Im nördlichen Puerto Rico (USA) entwässern unterirdische Karströhrensysteme mit unbekannten Eigenschaften sowie Oberflächenerscheinungen wie Quellen, Flüsse, Lagunen und Feuchtgebiete den Küstenaquifer. In dieser Studie werden “Drain Lines” verwendet, welche Dolinen und Schlucklöcher mit Quellen verbinden, um ein regionales Grundwassermodell durch die Nachbildung des Drainageeffekts von Karströhren zu verbessern. Eingebettet in einen “Equivalent Porous Media” (EPM) Ansatz kann das Modell mit “Drain Lines” Ganglinien der Quellschüttung als Reaktion auf Niederschlagsereignisse näherungsweise nachbilden. Dabei hat sich gezeigt, dass die hydraulischen Leitfähigkeiten skalenabhängig sind. Mit größerem Testradius nehmen sie deutlich zu und spiegeln so die Skalenabhängigkeit des EPM-Ansatzes wider. Ähnlich wie in anderen Karstregionen der Welt sind die hydraulischen Gradienten dort steiler, wo sich die Transmissivitäten bei Annäherung an die Küste verringern. Die Studie verbessert unser gegenwärtiges Verständnis komplexer Fließprozesse in Karstaquiferen und zeigt, dass “Drainage Features” die Ergebnisse einer Grundwassermodellierung verbessern, insbesondere wenn nur wenige Daten zu den Eigenschaften der Karströhren vorliegen.

Amélioration de la modélisation régionale de l’écoulement des eaux souterraines utilisant des caractéristiques de drainage: une étude de cas avec le système aquifère karstique du centre nord de Puerto Rico (Etats-Unis d’Amérique)

Résumé

Dans le nord de Puerto Rico (Etats-Unis d’Amérique), les réseaux de conduits souterrains avec des caractéristiques inconnues, et les caractéristiques de surface telles que les sources, les rivières, les lagunes et les zones humides, drainent les aquifères karstiques côtiers. Dans cette étude, les lignes de drain connectant les pertes et les sources sont utilisées pour améliorer le modèle régional développé en simulant les effets de drainage des réseaux de conduits. Mise en œuvre selon une approche de milieu équivalent poreux (EMP), le modèle avec drains est capable de reproduire de manière approximative les hydrographes de débits des sources en réponse aux précipitations. Les conductivités hydrauliques sont dépendantes de l’échelle et augmentent de manière significative avec les rayons plus élevés de test, indiquant la dépendance de l’échelle de l’approche EMP. De manière similaire à d’autres régions karstiques dans le monde, les gradients hydrauliques sont plus raides lorsque la transmissivité est plus faible à proximité de la ligne de rivage. Cette étude améliore la compréhension actuelle des modes d’écoulement complexe dans les aquifères karstiques et suggère que l’utilisation des caractéristiques de drainage améliore les résultats de la modélisation là où les données sur les caractéristiques des conduits sont disponibles à minima.

Mejoramiento de los modelados de flujo regional de agua subterránea utilizando características del drenaje: un estudio de caso del sistema acuífero kárstico del centro norte de Puerto Rico (EE.UU.)

Resumen

En el norte de Puerto Rico (EE.UU.), las redes de conductos subsuperficiales de características desconocidas, y los aspectos superficiales tales como manantiales, ríos, lagunas y humedales, drenan los acuíferos kársticos costeros. En este estudio se utilizan las líneas de drenaje que conectan sumideros y manantiales para mejorar el modelado regional desarrollado mediante la simulación de los efectos de drenaje de las redes de conductos. Implementado en un enfoque medios porosos equivalentes (EPM), el modelo con drenajes es capaz de reproducir a grandes rasgos los hidrogramas de descarga de manantiales en respuesta a las precipitaciones. Se encuentra que la conductividad hidráulica era dependiente de la escala y aumenta significativamente con un mayor radio de ensayo, lo que indica la dependencia de la escala en el enfoque de EPM. Al igual que en otras regiones kársticas en el mundo, los gradientes hidráulicos son más pronunciados, donde la transmisividad es menor aproximándose a la costa. Este estudio contribuye a mejorar la comprensión actual de los complejos esquemas de flujo en los acuíferos kársticos y sugiere que utilizar características del drenaje mejora los resultados del modelo donde los datos disponibles sobre las características de los conductos son mínimas.

