Groundwater potentiality mapping of hard-rock terrain in arid regions using geospatial modelling: example from Wadi Feiran basin, South Sinai, Egypt

Cartographie des potentialités des aquifères en terrains de socle en régions arides à partir de la modélisation géospatiale: exemple du bassin du Wadi Feiran, Sud Sinaï, Egypte

Mapeo de la potencialidad del agua subterránea en terrenos de roca dura en las regiones áridas utilizando el modelado geoespacial: ejemplo de la cuenca de Wadi Feiran, Sinaí del Sur, Egipto

تخريط إمكانات المياه الجوفية فى الصخور الصلبة بالمناطق الجافة بإستخدام النمذجة المكانيه: مثال لحوض وادى فيران، جنوب سيناء، مصر

采用地质空间模拟绘制干旱地区硬岩地域地下水潜能图:埃及西奈半岛南部Wadi Feiran流域的实例

Mapeamento da potencialidade das águas subterrâneas em terreno de rocha fraturada em regiões áridas utilizando modelagem geoespacial: exemplo da bacia Wadi Feiran, Sul do Sinai, Egito.

Abstract

Identifying a good site for groundwater exploitation in hard-rock terrains is a challenging task. In Sinai, Egypt, groundwater is the only source of water for local inhabitants. Interpretation of satellite data for delineation of lithological units and weathered zones, and for mapping of lineament density and their trends, provides a valuable aid for the location of groundwater promising areas. Complex deformational histories of the wide range of lithological formations add to the difficulty. Groundwater prospect mapping is a systematic approach that considers the major controlling factors which influence the aquifer and quality of groundwater. The presented study aims to delineate, identify, model and map groundwater potential zones in arid South Sinai using remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature. The controlling-factor thematic maps are each allocated a fixed score and weight, computed by using a linear equation approach. Furthermore, each weighted thematic map is statistically computed to yield a groundwater potential zone map of the study area. The groundwater potential zones thus obtained were divided into five categories (very poor, poor, moderate, good and very good) and were validated using the relation between the zone and the spatial distribution of productive wells and of previous geophysical investigations from a literature review. The results show the groundwater potential zones in the study area, and create awareness for better planning and management of groundwater resources.

Résumé

L’identification d’un bon site pour l’exploitation des eaux souterraines dans des terrains de socle est une tâche difficile. Dans le Sinaï, Egypte, l’eau souterraine est la seule ressource en eau pour les habitants locaux. L’interprétation des données satellitaires pour la délimitation des unités lithologiques et les zones d’altération, et pour la cartographie de la densité des linéaments et de leurs tendances, fournit une aide précieuse pour la localisation de zones d’eaux souterraines prometteuses. Les histoires complexes de la déformation de la grande gamme de formations lithologiques s’ajoutent à la difficulté. La cartographie de prospection hydrogéologique est une approche systématique qui considère les facteurs principaux de contrôle qui influencent l’aquifère et la qualité des eaux souterraines. L’étude présentée a pour objectif de délimiter, d’identifier, de modéliser et de cartographier les zones à potentialité hydrogéologique dans le Sud Sinaï aride en utilisant des données satellitaires et un système d’information géographique (SIG) pour préparer différentes cartes hydromorphologiques thématiques, telles que des cartes de pente, de densité de drainage, de lithologie, des formes topographiques, de linéaments structuraux, d’intensité de précipitations et de plan de courbure. Les cartes thématiques des facteurs de contrôle se voient attribuées à chacune d’entre elles une valeur fixe et une pondération, calculée à l’aide d’une équation linéaire. De plus, chaque carte thématique pondérée est statistiquement calculée pour obtenir une carte de zones à potentialités en eaux souterraines dans la zone d’étude. Les zones à potentialité en eaux souterraines ainsi obtenues sont divisées en cinq catégories (très faible, faible, modérée, bonne et très bonne) et sont validées en utilisant la relation entre la zone et la distribution spatiale des puits productifs et des investigations géophysiques antérieures issues d’une revue de la littérature. Les résultats indiquent les zones à potentialités d’eaux souterraines dans la zone d’étude, et constituent une sensibilisation pour une meilleure planification et gestion des ressources en eaux souterraines.

