Skip to main content

Advertisement

Log in

Comparison of GRACE data and groundwater levels for the assessment of groundwater depletion in Jordan

Comparaison entre les données issues de GRACE et les niveaux piézométriques pour l’évaluation de la baisse du niveau des eaux souterraines en Jordanie

Comparación de datos de GRACE y niveles de agua subterránea para la evaluación del agotamiento del agua subterránea en Jordania

对比重力恢复和气候实验(GRACE)数据和地下水位以评价约旦地下水损耗状况摘要

Comparação de dados do GRACE e níveis de água subterrânea para avaliação da depleção de água subterrânea na Jordânia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Gravity Recovery and Climate Experiment (GRACE) derived groundwater storage (GWS) data are compared with in-situ groundwater levels from five groundwater basins in Jordan, using newly gridded GRACE GRCTellus land data. It is shown that (1) the time series for GRACE-derived GWS data and in-situ groundwater-level measurements can be correlated, with R 2 from 0.55 to 0.74, (2) the correlation can be widely ascribed to the seasonal and trend component, since the detrended and deseasonalized time series show no significant correlation for most cases, implying that anomalous signals that deviate from the trend or seasonal behaviour are overlaid by noise, (3) estimates for water losses in Jordan based on the trend of GRACE data from 2003 to 2013 could be up to four times higher than previously assumed using estimated recharge and abstraction rates, and (4) a significant time-lagged cross correlation of the monthly changes in GRACE-derived groundwater storage and precipitation data was found, suggesting that the conventional method for deriving GWS from GRACE data probably does not account for the typical conditions in the study basins. Furthermore, a new method for deriving plausible specific yields from GRACE data and groundwater levels is demonstrated.

Résumé

Les données des réserves d’eau souterraine issues du système GRACE (Gravity Recovery and Climate Experiment) sont comparées avec les données piézométriques mesurées in-situ dans cinq bassins hydrogéologiques en Jordanie, en utilisant une nouvelle grille de données GRSTellusland du système GRACE. Il a été montré que (1) les séries temporelles des données de la réserve en eau souterraine issues du système GRACE et les mesures piézométriques in-situ peuvent être corrélées, avec un coefficient R 2 compris entre 0.55 et 0.74, (2) la corrélation peut être largement attribuée à la composante tendancielle et saisonnière, puisque les séries temporelles défaites de la tendance et désaisonnalisées ne montrent pas de corrélation significative dans la plupart des cas, ce qui indique que les signaux d’anomalies qui s’écartent de la tendance ou du comportement saisonnier sont couverts par le bruit de fond, (3) les estimations pour les pertes d’eau en Jordanie basées sur la tendance des données de GRACE de 2003 à 2013 pourraient être plus de quatre fois supérieures aux estimations antérieures de recharge et de taux de prélèvement, et (4) une importante corrélation croisée décalée dans le temps des variations mensuelles du stock d’eau souterraine dérivé des données de GRACE et des données de précipitations a été mise en évidence, suggérant que la méthode conventionnelle pour évaluer les réserves en eau souterraine à partir des données de GRACE ne tient probablement pas compte des conditions spécifiques des bassins étudiés. De plus, une nouvelle méthode pour dériver des productivités spécifiques plausibles à partir des données de GRACE et des niveaux piézométriques est démontrée.

Resumen

Se comparan los datos derivados del almacenamiento de agua subterránea (GWS) del Gravity Recovery and Climate Experiment (GRACE) con los niveles de agua subterránea medidos in situ en cinco cuencas de aguas subterráneas en Jordania, utilizando los datos de GRACE GRCTellus reticulados recientemente. Se muestra que (1) la serie temporal de datos de GWS derivados de GRACE y las mediciones in situ del nivel del agua subterránea se pueden correlacionar con R 2 a partir 0.55 a 0.74; (2) la correlación puede ser ampliamente atribuida a la componente estacional y a la tendencia , ya que la serie de tiempo desestacionalizada y sin tendencia no muestra ninguna correlación significativa en la mayoría de los casos, lo que implica que las señales anómalas que se apartan de la tendencia o comportamiento estacional, se superponen con el ruido, (3) las pérdidas de agua estimadas en Jordania sobre la base de la tendencia de los datos de GRACE 2003–2013 podría ser hasta cuatro veces mayor de lo que se supone usando las tasas de recarga y de extracción estimados, y (4) la correlación cruzada encontró que un tiempo significativo de retardo entre la variaciones mensuales de almacenamiento de agua subterránea derivada de GRACE y datos de precipitación, lo que sugiere que el método convencional para derivar GWS de los datos de GRACE, probablemente, no tiene en cuenta las condiciones típicas en las cuencas de estudio. Por otra parte, se muestra un nuevo método para derivar los posibles rendimientos específicos a partir de los datos de GRACE y de los niveles del agua subterránea.