利用排水特征进行区域地下水流的改进性模拟:(美国)波多黎各岩溶含水层系统中北部的研究案例

摘要

在(美国)波多黎各北部,地下管道网络的特征不为人所知,地表特征如泉、河流、泻湖和湿地都向沿海岩溶含水层排水。在本项研究中,利用连接落水洞和泉的排水管道通过模拟管道网络排水影响来改进开发的区域模型。在等效孔隙介质方法中运行模型,具备排水区域的模型能够大致复制针对降雨反应出的泉排泄水位图。发现水力传导率具有尺度效应,并随着较高的实验半径而显著增加,表明了等效孔隙介质方法的尺度效应。类似于世界其它岩溶区,在传导率很低接近海岸线的地方,水力梯度就很陡。本研究增进了对岩溶含水层复杂水流模式的了解,表明,在管道特征现有资料很少的地方,采用排水特征改进了模拟结果。

مدلسازی ناحیه ای آب زیرزمینی بهینه یافته با استفاده از خاصیت زهكشی: مطالعه موردی سیستم آبخوان كارستی مركزی شمال جزیره پورتوریكو، آمریكا

چکیده

در شمال جزیره پورتوریكو (آمریكا)، شبكه های مجرای كارستی زیرسطحی با مشخصه های نامعلوم، و جنبه های سطحی همانند چشمه ها، رودخانه ها، دریاچه ها و تالاب ها، آبخوان های ساحلی را زهكشی می نمایند. در این مطالعه، برایبهبود مدل ناحیه ای ساخته شده از خطوط زهكشی متصل كننده گودال های كارستی و چشمه ها استفاده شده كه دارای قابلیت شبیه سازی اثرات زهكشی شبكه های مجرای كارستی می باشند. مدل دارای خطوط زهكشی كه در رویكرد محیط متخلخل معادل قرار داده شده، كمابیش قادر به تولید هیدروگراف های جریان خروجی چشمه می باشد. ضرایب هدایت هیدرولیكی وابسته به مقیاس به دست آمده اند و بطور قابل ملاحظه ای با شعاع تست هیدرولیكی بزرگتر افزایش می یابند، كه بیانگر وابسته به مقیاس بودن رویكرد محیط متخلخل معادل می باشد. مشابه دیگر مناطق كارستی در دنیا، در بخش های با قابلیت انتقال آب كم در مجاورت خط ساحلی، گرادیان های هیدرولیكی دارای شیب بیشتری می باشند. این مطالعه درك كنونی از الگو های جریان پیچیده در آبخوان های كارستی را ارتقا می بخشد و پیشنهاد می دهد كه وقتی داده های موجود برای مشخصه های مجرای كارستی ناچیز هستند، استفاده از خاصیت زهكشی نتایج مدلسازی را بهبود می دهد.

Melhoria da modelagem de fluxo regional de água subterrânea utilizando características de drenagem: um estudo de caso do sistema aquífero cárstico central do norte de Porto Rico (EUA)

Resumo

No norte de Porto Rico (EUA), redes de condutos de subsuperfície com características desconhecidas e de características de superfície, tais como nascentes, rios, lagoas e pântanos, drenam os aquíferos cársticos costeiros. Neste estudo, linhas de drenagens conectando sumidouros e nascentes são usadas para melhorar o modelo regional desenvolvido por simulação de efeitos de drenagem de redes de condutos. Implementado em uma abordagem de meio poroso equivalente (MPE), o modelo com drenagens é capaz de reproduzir aproximadamente os hidrogramas de descargas de nascentes em resposta às chuvas. Condutividades hidráulicas foram encontradas sendo dependentes da escalas e aumentam consideravelmente com raios de testes maiores, indicando a dependência de escala da abordagem de MPE. Semelhantes a outras regiões cársticas no mundo, gradientes hidráulicos são acentuados quando a transmissividade é menor ao se aproximar do litoral. Esse estudo reforça a compreensão atual dos padrões de fluxos complexos em aquíferos cársticos e sugere que, o uso de características de drenagem melhora os resultados de modelagem quando dados disponíveis sobre características de condutos são mínimas.