Resumen

La identificación de un buen sitio para la explotación de agua subterránea en terrenos de roca dura es una tarea difícil. En el Sinaí, Egipto, el agua subterránea es la única fuente de agua para los habitantes locales. La interpretación de los datos de satélite para la delimitación de las unidades litológicas y zonas degradadas, y para el mapeo de la densidad de lineamientos y sus tendencias, proporciona una valiosa ayuda para la ubicación de las zonas promisorias de agua subterránea. Las historias complejas de la deformación del amplio rango de formaciones litológicas añaden dificultad. El mapeo prospectivo del agua subterránea es un enfoque sistemático que tiene en cuenta los principales factores de control que influyen en el acuífero y la calidad del agua subterránea. El estudio que se presenta tiene como objetivo delimitar, identificar, modelar y mapear zonas potenciales de agua subterránea en las zonas áridas del sur del Sinaí, utilizando datos de teledetección y sistemas de información geográfica (GIS) para preparar diversos mapas hidrogeomorfológicos temáticos, tales como mapas de pendiente, de densidad de drenaje, litología, paisaje, lineamientos estructurales, intensidad de las precipitaciones y de planos de curvatura. Los factores de control de los mapas temáticos se asignan a cada una de las calificaciones e importancia determinadas, calculados utilizando una aproximación de una ecuación lineal. Además, cada mapa temático ponderado se calcula estadísticamente para producir un mapa de zonas potenciales de agua subterránea en el área de estudio. Las zonas potenciales de agua subterránea así obtenidas se dividieron en cinco categorías (muy pobres, pobres, moderadas, buenas y muy buenas) y se evaluaron utilizando la relación entre la zona y la distribución espacial de los pozos productivos y de las investigaciones geofísicas previa a la revisión de la literatura. Los resultados muestran las posibles zonas de agua subterránea en el área de estudio, y crean conciencia para una mejor planificación y gestión de los recursos de agua subterránea.

الملخص

تحديد الموقع الأمثل لاستغلال المياه الجوفية بالصخور الصلبة من المهام الصعبة. فالمياه الجوفية هى المصدر الوحيد للسكان المحليين بسيناء، مصر. تفسير بيانات الأقمار الصناعية لتحديد الوحدات الصخرية ونطاقات التجوية ورسم خرائط كثافة الخطوط التركيبية واتجاهاتها يساعد على تحديد المواقع الواعدة للمياه الجوفية. فالتاريخ التركيبى التشوهى المعقد للوحدات الصخرية يضيف صعوبة جديدة لعمليات البحث عن المياه الجوفية. حيث أن التخريط الاستكشافى للمياه الجوفية هو أسلوب منهجى يراعى فيه العوامل الرئيسية المتحكمة والمؤثرة فى نوعية وكمية المياه الجوفية. تهدف الدراسة الحالية إلى تحديد وتخريط ونمذجة المناطق المحتملة لتواجد المناطق المحتملة لتواجد المياه الجوفية بجنوب سيناء كمنطقة قاحلة باستخدام الاستشعار عن بعد ونظم المعلومات الجغرافية وذلك لإعداد الخرائط النوعية الهيدروجيوموفولوجية المختلفة مثل خرائط الانحدار وكثافة شبكة الصرف والوحدات الصخرية والتضاريس والخطوط التركيبية وكثافة الأمطار ومستوى الإنحناء. وقد تم وضع درجة وزن محدد لكل عامل حاكم وحسابه باستخدام معادلة خطية. علاوة على ذلك تم عمل تحليل إحصائى لكل خريطة نوعية موزونة لإنتاج خريطة إمكانات المياه الجوفية لمنطقة الدراسة حيث تم تقسيم خريطة إمكانات المياه الجوفية إلى خمسة فئات (فقيرة جداً – فقيرة – متوسطة – جيدة – جيدة جداً). وعليه تم التحقق من صحتها باستخدام العلاقة بين التوزيع المكانى للأبار المنتجة والفحوص الجيوفيزيائية السابقة. وأظهرت النتائج إمكانات المناطق الواعدة للمياه الجوفية وأوصت بالتوعية لوضع خطط جيدة لإدارة المياه الجوفية.

