Advertisement

Hydrogeology Journal

, Volume 24, Issue 6, pp 1497–1513 | Cite as

Groundwater occurrence in cold environments: examples from Nunavik, Canada

  • Jean-Michel LemieuxEmail author
  • Richard Fortier
  • Marie-Catherine Talbot-Poulin
  • John Molson
  • René Therrien
  • Michel Ouellet
  • David Banville
  • Marion Cochand
  • Renaud Murray
Report

Abstract

Water availability and management issues related to the supply of drinking water in northern communities are problematic in Canada. While rivers and lakes are abundant, they are vulnerable to contamination and may become dry in winter due to freezing. Groundwater can often provide a more secure and sustainable water source, however its availability is limited in northern Canada due to the presence of permafrost. Moreover, the exploitation of northern aquifers poses a dual challenge of identifying not only permafrost-free areas, but also permeable areas which will allow groundwater recharge and exploitation. Suitable aquifers are not as common in northern Canada since the shallow subsurface is mostly composed of low-permeability crystalline rocks or unconsolidated sediments of glacial origin that are highly heterogeneous. In order to investigate groundwater occurrence and associated geological contexts in Nunavik (northern Quebec, Canada), along with exploring how these resources will evolve in response to climate change, field and compilation work were conducted in the surroundings of the four villages of Salluit, Kuujjuaq, Umiujaq and Whapmagoostui-Kuujjuarapik. These villages are located in different permafrost zones, ranging from continuous to discontinuous, as well as in different geological environments. It was found that despite the ubiquitous presence of permafrost, unfrozen aquifers could be identified, which suggests that groundwater may be available as a source of drinking water for small communities. Expected climate change, with predicted permafrost thawing and increases in temperature and precipitation, should enhance groundwater availability and may contribute to a more secure source of drinking water for northern communities.

Keywords

Cold regions hydrogeology Water supply Permafrost Climate change Canada 

Occurrence des eaux souterraines dans des environnements froids: exemples du Nunavik, Canada

Résumé

Les questions de disponibilité et de gestion de l’eau liées à l’approvisionnement en eau potable dans les communautés du nord sont problématiques au Canada. Alors que les rivières et les lacs sont abondants, ils sont vulnérables aux contaminations et peuvent s’assécher en hiver en raison du gel. Les eaux souterraines peuvent souvent fournir des ressources en eau plus sures et durables, cependant leur disponibilité est limité dans le nord du Canada à cause de la présence du pergélisol. De plus, l’exploitation des aquifères du nord pose un double défi d’identification non seulement des zones libres de pergélisol, mais aussi des zones perméables qui permettront la recharge des eaux souterraines et leur exploitation. Des aquifères appropriés ne sont pas aussi communs dans le nord du Canada, du fait que le soussol peu profond est surtout composé de roches cristallines de faible perméabilité ou des sédiments non consolidés d’origine glaciaire qui sont très hétérogènes. Afin d’étudier l’occurrence des eaux souterraines et les contextes géologiques associés au Nunavik (nord du Québec, Canada), en explorant la façon dont ces ressources vont évoluer en réponse au changement climatique, des travaux de terrain et de compilation ont été menés dans les environs des quatre villages de Salluit, Kuujjuaq, Umiujaq et Whapmagoostui-Kuujjuarapik. Ces villages sont situés dans différentes zones de pergélisol, allant du continu au discontinu, ainsi que dans différents environnements géologiques. Il a été constaté que, malgré la présence omniprésente du pergélisol, des aquifères non affectés par le gel ont pu être identifiés, ce qui suggère que les eaux souterraines peuvent être disponibles en tant que source d’eau potable pour de petites communautés. Le changement climatique attend, avec une prévision d’un dégel du pergélisol et une augmentation de la température et des précipitations, devrait améliorer la disponibilité des eaux souterraines et peut constituer une ressource en eau potable plus sûre pour les communautés du Nord.