References

  1. Alemán-Gonzalez WB (2010) Karst map of Puerto Rico. US Geol Surv Open File Rep 2010-1104Google Scholar
  2. Angelini P, Dragoni W (1997) The problem of modeling limestone springs: the case of Bagnara (North Apennines, Italy). Ground Water 35(4):612–618CrossRefGoogle Scholar
  3. Aquaveo (2014) Groundwater modeling system (GMS, v.10), Aquaveo, Provo, UTGoogle Scholar
  4. Bennett GD, Giusti EV (1972) Ground water in the Tortuguero area, Puerto Rico: as related to proposed harbor construction. US Geol Surv Water Resour Bull 10:25Google Scholar
  5. Briere PR, Scanlon KM (2000) Lineaments and lithology derived from a side-looking airborne radar image or Puerto Rico. In: Puerto Rico: marine sediment database, terrestrial and sea-floor imagery and tectonic interpretations. US Geol Surv Open File Rep 00-006Google Scholar
  6. Butscher C, Auckenthaler A, Scheidler S, Huggenberger P (2011) Validation of a numerical indicator of microbial contamination for Karst springs. Ground Water 49(1):66–76CrossRefGoogle Scholar
  7. Calvesbert RJ (1970) Climate of Puerto Rico and U.S. Virgin Islands. Climate of the states. Climatography of the United States no. 60–52. U.S. Dept of Commerce, Environmental Science Services Admin., Washington, DCGoogle Scholar
  8. Cherry GS (2001) Simulation of flow in the upper north coast limestone aquifer, Manatí-Vega Baja area, Puerto Rico. US Geol Surv Water Resour Invest Rep 00-4266Google Scholar
  9. Davis H (1996) Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected City of Tallahassee, Florida, water-supply wells. US Geol Surv Open-File Rep 95-4296Google Scholar
  10. Deike RG (1969) Relations of jointing to orientation of solution cavities in limestones of central Pennsylvania. Am J Sci 267(10):1230–1248CrossRefGoogle Scholar
  11. Doherty J, Brebber L, Whyte P (1994) PEST: model-independent parameter estimation. Watermark Computing, Brisbane, AustraliaGoogle Scholar
  12. Dufresne DP, Drake CW (1999) Regional groundwater flow model construction and wellfield site selection in a karst area, Lake City, Florida. Eng Geol 52:129–139CrossRefGoogle Scholar
  13. Eisenlohr L, Bouzelboudjen M, Kiraly L, Rossier Y (1997) Numerical versus statistical modeling of natural response of a karst hydrogeological system. J Hydrol 202(1):244–262CrossRefGoogle Scholar
  14. Florea LJ, Vacher HL (2006) Springflow hydrographs: eogenetic vs. telogenetic karst. Ground Water 44(3):352–361Google Scholar
  15. Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 23:89–118CrossRefGoogle Scholar
  16. Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J 20(8):1441–1461CrossRefGoogle Scholar
  17. Ghasemizadeh R, Yu X, Butscher C, Hellweger F, Padilla I, Alshawabkeh A (2015) Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers. PloS One 10(9):e0138954Google Scholar
  18. Giusti EV (1978) Hydrogeology of the karst of Puerto Rico: USGS Professional Paper 1012, p 68Google Scholar
  19. Giusti EV, Bennett GD (1976) Water resources of the north coast limestone area. US Geological Survey Water-Resources Investigations 42–75, Puerto Rico, p 42Google Scholar
  20. Gomez-Gomez F, Torres-Sierra H (1988) Hydrology and effects of development on the water-table aquifer in the Vega Alta quadrangle. US Geol Surv Water Resour Invest Rep 87-4105, 53 ppGoogle Scholar
  21. Graf T, Therrien R (2007) Variable-density groundwater flow and solute transport in irregular 2D fracture networks. Adv Water Resour 31;30(3):455–468CrossRefGoogle Scholar