摘要

在硬岩地域确定地下水开采的绝佳场地是一项具有挑战性的任务。在埃及西奈半岛,地下水是当地居民唯一的水源。描述岩性单元及风化带、绘制其线性构造密度和趋势的卫星资料解译为确定地下水远景区的位置提供了帮助。范围广泛的岩性地层复杂变形历史增加了确定远景区的困难。地下水勘探绘图是充分考虑影响含水层和地下水水质主要控制因素的系统方法。所论述的研究目的就是利用遥感资料和地理信息系统描述、确定、模拟和绘制干旱的西奈半岛南部地下水潜力带,编制各种水文形态地质图件,诸如坡度图、排水密度图、岩性图、地形图、构造轮廓图、降雨强度图和平面曲率图。控制因素专题图每张都分配有固定的分数和权重,利用线性方程方法计算获得这些分数和权重。此外,每个加权的专题图进行统计计算,产生出研究区地下水潜力带图。由此获取的地下水潜力带分为5类(非常差、差、中等、好、非常好),并利用潜力带及生产井的空间分布和文献记载的过去地球物理调查结果之间的关系进行确认。结果显示了研究区的地下水潜力带,提高了更好规划和管理地下水资源的意识。

Resumo

Identificar um bom local para a exploração de águas subterrâneas em terreno de rocha fraturada é uma tarefa desafiadora. No Sinai, Egito, a água subterrânea é o único recurso hídrico para os habitantes locais. Interpretação de dados de satélite para delimitação das unidades litológicas e zonas úmidas, e para mapear da densidade de delineamento e suas tendências, fornece uma ajuda valiosa na localização de áreas promissoras de água subterrânea. Históricos deformacionais complexos de um amplo alcance de formações litológicas aumentam as dificuldades. O mapeamento prospectivo das águas subterrâneas é uma abordagem sistemática que considera fatores de maior controle que influenciam no aquífero e na qualidade das águas subterrâneas. O presente estudo tem como objetivo delinear, identificar, modelar e mapear zonas potenciais de águas subterrâneas no Sul árido do Sinai utilizando dados de sensoriamento remoto e sistema de informação geográfica (SIG) para preparar vários mapas temáticos hidromorfogeológicos, como mapas de declividade, densidade da drenagem, litologia, formações do relevo, lineamentos estruturais, intensidade da chuva e curvatura do terreno. Os mapas temáticos de fatores controladores foram cada um alocado a uma pontuação e peso fixos, computados utilizando uma abordagem de equação linear. Além disso, cada mapa ponderado é estatisticamente computado a um rendimento de um mapa de zona potencial de águas subterrâneas da área de estudo. As zonas potenciais de águas subterrâneas assim obtidas foram divididas em 5 categorias (muito fraco, fraco, moderado, bom e muito bom) e foram validadas utilizando a relação entre a zona e a distribuição espacial dos poços produtivos e das investigações geofísicas prévias para uma futura revisão de literatura. Os resultados mostram as zonas potenciais das águas subterrâneas na área de estudo e criam um alerta para melhor planejamento e gestão dos recursos subterrâneos.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Abdalla F (2012) Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the Central Eastern Desert, Egypt. J African Earth Sci 70:8–17

    Article  Google Scholar 

  2. Abou El-Magd AA (2003) Quantitative hydrogeological studies on Wadi Feiran Basin, South Sinai, with emphasis on the prevailing environmental conditions. MSc Thesis, Suez Canal University, Ismailia, Egypt, 252 pp

  3. Aggour TA (2006) Water resources of Wadi Feiran with emphasis on geomorphology and geology. Ann Geol Surv Egypt V(XXIX):357–387

  4. Arnous MO (2011) Integrated remote sensing and GIS techniques for landslide hazard zonation: a case study Wadi Watier area, South Sinai, Egypt. J Coast Conserv 15(4):477–497. doi:10.1007/s11852-010-0137-9