Ocurrencia de agua subterránea en ambientes fríos: ejemplos de Nunavik, Canadá

Resumen

Las cuestiones de disponibilidad y manejo en relación con el suministro de agua potable son problemáticas en las comunidades del norte de Canadá. Mientras que los ríos y lagos son abundantes, ellos son vulnerables a la contaminación y pueden llegar a estar secos en invierno debido a la congelación. El agua subterránea puede proporcionar a menudo una fuente de agua más segura y sostenible, sin embargo, su disponibilidad es limitada en el norte de Canadá debido a la presencia de permafrost. Por otra parte, la explotación de los acuíferos del norte plantea el doble reto de identificar las áreas no sólo libres de permafrost, sino también las zonas permeables que permitan la recarga y la explotación de los acuíferos. Los acuíferos adecuados no son comunes en el norte de Canadá ya que el subsuelo poco profundo está compuesto principalmente por rocas cristalinas de baja permeabilidad o sedimentos no consolidados de origen glacial que son altamente heterogéneos. Con el fin de investigar la ocurrencia del agua subterránea y contextos geológicos asociados en Nunavik (norte de Quebec, Canadá), junto con la exploración de cómo estos recursos van a evolucionar en respuesta al cambio climático, se llevaron a cabo trabajos de recopilación y de campo en el entorno de cuatro pueblos, Salluit, Kuujjuaq, Umiujaq y Whapmagoostui-Kuujjuarapik. Estos pueblos se encuentran en distintas zonas de permafrost, que van desde continuo a discontinuo, así como en diferentes entornos geológicos. Se encontró que, a pesar de la presencia generalizada de permafrost, se pudieron identificar acuíferos no congeladas, lo que sugiere que el agua subterránea puede estar disponible como una fuente de agua potable para las comunidades pequeñas. El cambio climático previsto, con el pronosticado deshielo del permafrost y el aumento de la temperatura y la precipitación, debería mejorar la disponibilidad de agua subterránea y puede contribuir a una fuente más segura de agua potable para las comunidades del norte.

寒冷环境中地下水的赋存状况:加拿大努那维克的实例

摘要

与北部社区饮用水供水有关的水资源可用量及管理在加拿大存在着一些问题。加拿大 河流和湖泊众多, 容易受到污染, 由于冰冻, 这些河流和湖泊变干涸。地下水可常常 提供更安全和更持久的水源, 然而, 在加拿大北部由于存在着永久冻土, 水源可用量 受到限制。另外, 北部的含水层开采对确定无永久冻土区和可以进行地下水补给和开 采的的永久冻土区提出了双重挑战。在加拿大北部合适的含水层并不常见, 因为浅层 地表以下主要由透水性低的结晶岩或冰川来源的松散沉积物组成. 为了调查(加拿大 魁北克北部)努那维克地下水赋存情况和相关的地质背景, 连同探索这些资源是怎样 针对气候变化演化的, 在Salluit、Kuujjuaq、Umiujaq 和 Whapmagoostui-Kuujjuarapik四个村庄进行了室外和综合研究工作。这些村庄位于连续、不连续的永久冻 土带及不同地质环境中。研究发现, 尽管普遍存在着永久冻土, 但非冰冻的含水层仍 可识别, 这表明地下水可以作为小型社区的饮用水水源使用。预料的气候变化、加上 预测的永久冻土融化及温度和降水的增加应该增加地下水可利用量, 并且为北部社区 更安全的饮用水源做出贡献.