  22. Guzmán-Ríos S (1988) Hydrology and water quality of the principal springs in Puerto Rico. US Geol Surv Water Resour Invest Rep 85-4269, 30 ppGoogle Scholar
  23. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open File Rep 00-92Google Scholar
  24. Hurd TM, Brookhart-Rebert A, Feeney TP, Otz MH, Otz IN (2010) Fast, regional conduit flow to an exceptional-value spring-fed creek: implications for source-water protection in mantled karst of south-central Pennsylvania. J Cave Karst Stud 72(3):129–136CrossRefGoogle Scholar
  25. Jukić D, Denić-Jukić V (2009) Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. J Hydrol 373(3–4):302–315Google Scholar
  26. Kaufmann G, Braun J (1999) Karst aquifer evolution in fractured rocks. Water Resour Res 35(11):3223–3238CrossRefGoogle Scholar
  27. Kiraly L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques. Hydrogeology of Karstic Terrains 3:53–67Google Scholar
  28. Kovacs A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach. PhD Thesis, CHYN, Univ de Neuchâtel, SwitzerlandGoogle Scholar
  29. Larocque M, Banton O, Ackerer O, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37:897–903CrossRefGoogle Scholar
  30. Lattman LH, Parizek RR (1964) Relationship between fracture traces and the occurrence of groundwater in carbonate rocks. J Hydrol 2(2):73–91CrossRefGoogle Scholar
  31. Lauritzen SE, Odling N, Petersen J (1992) Modeling the evolution of channel networks in carbonate rocks. ISRM Symp Eurock 92:57–62Google Scholar
  32. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143CrossRefGoogle Scholar
  33. Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3):1057CrossRefGoogle Scholar
  34. Lugo AE, Castro LM, Vale A et al (2001) Puerto Rican karst: a vital resource. General technical report, WO-65, USDA Forest Service, Washington, DCGoogle Scholar
  35. Mcdonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Techniques of Water-Resources Investigations, book 6, chapter A1, 586 pp, USGS, Reston, VAGoogle Scholar
  36. Meinzer OE (1927) Large springs in the United States. US Geol Surv Water Supl Pap 557, 94 ppGoogle Scholar
  37. Monroe WH (1976) The karst landforms of Puerto Rico. US Geol Surv Prof Pap 899, 69 ppGoogle Scholar
  38. Monroe WH (1980) Geology of the middle Tertiary formations of Puerto Rico. US Geol Surv Prof Pap 953Google Scholar
  39. Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758CrossRefGoogle Scholar
  40. O’Leary DW, Freidman JD, Pohn HA (1976) Lineament, linear, lineation: some proposed new definitions for old terms. Geol Soc Am Bull 87:1463–1469CrossRefGoogle Scholar
  41. Papadopoulou MP, Varouchakis EA, Karatzas GP (2010) Terrain discontinuities effects in the regional flow of a complex karstified aquifer. Environ Model Assess 15(5):319–328CrossRefGoogle Scholar
  42. Peterson EW, Wicks CM (2006) Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM). J Hydrol 329(1):294–305CrossRefGoogle Scholar
  43. Puig JC, Rodríguez JM, Rodríguez-Martínez J (1993) Ground-water resources of the Caguas-Juncos valley, Puerto Rico. US Geol Surv Water Resour Invest Rep 91-4079Google Scholar
  44. Quinn J, Tomasko D, Glennon MA, Miller SF, McGinnis LD (1998) Using MODFLOW drains to simulate groundwater flow in a karst environment. Argonne National Lab, Lemont, ILGoogle Scholar
  45. Quinn JJ, Tomasko D, Kuiper JA (2006) Modeling complex flow in a karst aquifer. Sedimen Geol 184(3–4):343–351CrossRefGoogle Scholar
  46. Quinones-Aponte V (1986) Water resources of the lower Rio Grande de Arecibo alluvial valley, Puerto Rico. US Geol Surv Water Resour Invest Rep 85-4160Google Scholar