    Article  Google Scholar 

  5. Arnous MO (2013) Geotechnical site investigations for possible urban extensions at Suez City, Egypt using GIS. Arab J Geosci 6:1349–1369. doi:10.1007/s12517-011-0441-1

    Article  Google Scholar 

  6. Arnous MO, Green DR (2011) GIS and remote sensing as tools for conducting geo-hazards risk assessment along Gulf of Aqaba coastal zone, Egypt. J Coast Conserv 15(4):457–475. doi:10.1007/s11852-010-0136-x

    Article  Google Scholar 

  7. Arnous MO, Green DR (2015) Monitoring and assessing waterlogged and salt-affected areas in the Eastern Nile Delta region, Egypt, using remotely sensed multi-temporal data and GIS. J Coast Conserv 19(3):369–391. doi:10.1007/s11852-015-0397-5

    Article  Google Scholar 

  8. Arnous MO, Sultan YM (2014) Geospatial technology and structural analysis for geological mapping and tectonic evolution of Feiran-Solaf metamorphic complex, South Sinai, Egypt. Arab J Geosci 7:3023–3049. doi:10.1007/s12517-013-0959-5

    Article  Google Scholar 

  9. Arnous MO, Aboulela HA, Green DR (2011) Geo-environmental hazards assessment of the north western Gulf of Suez, Egypt. J Coast Conserv 15(1):37–50. doi:10.1007/s11852-010-0118-z

    Article  Google Scholar 

  10. Awad WK, Armanious GM (1985) Geoelectric study at El-Wat El-Agramia, Saint Catherine area, Sinai, Egypt. Ann Geol Surv Egypt XV:317–323

  11. Bocco G, Mendoza M, Velazquez A (2001) Remote sensing and GIS-based regional geomorphological mapping: a tool for land use planning in developing countries. Geomorphology 39:211–219

    Article  Google Scholar 

  12. Bubenzer O, Bolten A (2008) The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (Draa) in the eastern Sahara and the southern Namib. Geomorphology 102:221–231

    Article  Google Scholar 

  13. Butler DR, Walsh SJ (eds) (1998) The application of remote sensing and geographic information systems in the study of geomorphology. Geomorphology 21(3–4):179–349

  14. Caruthers RM, Greenbaum D, Peart RJ, Herbert R (1991) Geophysical investigations of photolineaments in southeast Zimbabwe. Q J Eng Geol 24:437–451

    Article  Google Scholar 

  15. Chang-Jo F, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  16. Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal. India Int J Remote Sens 30:231–250

    Article  Google Scholar 

  17. Dar IA, Sankar K, Dar MA (2010) Remote sensing technology and geographic information system modelling: an integrated approach towards the mapping of groundwater potential zones in hardrock terrain, Mamundiyar. J Hydrol 394:285–295

    Article  Google Scholar 

  18. Eastman JR (1999) Multi-criteria evaluation and GIS. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems, chap 35. Wiley, New York, pp 493–502

    Google Scholar 

  19. Eastman JR, Jin W, Kyem PAK, Toledano J (1995) Raster procedures for multi-criteria/multi-objective decisions. Photogrammet Eng Remote Sens 61:539–547

    Google Scholar 

  20. EGPC/Conoco (1987) Photogeological interpretation map, scale (1: 100,000). CORALI, Cairo

    Google Scholar 

  21. EGSMA (1994) Geological map of Sinai, sheet no. 1, scale 1:250000, Geological Survey of Egypt, Cairo

  22. Egyptian Meteorological Authority (2006) Climatic atlas of Egypt. Ministry of Transportation and Communications, Cairo

  23. Elewa HH, Qaddah AA (2011) Groundwater potentiality in Sinai Peninsula, Egypt, using remote sensing and GIS-watershed-based modelling. Hydrogeol J 19:613–628. doi:10.1007/s10040-011-0703-8

    Article  Google Scholar 

  24. Elmahdy SI (2012) Hydromorphological mapping and analysis for characterizing Darfur Paleolake, NW Sudan using remote sensing and GIS. Int J Geosci 3:25–36