Ocorrência de água subterrânea em ambientes frios: exemplos de Nunavik, Canadá

Resumo

Questões sobre a disponibilidade e gestão da água relacionadas com o abastecimento de água potável em comunidades do norte são problemáticas no Canadá. Enquanto rios e lagos são abundantes, eles são vulneráveis à contaminação e podem tornar-se secos no inverno devido ao congelamento. Água subterrânea muitas vezes pode prover uma fonte de água mais segura e sustentável, no entanto a sua disponibilidade é limitada no norte do Canadá, devido à presença de pergelissolos (permafrost). Além disso, a exploração dos aquíferos do norte têm um duplo desafio de identificar não só áreas livres de pergelissolos, mas também áreas permeáveis que permitam a recarga e exploração dos aquíferos. Aquíferos adequados não são tão comuns no norte do Canadá já que a subsuperfície rasa é maioritariamente composta por rochas cristalinas de baixa permeabilidade ou sedimentos não consolidados de origem glacial que são altamente heterogêneos. A fim de investigar a ocorrência de água subterrânea e contextos geológicos associados em Nunavik (norte de Quebec, Canadá), juntamente como a forma de exploração destes recursos ira evoluir em resposta às alterações climáticas, a compilação e o trabalho de campo foram realizados no entorno das quatro aldeias de Salluit, Kuujjuaq, Umiujaq e Whapmagoostui-Kuujjuarapik. Estas aldeias estão localizadas em diferentes zonas de permafrost, que vão de contínuo a descontínuo, bem como diferentes ambientes geológicos. Foi descoberto que, apesar da presença ubíqua de pergelissolos, aquíferos descongelados podem ser identificados, o que sugere que a água subterrânea pode estar disponível como fonte de água potável para pequenas comunidades. Mudanças climáticas esperadas, com o descongelamento previsto do pergelissolo e aumento na temperatura e precipitação, deve aumentar a disponibilidade de água subterrânea e pode contribuir para uma fonte de água potável mais segura para as comunidades do norte.

Notes

Acknowledgements

This work was funded by the Quebec Ministry of Sustainable Development, Environment and Fight against Climate Change (MDDELCC), the Quebec Research Fund – Nature and Technology (FRQNT), and the Natural Sciences and Engineering Research Council of Canada (NSERC; through a Strategic Project Grant). We are thankful to Guillaume Bédard of the Kativik Regional Government and to the communities of Salluit, Kuujjuaq, Umiujaq and Whapmagoostui-Kuujjuarapik for their help and collaboration on this project.