摘要

利用新划分网格的GRACE GRCTellus土地数据,对GRACE导出的地下水储存数据和约旦5个地下水盆地现场的地下水位进行了对比。结果显示,(1)GRACE导出的地下水储存数据和现场地下水位测量结果的时间序列可以相互关联,R 2的范围为0.55 到 0.74,(2)关联性广泛归因于季节性和趋势因素,因为大多数情况下去趋势化的和消除季节的时间序列没有显示出多大的关联性,意味着偏离趋势和季节性行为的异常信号被噪音覆盖,(3)根据2003年到2013年GRACE数据趋势得到的约旦水损耗估算结果可能是先前采用估算的补给和抽取率假设的结果的4倍,(4)发现GRACE导出的地下水储存量和降水数据月度变化有重要的时间延迟相互关联性,表明从GRACE数据导出地下水储存量的常规方法可能解释不了研究区的典型情况。此外,本文还论述了从GRACE数据和地下水位导出似乎可信的单位出水量的一种新方法。

Resumo

Dados de armazenamento de água subterrânea (AAS) derivados do satélite GRACE (Gravity Recovery and Climate Experiment) foram comparados com níveis de água subterrânea in-loco de cinco bacias subterrâneas na Jordânia. Utilizaram-se os novos dados em grade do GRACE (GRCTellus). Mostra-se que (1) as séries temporais para os dados de AAS derivados do GRACE e as medições in-loco de níveis de água subterrânea podem ser correlacionadas, com 0.55 ≤ R 2 ≤ 0.74, (2) a correlação pode ser largamente atribuída às componentes de tendência e sazonalidade, uma vez que as séries temporais após remoção de tendência e sazonalidade não apresentam correlação significativa na maioria dos casos, indicando que sinais anômalos que desviam da tendência ou do comportamento sazonal são sobrepostos por ruído, (3) estimativas para perda de água na Jordânia baseadas em tendências de dados GRACE de 2003 a 2013 podem ser até quatro vezes maiores que as previamente assumidas utilizando a recarga estimada e taxas de abstração, e (4) uma significante correlação cruzada defasada no tempo entre mudanças mensais no armazenamento de água subterrânea derivada do GRACE e dados de precipitação foi encontrada, sugerindo que o método convencional para derivar AAS a partir de dados GRACE provavelmente não considera condições típicas da área de estudo. Além disso, um novo método para derivar rendimentos específicos plausíveis a partir de dados GRACE e níveis das águas subterrâneas é demonstrado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed M, Sultan M, Wahr J, Yan E (2014) The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Sci Rev 136:289–300. doi:10.1016/j.earscirev.2014.05.009

    Article  Google Scholar 

  • Al Mahamid J (2005) Integration of water resources of the Upper Aquifer in Amman-Zarqa basin based on mathematical modeling and GIS, Jordan. Freiberg Online Geol 12:223

    Google Scholar 

  • Aldrich J (1995) Correlations genuine and spurious in Pearson and Yule. Stat Sci 10:364–376

    Google Scholar 

  • Awange JL, Gebremichael M, Forootan E, Wakbulcho G, Anyah R, Ferreira VG, Alemayehu T (2014) Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Adv Water Resour 74:64–78. doi:10.1016/j.advwatres.2014.07.012

    Article  Google Scholar 

  • Bender H, Hobler M, Klinge H, Schelkes K (1989) Investigations of groundwater resources in central Jordan. Desalination 72:161–170. doi:10.1016/0011-9164(89)80033-5