    Article  Google Scholar 

  25. El-Rayes AE (1992) Hydrogeologic assessment of St. Catherine area, South Sinai. 3rd Conf. Geology of Sinai for Development, Ismailia, Egypt, December 1992, pp 273–280

  26. El-Rayes AE (2004) Use of lineament analyses and joint measurements as guides for drilling high yield water wells in the basement aquifer of south Sinai. JMPE 7(1):67–76

  27. El-Rayes AE, Arnous MO, Aboulela HA (2015) Hydrogeochemical and seismological exploration for geothermal resources in South Sinai, Egypt utilizing GIS and remote sensing. Arab J Geosci 8:5631–5647. doi:10.1007/s12517-014-1667-5

    Article  Google Scholar 

  28. El-Refaei AA (1992) Water resources of southern Sinai, Egypt. PhD Thesis, Cairo Univ., Cairo, Egypt, 357 pp

  29. El-Sayed MH, Abo El-Fadl MM, Shawky HA (2012) Impact of hydrochemical processes on groundwater quality, Wadi Feiran, South Sinai, Egypt. Austr J Basic Appl Sci 6(3):638–654

    Google Scholar 

  30. El-Shazly MM, Mohamed SS, Abd-Alatif TA, Misak RF, Mabrouk MA (1985) Groundwater potential of St. Katherine Monastery environs, Sinai. Egypt J Geol 29(1–2):89–100

    Google Scholar 

  31. Ganapuram S, Kumar GTV, Krishna IVM, Ercan K, Demirel MC (2009) Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advan Eng Soft 40(7):506–518

    Article  Google Scholar 

  32. Ghodeif K (1995) Hydrogeological studies on the east St. Katherine environs, south central Sinai, Egypt. MSc Thesis, Suez Canal University, Ismailia, Egypt, 180 pp

  33. Greenbaum D (1992) Structural influences on the occurrence of groundwater in SE Zimbabwe. In: Wright EP, Burgess WG (eds) Hydrogeology of crystalline basement aquifers in Africa. Geol Soc Spec Publ 66:77–85

  34. Gustafsson P (1994) SPOT satellite data for exploration of fractured aquifers in a semi-arid area in southeastern Botswana. Appl Hydrogeol 2:9–18

    Article  Google Scholar 

  35. Hosney HM (1991) Detailed seismic refraction and resistivity measurements around a dyke in St. Katherine area, southern Sinai, Egypt. Bull Fac Sci Ain Shams Univ 28B:491–512

  36. Hung L, Batelaan O, De Smedt F (2005) Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery: case study—Suoimuoi tropical karst catchment, Vietnam. Remote Sensi Int Soc Optic Photon 59830T-59830T-12. In: SPIE Proceedings, vol 598, SPIE, Bellingham WA

  37. Jain PK (1998) Remote sensing techniques to locate ground water potential zones in upper Urmil River basin, District Chatarpur-Central India. J Ind Soc Remote Sens 26(3):135–147

    Article  Google Scholar 

  38. Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. Int J Remote Sens 24:993–1008

    Article  Google Scholar 

  39. Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation model data for geographic information system analysis. Photogrammet Eng Remote Sens 54:1593–1600

    Google Scholar 

  40. Jordan G, Meijininger BMI, Van Hinsbergen DJJ, Meulenkamp JE, Van Dijk PM (2005) Extraction of morphotectonic features from DEM’s: development and applications for study areas in Hungary and NW Greece. Int J Appl Observ Geoinformat 7:163–182

    Article  Google Scholar 

  41. Kamaraju MVV, Bhattacharya A, Reddy GS, Rao GC, Murthy GS, Rao TCM (1996) Ground-water potential evaluation of West Godavari District, Andhra Pradesh State, India: a GIS approach. Ground Water 34(2):318–325

    Article  Google Scholar 

  42. Krishnamurthy JN, Venkatesa K, Jayaraman V, Manivel M (1996) An approach to demarcate ground water potential zones through remote sensing and geographical information system. Inter J Remote Sens 17:1867–1884