References

  1. ACGR (Associate Committee on Geotechnical Research) (1988) Glossary of permafrost and related ground-ice terms. Permafrost Subcommittee, Technical Memorandum 142, National Research Council of Canada, OttawaGoogle Scholar
  2. Alexeev S, Alexeeva L (2003) Hydrogeochemistry of the permafrost zone in the central part of the Yakutian diamond-bearing province, Russia. Hydrogeol J 11:574–581CrossRefGoogle Scholar
  3. Allard M, Lemay M (2012) Nunavik and Nunatsiavut: from science to policy: an integrated regional impact study (IRIS) of climate change and modernization. ArcticNet, Quebec City, QC, 303 ppGoogle Scholar
  4. Allard M, Seguin MK (1985) La déglaciation d’une partie du versant Hudsonien des rivières Nastapoka, Sheldrake et à l’Eau Claire [The deglaciation of one part of the Hudsonian side of the Nastapoka, Sheldrake and à l’Eau Claire rivers watershed]. Geogr Phys Quatern 39(1):13–24. doi: 10.7202/032581ar Google Scholar
  5. Allard M, Seguin MK (1987) Le pergélisol au Québec nordique: bilan et perspective [Permafrost in northern Québec: assessment and perspective]. Geogr Phys Quatern 41(1):141–152. doi: 10.7202/032671ar Google Scholar
  6. Allard M, Fournier A, Gahé É, Seguin MK (1989) Le Quaternaire de la côte sud-est de la baie d’Ungava, Québec nordique [The Quaternary of the southern coast of Ungava Bay, northern Quebec]. Geogr Phys Quatern 43(3):325–336. doi: 10.7202/032786ar Google Scholar
  7. Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36, L22401. doi: 10.1029/2009GL039225 CrossRefGoogle Scholar
  8. Bense V, Kooi H, Ferguson G, Read T (2012) Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res 117. doi  10.1029/2011JF002143
  9. Burn CR (2002) Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can J Earth Sci 39(8):1281–1298. doi: 10.1139/e02-035 CrossRefGoogle Scholar
  10. Carey S, Boucher J, Duarte C (2013) Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment (Yukon, Canada). Hydrogeol J 21:67–77CrossRefGoogle Scholar
  11. CEN (2014a) Environmental data from Whapmagoostui-Kuujjuarapik Region in Nunavik, Quebec, Canada, v. 1.3 (1987–2014). Nordicana D4. doi: 10.5885/45057SL-EADE4434146946A7
  12. CEN (2014b) Environmental data from the Umijuaq region in Nunavik, Quebec, Canada, v. 1.2 (1997–2014). Nordicana D9. doi: 10.5885/45120SL-067305A53E914AF0
  13. CEN (2014c) Environmental data from Boniface river region in Nunavik, Quebec, Canada, v. 1.1 (1988–2013). Nordicana D7. doi: 10.5885/45129SL-DBDA2A77C0094963
  14. CEN (2014d) Environmental data from the Salluit Region in Nunavik, Quebec, Canada, v. 1.3 (1987–2014). Nordicana D3. doi: 10.5885/45048SL-4708BCCDFA124359
  15. Clark T, Wares R (2004) Synthèse lithotectonique et métallogénique de l’Orogène du Nouveau–Québec (Fosse du Labrador) [Lithotectonic and metallogenic synthesis of New Quebec (Labrador Trough)]. Report MM 2004–01, Ministère des Ressources naturelles, de la Faune et des Parcs, Quebec City, 180 ppGoogle Scholar
  16. Daigneault R-A (2008) Géologie du Quaternaire du nord de la péninsule d’Ungava, Québec [Quaternary geology of the northern Ungava peninsula]. GSC Bulletin 533, Geological Survey of Canada, Ottawa, 126 ppGoogle Scholar
  17. Delpla I, Jung A-V, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35(8):1225–1233. doi: 10.1016/j.envint.2009.07.001 CrossRefGoogle Scholar
  18. Environment Canada (2016) Canadian climate normals 1981–2010 station data. http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html. Accessed March 7 2016
  19. Fortier R (2006) Étude du pergélisolé de la zone 5–8 du plateau Katinniq au Nunavik (Québec). Report presented to XStrata Nickel, Quebec City, QC, 26 ppGoogle Scholar
  20. Fortier R, Aubé-Maurice B (2008) Fast permafrost degradation near Umiujaq in Nunavik (Canada) since 1957 assessed from time-lapse aerial and satellite photographs. In: Proceedings 9th International Conference on Permafrost, vol 1. Fairbanks, AK, July 2008, pp 457–462Google Scholar