    Article  Google Scholar 

  • Bolvin D, Huffman G (2015) Transition of 3B42/3B43 Research product from monthly to climatological calibration/adjustment. NASA, Washington, DC. http://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_TMPA_restart.pdf Accessed 11 Jan 2016

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73

    Google Scholar 

  • Coyne et Bellier and Tractebel Engineering and KEMA (2012) Red Sea-Dead Sea Water Conveyance Study Program, Draft final feasibility study report summary. http://siteresources.worldbank.org/INTREDSEADEADSEA/Resources/Feasibility_Study_Report_Summary_EN.pdf. January 2016

  • Dayan U, Abramski R (1983) Heavy rain in the Middle East related to unusual jet stream properties. Bull Am Meteorol Soc. doi:10.1175/1520-0477(1983)064

    Google Scholar 

  • Dayan U, Ziv B, Margalit A, Morin E, Sharon D (2001) A severe autumn storm over the Middle East: synoptic and mesoscale convection analysis. Theor Appl Climatol 69:103–122. doi:10.1007/s007040170038

    Article  Google Scholar 

  • Döll P, Fritsche M, Eicker A, Müller Schmied H (2014) Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv Geophys 35:1311–1331. doi:10.1007/s10712-014-9282-2

    Article  Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression, I. Biometrika 37:409–428

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38:159–177

  • Famiglietti J, Lo M, Ho S, Bethune J, Anderson K, Syed T, Swenson S, de Linage C, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi:10.1029/2010GL046442

  • Fang H, Beaudoing HK, Rodell M, Teng WL, Vollmer BE (2009) Global Land data assimilation system (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC). Proceedings of the ASPRS 2009 Annual Conference, Baltimore, MD, March 2009, pp 8–13. http://www.asprs.org/a/publications/proceedings/baltimore09/0020.pdf

  • Feng W, Zhong M, Lemoine J-M, Biancale R, Hsu H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118. doi:10.1002/wrcr.20192

    Article  Google Scholar 

  • Giordano M (2009) Global groundwater? Issues and solutions. Annu Rev Environ Resour 34:153–178. doi:10.1146/annurev.environ.030308.100251

    Article  Google Scholar 

  • Gleeson T, Wada Y, Bierkens MF, van Beek LP (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200. doi:10.1038/nature11295

    Article  Google Scholar 

  • Granger CW, Newbold P (1974) Spurious regressions in econometrics. J Econ 2:111–120

    Article  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196. doi:10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  • Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems. Elsevier, Amsterdam

  • Hötzl H, Möller P, Rosenthal E (2008) The water of the Jordan Valley: scarcity and deterioration of groundwater and its impact on the regional development. Springer Science & Business Media, Heidelberg, Germany

  • Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour Res 48(7). doi:10.1029/2011wr011291

  • Hu L, Jiao JJ (2015) Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China. Hydrogeol J 23:1305–1317. doi:10.1007/s10040-015-1278-6

    Article  Google Scholar 

  • Huang Z, Pan Y, Gong H, Yeh PJF, Li X, Zhou D, Zhao W (2015) Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys Res Lett 42:1791–1799. doi:10.1002/2014gl062498

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT (2014) The climate data guide: TRMM—Tropical Rainfall Measuring Mission. NASA, Washington, DC. ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf. Accessed 22 July 2015

  • Huffman GJ, Adler RF, Bolvin DT, Gu GJ, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi:10.1175/jhm560.1

    Article  Google Scholar 

  • Inbar M (2000) Episodes of flash floods and boulder transport in the Upper Jordan River. The Hydrology-Geomorphology Interface: Rainfall, Floods, Sedimentation, Land Use. Proceedings of the Conference onDrainage Basin Dynamics and Morphology, IAHS Publ, Jerusalem, no. 261

  • Jiang D, Wang J, Huang Y, Zhou K, Ding X, Fu J (2014) The review of GRACE data applications in terrestrial hydrology monitoring. Adv Meteorol 2014:1–9. doi:10.1155/2014/725131

    Google Scholar 

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:2679–2692. doi:10.1002/2013wr014633

    Article  Google Scholar 

  • Kim H, Yeh PJF, Oki T, Kanae S (2009) Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophys Res Lett 36(17). doi:10.1029/2009gl039006

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48(4). doi:10.1029/2011wr011453

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46(11). doi:10.1029/2009WR008564