    Article  Google Scholar 

  43. Kumar A, Tomar S, Prasad LB (1999) Analysis of fractured inferred from DBTM and remotely sensed data for groundwater development in Godavari sub-watershed, Giridih, Bihar. J Indian Soc Remote Sens 26(2):105–114

    Article  Google Scholar 

  44. Kumar MG, Agarwal AK, Bali R (2008) Delineation of potential sites for water harvesting structures using remote sensing and GIS. J Indian Soc Remote Sens 36(4):323–334

    Article  Google Scholar 

  45. Kuria DN, Gachari MK, Macharia MW, Mungai E (2012) Mapping groundwater potential in Kitui District, Kenya using geospatial technologies. Int J Water Resour Environment Eng 4(1):15–22

    Google Scholar 

  46. Mallick J, Chander Kumar Singh CK, Al-Wadi H, Ahmed M, Rahman A, Shashtri S, Mukherjee S (2015) Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrol Proc 29(3):395–418

    Article  Google Scholar 

  47. Mohamed L, Sultan M, Ahmed M, Zaki A, Sauck W, Soliman F, Yan E, Elkadiri R, Abouelmaged A (2015) Structural controls on groundwater flow in basement terrains: geophysical, remote sensing, and field investigations in Sinai. Surv Geophys. doi:10.1007/s10712-015-9331-5

    Google Scholar 

  48. Moneim AAA (2005) Overview of the geomorphological and hydrogeological characteristics of the Eastern Desert of Egypt. Hydrogeol J 13(2):416–425

    Article  Google Scholar 

  49. Mukherjee S (1996) Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur–Kanpur, India. Hydrogeol J 19:53–64

    Google Scholar 

  50. Nag SK, Ghosh P (2013) Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS techniques. Environ Earth 70:2115–2127

    Article  Google Scholar 

  51. Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A (2015) Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci Inf 8(1):171–186

    Article  Google Scholar 

  52. Nampak H, Pradhan B, Abd Manap M (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

    Article  Google Scholar 

  53. Obi Reddy GP, Chandra MK, Srivastav SK, Srinivas CV, Maji AK (2000) Evaluation of groundwater potential zones using remote sensing data: a case study of Gaimukh watershed, Bhanadra District, Maharastra. J Indian Soc Remote Sens 28:19–32

    Article  Google Scholar 

  54. Oh H, Kim Y, Choi J, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172

    Article  Google Scholar 

  55. Pareta K, Pareta U (2011) Hydromorphogeological study of Karawan watershed using GIS and remote sensing techniques. E-Int Sci Res J III(4):243–268

  56. Pothiraj P, Rajagopalan B (2013) A GIS and remote sensing based evaluation of groundwater potential zones in a hard rock terrain of Vaigai sub-basin, India. Arab J Geosci 6:2391–2407

    Article  Google Scholar 

  57. Pradeep R (1998) Remote sensing techniques to locate groundwater potential zones in upper Urmil River Basin, Distract Chhatarpur, central India. J Indian Soc Remote Sens 26(3):135–147

    Article  Google Scholar 

  58. Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2008) Deciphering potential groundwater zone in hard rock through the application of GIS. Environ Geol 55:467–475

    Article  Google Scholar 

  59. Rao PJ, Harikrishna P, Srivastav SK, Satyanarayana PVV, Rao BBD (2009) Selection of groundwater potential zones in and around Madhurwada Dome, Visakhapatnam District: a GIS approach. J Indian Geophys Union 13(4):191–200

    Google Scholar 

  60. Ravindran KV, Jeyram A (1997) Ground water prospects of Shahbad Teshil, Baran District, eastern Rajasthan: a remote sensing approach. J Indian Soc Remote Sens 25(4):239–246

    Article  Google Scholar 

  61. Saha D, Dhar YR, Vittala SS (2010) Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, eastern India. Environ Monit Assess 165:179–191

    Article  Google Scholar 

  62. Saraf AK, Choudhary ER (1998) Integrated remote sensing and GIS for ground water exploration and identification of artificial recharge sites. Inter J Remote Sens 19(10):1825–1841

    Article  Google Scholar 

  63. Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13(5–6):826–834

    Article  Google Scholar 

  64. Shahid S, Nath SK, Roy J (2000) Groundwater potential modelling in a soft rock area using a GIS. Int J Remote Sens 21(9):1919–1924