  47. Renken RA, Ward WC, Gill IP, Gómez GF, Rodríguez JM et al (2002) Geology and hydrogeology of the Caribbean Islands aquifer system of the commonwealth of Puerto Rico and the US Virgin Islands. US Geol Surv Prof Pap 1419, 139 ppGoogle Scholar
  48. Rodríguez-Martínez J (1995) Hydrogeology of the North Coast limestone aquifer system of Puerto Rico. US Geological Survey Water Resources Report 94-4249, p 22Google Scholar
  49. Rodríguez-Martínez J (1996) Hydrogeology and ground-water/surface-water relations in the Bajura area of the Municipio of Cabo Rojo, southwestern Puerto Rico. US Geol Surv Water Resour Invest Rep 95-4159Google Scholar
  50. Rodriguez-Martinez J (1997) Characterization of springflow in the North Coast Limestone of Puerto Rico using physical, chemical, and stable isotopic methods. US Geol Surv Water Resour Invest Rep 97-4122Google Scholar
  51. Rovey CW II (1994) Assessing flow systems in carbonate aquifers using scale effects in hydraulic conductivity. Environ Geol 24(4):244–253CrossRefGoogle Scholar
  52. Rovey CW, Cherkauer DS (1995) Scale dependency of hydraulic conductivity measurements. Groundwater 33(5):769–780CrossRefGoogle Scholar
  53. Sauter M, Kovacs A, Geyer T, Teutsch G (2006) Modellierung der Hydraulik von karst Grundwasserleiter: eine Übersicht [Modeling of the hydraulics of karst aquifers: an overview]. Grundwasser 11(3):143–156CrossRefGoogle Scholar
  54. Scanlon BR, Mace RE, Barret ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton springs Edwards Aquifer, USA. J Hydrol 276(1–4):137–158CrossRefGoogle Scholar
  55. Schindel GM, Quinlan JF, Davies G, Ray JA (1996) Guidelines for wellhead and springhead protection area delineation in carbonate rocks. USEPA 904-B-97-003, US EPA, Washington, DC, 126 ppGoogle Scholar
  56. Sepúlveda N (1996) Three-dimensional ground-water-flow model of the water-table aquifer in Vega Alta, Puerto Rico. U.S. Geological Survey. Water-Resources Investigations Report 95–4184Google Scholar
  57. Sepúlveda N (1999) Ground-water flow, solute transport, and simulation of remedial alternatives for the water-table aquifer in Vega Alta, Puerto Rico. US Geol Surv Water Resour Invest Rep 97-4170Google Scholar
  58. Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14(2):93–128CrossRefGoogle Scholar
  59. Singhal BBS, Gupta RP (2010) Hydrogeology of carbonate rocks. Appl Hydrogeol Fractur Rock. Springer Netherlands, Houten, Netherlands, pp 269–289Google Scholar
  60. Slade RM Jr, Ruiz LM, Slagle DL (1985) Simulation of the flow system of Barton Springs and associated Edwards aquifer in the Austin area, Texas. US Geol Surv Water Resour Invest Rep 85-4299, 49 ppGoogle Scholar
  61. Smart PL, Hobbs SL (1986) Characterization of carbonate aquifers: a conceptual base. Proceedings of the Environmental Problems in Karst Terranes and their Solutions conference, Bowling Green, KY, October 1986, pp 1–14Google Scholar
  62. Snow D (1965) A parallel plate model of fractured permeable media. PhD Thesis, University of California, Berkeley, CAGoogle Scholar
  63. Teutsch G, Sauter M (1991) Groundwater modeling in karst terranes: scale effects, data acquisition and field validation. Proceeding of Third Conf. Hydrogeology, Ecology, Monitoring, and Management of Ground Water in Karst Terranes, Nashville, TN, December 1991, pp 17–35Google Scholar
  64. Torres-González A (1985) Simulation of ground-water flow in the water table aquifer near Barceloneta, Puerto Rico. US Geol Surv Water Resour Invest Rep 84-4113Google Scholar