  21. Fortier R, LeBlanc A-M, Yu W (2011a) Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Can Geotech J 48:720–740. doi: 10.1139/T10-101 CrossRefGoogle Scholar
  22. Fortier R, Allard M, Lemieux J-M, Therrien R, Molson J, Fortier D (2011b) Stratégie de déploiement du réseau Immatsiak: cartographie des dépôts quaternaires et compilation des informations disponibles des villages nordiques de Whapmagoostui, Umiujaq, Salluit et Kuujjuaq [Deployment strategy for the Immatsiak network: surficial geology mapping and compilation of available data for the northern villages of Whapmagoostui, Umiujaq, Salluit et Kuujjuaq]. Synthesis report of phase I submitted to MDDEFP, Quebec City, QC, 126 ppGoogle Scholar
  23. Fortier R, Lemieux J-M, Therrien R, Molson J (2012) Projet de déploiement du réseau Immatsiak: campagne de levés géophysiques pour des informations complémentaires aux sites des villages nordiques de Whapmagoostui, Umiujaq, Kuujjuaq et Salluit [Deployment of the Immatsiak network: geophysical surveys at the northern villages of Whapmagoostui, Umiujaq, Salluit et Kuujjuaq]. Synthesis report of phase II submitted to MDDEFP, Quebec City, QC, 229 ppGoogle Scholar
  24. Fortier R, Lemieux J-M, Molson J and Therrien R (2013) Projet de déploiement du réseau Immatsiak: campagne de forages pour l’installation de puits d’observation des eaux souterraines dans un petit bassin versant pergélisolé à Umiujaq [Deployment of the Immatsiak network: drilling campaign and well installation for the monitoring of groundwater in a small watershed containing permafrost near Umiujaq]. Synthesis report of phase III submitted to MDDEFP, Quebec City, QC, 89 ppGoogle Scholar
  25. Geophysics GPR International Inc. (2002) Whapmagoostui-Kuujjuarapik water project. Final report M-02546 presented to the Whapmagoostui Band Conuncil, Kuujjuarapik, Quebec City, QC, 141 ppGoogle Scholar
  26. Gray JT, Pilon JA (1976) Permafrost distribution at Tasiujaq (Leaf Basin) on the southwest coast of Ungava Bay, New Québec. Rev Géogr Montréal 30:367–373Google Scholar
  27. Gray JT, Pilon JA, Poitevin J (1979) Le pergélisol et la couche active dans la toundra forestière au sud de la baie aux Feuilles, Nouveau-Québec [The permafrost and the active layer in the forest tundra south of Leaf Bay, northern Quebec]. Geogr Phys Quatern 33(3–4):253–264. doi: 10.7202/1000362ar Google Scholar
  28. Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. Eos Trans AGU 92(9):73. doi: 10.1029/2011EO090001 CrossRefGoogle Scholar
  29. Haldorsen S, Heim M (1999) An arctic groundwater system and its dependence upon climatic change: an example from Svalbard. Permafr Periglac 10(2):137–149. doi: 10.1002/(SICI)1099-1530(199904/06)10:2<137::AID-PPP316>3.0.CO;2-# CrossRefGoogle Scholar
  30. Haldorsen S, Heim M, Lauritzen SE (1996) Subpermafrost groundwater, western Svalbard. Nord Hydrol 27:57–68. doi: 10.2166/nh.1996.004 Google Scholar
  31. Hillaire-Marcel C (1976) La déglaciation et le relèvement isostatique sur la côte est de la baie d’Hudson [Deglaciation and isostatic rebound of the eastern coast of Hudson Bay]. Cah Géog Québec 20:185–220. doi: 10.7202/021319ar CrossRefGoogle Scholar
  32. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 ppGoogle Scholar
  33. Ireson AM, Van Der Kamp G, Ferguson G, Nachshon U, Wheater HS (2013) Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges. Hydrogeol J 21(1):53–66CrossRefGoogle Scholar
  34. Kane DL, Carlson RF, Bowers CE (1973) Groundwater pore pressures adjacent to subarctic streams. In: Proceedings, Second International Conference on Permafrost, Yakutsk, USSR, 16–28 July 1973. North American Contribution, National Academy of Sciences, Washington, DC, pp 453–458Google Scholar