  • Longuevergne L, Wilson CR, Scanlon BR, Crétaux JF (2013) GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrol Earth Syst Sci 17:4817–4830. doi:10.5194/hess-17-4817-2013

    Article  Google Scholar 

  • Margane A, Zuhdy Z (1995) Groundwater resources of northern Jordan, vol 1: rainfall, spring discharge and baseflow, part 1—rainfall in Jordan. Report Technical Cooperation Project no. 89.2105.8, BGR-WAJ Technical Cooperation Project, Amman, Jordan

  • Margane A, Hobler M, Almomani M, Subah A (2002) Contributions to the hydrogeology of northern and central Jordan. Geologisches Jahrbuch Reihe C, Heft 68. Schweizerbart, Hannover, Germany

  • Ministry of Water and Irrigation (MWI) (2000) Outline hydrology of the Amman-Zarqa Basin. http://pdf.usaid.gov/pdf_docs/Pnacp586.pdf. Accessed January 2002

  • Ministry of Water and Irrigation (MWI) (2009) Water for life: Jordan’s water strategy 2008–2022. http://www.semide.net/media_server/files/K/g/JO_Water-Strategy09.pdf. Accessed June 2015

  • Ministry of Water and Irrigation (MWI) (2013) Jordan water sector facts and figures 2013, Amman, Jordan. http://www.mwi.gov.jo/sites/en-us/Documents/W.%20in%20Fig.E%20FINAL%20E.pdf. Accessed June 2015

  • Ministry of Water and Irrigation (MWI), Federal Institute for Geosciences and Natural Resources (BGR) (2001) Groundwater resources of northern Jordan, vol 4: contributions to the hydrogeology of northern Jordan. Report Technical Cooperation Project no. 89.2105.8, BGR-WAJ Technical Cooperation Project, Amman, Jordan

  • Ministry of Water and Irrigation (MWI), German Technical Cooperation (GTZ) (2004) National water master plan of Jordan: balancing resources and demands. Ministry of Water and Irrigation (MWI), German Technical Cooperation (GTZ), Ammam, Jordan

    Google Scholar 

  • Moiwo JP, Yang YH, Li HL, Han SM, Hu YK (2009) Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, northern China. Water SA 35:663–670

    Article  Google Scholar 

  • Moore S, Fisher JB (2012) Challenges and opportunities in GRACE-based groundwater storage assessment and management: an example from Yemen. Water Resour Manag 26:1425–1453. doi:10.1007/s11269-011-9966-z

    Article  Google Scholar 

  • Moore P, Williams SDP (2014) Integration of altimetric lake levels and GRACE gravimetry over Africa: inferences for terrestrial water storage change 2003–2011. Water Resour Res 50:9696–9720. doi:10.1002/2014wr015506

    Article  Google Scholar 

  • Morris BL, Lawrence ARL, Chilton PJC, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. Early Warning and Assessment Report Series, United Nations Environment Programme, Nairobi, Kenya

  • Mulder G, Olsthoorn TN, Al-Manmi DAMA, Schrama EJO, Smidt EH (2015) Identifying water mass depletion in northern Iraq observed by GRACE. Hydrol Earth Syst Sci 19:1487–1500. doi:10.5194/hess-19-1487-2015

    Article  Google Scholar 

  • Proulx RA, Knudson MD, Kirilenko A, VanLooy JA, Zhang X (2013) Significance of surface water in the terrestrial water budget: a case study in the Prairie Coteau using GRACE, GLDAS, Landsat, and groundwater well data. Water Resour Res 49:5756–5764. doi:10.1002/wrcr.20455

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed April 2016

  • Reichle RH, Koster RD, De Lannoy GJM, Forman BA, Liu Q, Mahanama SPP, Touré A (2011) Assessment and enhancement of MERRA land surface hydrology estimates. J Clim 24:6322–6338. doi:10.1175/jcli-d-10-05033.1

    Article  Google Scholar 

  • Richey AS, Thomas BF, Lo M-H, Famiglietti JS, Swenson S, Rodell M (2015) Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour Res 51:5198–5216. doi:10.1002/2015WR017351

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen JY, Collins D, Conaty A, Da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/jcli-d-11-00015.1