  65. Torres-González S, Planert M, Rodríguez MJ (1996) Hydrogeology and simulation of ground-water flow in the upper aquifer of the Río Camuy to Río Grande de Manatí area, Puerto Rico. US Geol Surv Water Resour Invest Rep 95-4286Google Scholar
  66. Tucci P, Martínez MI (1995) Hydrology and simulation of ground-water flow in the Aguadilla to Rio Camuy area, Puerto Rico. US Geol Surv Water Resour Invest Rep 95-4028Google Scholar
  67. Wanakule N, Anaya R (1993) A lumped parameter model for the Edwards aquifer. Technical report 163, Texas Water Resources Institute, College Station, TX, 84 ppGoogle Scholar
  68. Ward WC, Scharlach RA, Hartley JR (1991) Controls on porosity and permeability in subsurface Tertiary carbonate rocks of northern Puerto Rico. In: Gómez Gómez, Fernando, Quinones Aponte, Vicente, and Johnson, AI (eds) Regional aquifer systems of the United States: aquifers of the Caribbean Islands. American Water Resources Association Monograph Series 15, American Water Resources Association, Middelburg, VA, pp 17–23Google Scholar
  69. Weatherhill D, Graf T, Simmons CT, Cook PG, Therrien R, Reynolds DA (2008) Discretizing the fracture-matrix interface to simulate solute transport. Ground Water 46(4):606–615CrossRefGoogle Scholar
  70. Weise SM, Rau I, Seiler KP (2001) Long-term storage behaviour of karstic aquifer deduced by multi-trace investigations. EGS XXVI General Assembly, European Geophysical Society, Nice, FranceGoogle Scholar
  71. White WB (1969) Conceptual models for carbonate aquifers. Groundwater 7(3):15–21CrossRefGoogle Scholar
  72. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2):85–105CrossRefGoogle Scholar
  73. White WB (2003) Conceptual models for karstic aquifers. Speleolog Evolut Karst Aquifers 1(1). http://www.speleogenesis.info/directory/karstbase/pdf/seka_pdf4491.pdf. Accessed 30 January 2015
  74. White WB (2007) Cave sediments and paleoclimate. J Cave Karst Stud 69(1):76–93Google Scholar
  75. White WB, White EL (2001) Conduit fragmentation, cave patterns and the localization of karst ground water basins: the Appalachians as a test case. Theor Appl Karst 13–14:9–23Google Scholar
  76. Worthington SRH (1991) Karst hydrogeology of the Canadian Rocky Mountains. PhD Thesis, McMaster University, Hamilton, ON, 227 ppGoogle Scholar
  77. Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17(7):1665–1678CrossRefGoogle Scholar
  78. Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47(3):326–336CrossRefGoogle Scholar
  79. Yobbi D (1989) Simulation of steady-state ground water and spring flow in the upper Floridian aquifer of coastal Citrus and Hernando counties, Florida. US Geol Surv Water Resour Invest Rep 88-4036Google Scholar
  80. Yu X, Ghasemizadeh R, Padilla IY, Irizarry C, Kaeli D, Alshawabkeh AN (2015a) Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico. Sci Total Environ 511:1–10CrossRefGoogle Scholar
  81. Yu X, Ghasemizadeh R, Padilla IY, Meeker JD, Cordero JF, Alshawabkeh AN (2015b) Sociodemographic patterns of household water-use costs in Puerto Rico. Sci Total Environ 524:300–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Reza Ghasemizadeh
    • 1
  • Xue Yu
    • 1
  • Christoph Butscher
    • 2
  • Ingrid Y. Padilla
    • 3
  • Akram Alshawabkeh
    • 1
  1. 1.Department of Civil and Environmental EngineeringNortheastern UniversityBostonUSA
  2. 2.Department of Engineering Geology, Institute of Applied GeosciencesKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Department of Civil Engineering and SurveyingUniversity of Puerto RicoMayaguezUSA

Personalised recommendations