  35. Kane DL, Hinkel KM, Goering DJ, Hinzman LD, Outcalt SI (2001) Non-conductive heat transfer associated with frozen soils. Global Planet Change 29(3–4):275–292. doi: 10.1016/S0921-8181(01)00095-9 CrossRefGoogle Scholar
  36. Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth-Sci Rev 138:313–334. doi: 10.1016/j.earscirev.2014.06.006 CrossRefGoogle Scholar
  37. Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008) Simulating the impact of glaciations on continental groundwater flow systems: 1. relevant processes and model formulation. J Geophys Res 113, F03017. doi: 10.1029/2007JF000928 Google Scholar
  38. Li T, Ducruc JP (1999) Les provinces naturelles. Niveau I du cadre écologique de référence du Québec [Natural Province. Level I of the Quebec reference ecological framework]. Ministère de l’Environnement, Quebec City, QC, 90 pp. Available from http://www.mddelcc.gouv.qc.ca/biodiversite/aires_protegees/provinces/partie4b.htm. Accessed 12 Mar 2015
  39. Martin D, Bélanger D, Gosselin P, Brazeau J, Furgal C, Déry S, (2007) Drinking water and potential threats to human health in Nunavik: adaptation strategies under climate change conditions. Arctic 60(2):195–202. doi:  10.14430/arctic244
  40. McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21(1):299–316. doi: 10.1007/s10040-012-0942-3 CrossRefGoogle Scholar
  41. MDDEFP (2006) Guide de conception des installations de production d’eau potable, sections 5.1.3 et 5.2.1 [Conception guide for water production plants, sections 5.1.3 and 5.2.1]. http://www.mddelcc.gouv.qc.ca/eau/potable/guide/documents/volume1.pdf. Accessed 26 February 2015
  42. MDDELCC (2016) Réseau de suivi des eaux souterraines du Québec [Quebec groundwater monitoring network]. http://www.mddelcc.gouv.qc.ca/eau/piezo/index.htm. Accesses 7 March 2016
  43. Messier V, Lévesque B, Proulx J-F, Ward BJ, Libman M, Couillard M, Martin D, Hubert B (2007) Zoonotic diseases, drinking water and gastroenteritis in Nunavik: a brief portrait. Institut national de santé publique du Québec, Quebec City, QC, 24 ppGoogle Scholar
  44. Michel FA, van Everdingen RO (1994) Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafr Periglac 5(3):191–195. doi: 10.1002/ppp.3430050308 CrossRefGoogle Scholar
  45. Molson JW, Frind EO (2015) HEATFLOW-SMOKER, Density-dependent flow and advective-dispersive transport of mass, thermal energy or residence time in 3D fractured porous media, Version 5.0, Université Laval, Quebec City and University of Waterloo, Waterloo, ONGoogle Scholar
  46. Parent M, Paradis SJ (1995) Géologie des formations superficielles, région de Kuujjuarapik-Whapmagoostui, Québec nordique [Geology of surficial deposits, Kuujjuarapik-Whapmagoostui area]. Open File 2870, Geological Survey of Canada, Ottawa, 45 ppGoogle Scholar
  47. Payette S, Bouchard A (2001) Le contexte biophysique et biogéographique [The biophysical and biogeographical context]. In: Payette S, Rochefort L (eds) Écologie des tourbières du Québec-Labrador [Ecology of peatlands in Quebec-Labrador]. Les Presses de l’Université Laval, Quebec City, QC, pp 9–37Google Scholar
  48. Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111, G02020. doi: 10.1029/2005JG000055 Google Scholar
  49. Poitevin J, Gray JT (1982) Distribution du pergélisol dans le bassin de la Grande Rivière de la Baleine, Québec [Permafrost distribution in the Great Whale River watershed, Quebec]. Nat Can 109:445–455Google Scholar
  50. Quebec Ministry of Natural Resources (2003) Vegetation zones and bioclimatic domains of the Quebec province. Quebec Ministry of Natural Resources, Quebec City, QC, 2 ppGoogle Scholar
  51. Ricard S (2009) Village nordique de Salluit: approvisionnement en eau potable [Water supply for the Salluit village]. Laforest Nova Aqua, Saint-Laurent, QC, 36 ppGoogle Scholar
  52. Sarrazin D, Allard M (2014a) Environmental data from the Inukjuak region in Nunavik, Quebec, Canada, v. 1.2 (2008–2014). Nordicana D13. doi: 10.5885/45219SL-2B4081DF20FC42C8