    Article  Google Scholar 

  • Rodell M, Famiglietti JS (2001) An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 37:1327–1339. doi:10.1029/2000wr900306

    Article  Google Scholar 

  • Rodell M, Houser P, Uea J, Gottschalck J, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti J, Nigro J, Wilson C (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166. doi:10.1007/s10040-006-0103-7

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002

    Article  Google Scholar 

  • Rodell M, Kato H, NASA/GSFC/HSL (2013) GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree Version 2.0. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD. doi:10.5067/9SQ1B3ZXP2C5. Accessed July 2014

  • Sakumura C, Bettadpur S, Bruinsma S (2014) Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys Res Lett 41:1389–1397. doi:10.1002/2013gl058632

    Article  Google Scholar 

  • Scanlon BR, Longuevergne L, Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48(4). doi:10.1029/2011wr011312

  • Shen H, Leblanc M, Tweed S, Liu W (2015) Groundwater depletion in the Hai River Basin, China, from in situ and GRACE observations. Hydrol Sci J 60:671–687. doi:10.1080/02626667.2014.916406

    Article  Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci 14:1863–1880. doi:10.5194/hess-14-1863-2010

    Article  Google Scholar 

  • Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys Res Lett 34(13). doi:10.1029/2007gl030139

  • Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, central United States. Water Resour Res 45(5). doi:10.1029/2008wr006892

  • Sun AY, Green R, Swenson S, Rodell M (2012) Toward calibration of regional groundwater models using GRACE data. J Hydrol 422–423:1–9. doi:10.1016/j.jhydrol.2011.10.025

    Article  Google Scholar 

  • Swenson SC (2012) GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA. doi:10.5067/TELND-NC005

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8). doi:10.1029/2005gl025285

  • Swenson S, Yeh PJF, Wahr J, Famiglietti J (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33(16). doi 10.1029/2006gl026962

  • Thales Alenia Space (2010) Assessment of a Next Generation Mission for monitoring the variations of Earth’s gravity. Final report of the Next Generation Gravity Mission (NGGM) study. Thales Alenia Space, Cannes. http://www.iapg.bgu.tum.de/mediadb/5746123/5746124/04_ao7317_rd4-nggm_finalreport_issue2.pdf. Accessed 11 Jan 2016

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36(18). doi:10.1029/2009gl039401

  • US Geological Survey (USGS) (1998) Overview of Middle East water resources: water resources of Palestinian, Jordanian, and Israeli interest. Report compiled for the Executive Action Team, Middle East Water Data Banks Project (EXACT), US Geological Survey, Reston, VA

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time‐variable gravity from GRACE: first results. Geophys Res Lett 31. doi:10.1029/2004GL019779

  • Wouters B, Bonin JA, Chambers DP, Riva RE, Sasgen I, Wahr J (2014) GRACE, time-varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics. Phys Soc 77:116801. doi:10.1088/0034-4885/77/11/116801

    Google Scholar 

  • Yeh PJF, Swenson S, Famiglietti J, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42(12). doi: 10.1029/2006WR005374

  • Yule GU (1926) Why do we sometimes get nonsense-correlations between time series? A study in sampling and the nature of time-series. J R Stat Soc 89:1–63

Download references

Acknowledgements

The authors would like to thank Ali Subah from the Ministry of Water and Irrigation (Amman, Jordan) for providing the groundwater level data and two anonymous reviewers for helpful suggestions. GRACE GRCTellus Land data are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program. The precipitation data used in this study were acquired as part of the Tropical Rainfall Measuring Mission (TRMM). The algorithms were developed by the TRMM Science Team. The data were processed by the TRMM Science Data and Information System (TSDIS) and the TRMM office; they are archived and distributed by the Goddard Distributed Active Archive Center. TRMM is an international project jointly sponsored by the Japan National Space Development Agency (NASDA) and the US National Aeronautics and Space Administration (NASA) Office of Earth Sciences. Data were processed using R (R Core Team 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Liesch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liesch, T., Ohmer, M. Comparison of GRACE data and groundwater levels for the assessment of groundwater depletion in Jordan. Hydrogeol J 24, 1547–1563 (2016). https://doi.org/10.1007/s10040-016-1416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1416-9

Keywords

Navigation