    Article  Google Scholar 

  65. Sheffield C (1985) Selecting band combinations from multispectral data. Photogrammetric Eng Remote Sens 51(6):681–687

    Google Scholar 

  66. Shendi EH (1989) New approach for locating promising water well sites in Saint Katherine and surroundings, South Sinai. In: Proc. 2nd Conf. Geol. Sinai Develop., Suez Canal Univ., Ismailia, Egypt, 1989, pp 97–102

  67. Shendi EH (1992) The role of El-Agramia plain in the development of Saint Catherine area, South Sinai. In: Proc. 3rd Conf. Geol. Sinai Develop., Suez Canal Univ., Ismailia, Egypt, December 1992, pp 55–62

  68. Shendi EH, Abou El-Magd A (2004) A new approach for ground geophysics in the development of groundwater in the basement terrains: a case study from Wadi Feiran, South Sinai, Egypt. Proc. 7th Conf. Geol. Sinai Develop., Ismailia, Egypt, 2004, pp 129–140

  69. Shendi EH, El-Rayes A (1992) Geophysical prospecting for groundwater in Wadi Sibaiya-Wadi El-Sheikh area, south Sinai. M.E.R.C. Ain Shams Univ Earth Sci Ser 6:55–61

    Google Scholar 

  70. Sikdar PK, Chakraborty S, Adhya E, Paul PK (2004) Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal: a GIS and remote sensing approach. J Spatial Hydrol 4(2):1–24

    Google Scholar 

  71. Singh AK, Prakash SR (2003) An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala subwatershed Mirzapur district, UP, India. Presented at Map India Conference, New Delhi, 26–31 Jan. 2003

  72. Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14:729–741

    Article  Google Scholar 

  73. Soulakellis N, Novak I, Zouros N, Lowman P, Yates J (2006) Fusing Landsat-5/TM imagery and shaded relief maps in tectonic and geomorphic mapping: Lesvos Island, Greece. Photogrammet Eng Remote Sens 6:693–700

    Article  Google Scholar 

  74. Srinivasa RY, Jugran KD (2003) Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydro Sci J 48:821–833

    Article  Google Scholar 

  75. Subba RN (2006) Groundwater potential index in a crystalline terrain using remote sensing data. Environ Geol 50(7):1067–1076

    Article  Google Scholar 

  76. Surabuddin MM, Pandey AC, Garg RD (2007) Groundwater prospects evaluation based on hydrogeomorphological mapping using high resolution satellite images: a case study in Uttarakhand. J Indian Soc Remote Sens 36:69–76

    Article  Google Scholar 

  77. Todd KD (1980) Ground water hydrology, 2nd edn. Wiley, New York

    Google Scholar 

  78. Verstappen HT (1977) Remote sensing in geomorphology. Elsevier, New York

    Google Scholar 

  79. Wachs D, Arad A, Olshina A (1979) Locating groundwater in the Santa Catherina area using geophysical methods. Ground Water 17(3):258–263

    Article  Google Scholar 

  80. Youssef AM, Pradhan B, Hassan AM (2011) Flash flood risk estimation along the St. Katherine Road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62:611–623. doi:10.1007/s12665-010-0551-1

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to express his appreciation and gratitude to Prof. Ahmed E. El-Rayes, Geology Department, Faculty of Science, Suez Canal University, Egypt, for his constructive criticism on an earlier draft of the manuscript and his fruitful discussions. The author thanks reviewers Timothy Evans, Graham Jenke and the editor of Hydrogeology Journal for giving constructive comments that also helped improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed O. Arnous.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arnous, M.O. Groundwater potentiality mapping of hard-rock terrain in arid regions using geospatial modelling: example from Wadi Feiran basin, South Sinai, Egypt. Hydrogeol J 24, 1375–1392 (2016). https://doi.org/10.1007/s10040-016-1417-8

Download citation

Keywords

  • Remote sensing
  • Geographic information systems
  • Groundwater exploration
  • Modelling
  • Egypt