  53. Sarrazin D, Allard M (2014b) Environmental data from the Puvirnituq region in Nunavik, Quebec, Canada, v. 1.1 (2005–2014). Nordicana D17. doi: 10.5885/45255SL-AEA3D430C4C44920
  54. Sarrazin D, Allard M (2014c) Environmental data from the Akulivik region in Nunanik, Quebec, Canada, v. 1.2 (2004–2014). Nordicana D11. doi: 10.5885/45192SL-7C87131DC13244B8
  55. Sarrazin D, Allard M (2014d) Environmental data from the Quaqtaq region in Nunavik, Quebec, Canada, v. 1.2 (2004–2014). Nordicana D18. doi: 10.5885/45201SL-6428B371C345424A
  56. Sarrazin D, Allard M (2014e) Environmental data from the Kangirsuk region in Nunavik, Quebec, Canada, v. 1.2 (2005–2014). Nordicana D15. doi: 10.5885/45228SL-80091133515742BA
  57. Sarrazin D, Allard M (2014f) Environmental data from the Aupaluk region in Nunavik, Quebec, Canada, v. 1.2 (2004–2014). Nordicana D12. doi: 10.5885/45210SL-3D6E63D4FB5344EE
  58. Sarrazin D, Allard M (2014g) Environmental data from the Tasiujaq region in Nunavik, Quebec, Canada, v. 1.2 (2002–2014). Nordicana D10. doi: 10.5885/45237SL-0069A9CE72074BC9
  59. Sarrazin D, Allard M (2014h) Environmental data from the Kuujjuaq region in Nunavik, Quebec, Canada, v. 1.1 (2006–2014). Nordicana D16. doi: 10.5885/45183SL-3F97ECBA62344F49
  60. Sarrazin D, Allard M (2014i) Environmental data from the Kangiqsualujjuaq region in Nunavik, Quebec, Canada, v. 1.1 (1988–2013). Nordicana D14. doi: 10.5885/45264SL-AF7FDA53F9E44927
  61. Sharpe DR, Russell HAJ, Dyke L, Grasby SE, Gleeson T, Michaud Y, Savard MM, Wei M, Wozniak PRJ (2014) Hydrogeological regions of Canada. In: Rivera A (ed) Canada’s groundwater resources. Fitzhenry and Whiteside, Markham, ON, 803 ppGoogle Scholar
  62. Simard A (2000) Québec’s mineral potential: current situation. Chronique de la recherche minière 539 (juin 2000), Ministère des Ressources naturelles, Quebec City, QC, pp 3–15. Available from http://www.mern.gouv.qc.ca/publications/mines/geologie/geologie-potentiel-mineral.pdf. Accessed March 2016
  63. Smith SL, Burgess MM (2002) A digital database of permafrost thickness in Canada. GSC Open File 4173, Geological Survey of Canada, OttawaGoogle Scholar
  64. Starinsky A, Katz A (2003) The formation of natural cryogenic brines. Geochim Cosmochim Acta 67(8):1475–1484. doi: 10.1016/S0016-7037(02)01295-4 CrossRefGoogle Scholar
  65. Statistics Canada (2008) Human activity and the environment: annual statistics, 2007 and 2008. Report 16-201-X, Statistics Canada, Ottawa, 159 ppGoogle Scholar
  66. Statistics Canada (2011) Aboriginal peoples in Canada: First Nations People, Métis and Inuit. Available from http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-011-x/99-011-x2011001-eng.cfm. Accessed March 2015
  67. St-Onge MR, Lucas SB (1990) Early Proterozoic collisional tectonics in the internal zone of the Ungava (Trans-Hudson) orogen: Lac Nivilik and Sigluk map areas, Québec. Current research, Report 90-1C, Geological Survey of Canada, Ottawa, pp 119–132Google Scholar
  68. Stotler RL, Frape SK, Ruskeeniemi T, Ahonen L, Paananen M, Onstott TC, Hobbs MY (2009) Hydrogeochemistry of groundwaters at and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol 373(1–2):80–95. doi: 10.1016/j.jhydrol.2009.04.013 CrossRefGoogle Scholar
  69. Stotler R, Frape S, Ruskeeniemi T, Pitkänen P, Blowes D (2012) The interglacial–glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters. Geochim Cosmochim Acta 76:45–67CrossRefGoogle Scholar
  70. Sykes JF, Normani SD, Jensen MR, Sudicky EA (2009) Regional-scale groundwater flow in a Canadian Shield setting. Can Geotech J 46(7):813–827CrossRefGoogle Scholar
  71. Thériault R, Beauséjour S (2012) Carte géologique du Québec: édition 2012 [Geological map of Quebec: 2012 edition]. DV 2012–06, Ministère des Ressources naturelles du Québec, Quebec City, QCGoogle Scholar
  72. Therrien R, McLaren RG, Sudicky EA, and Park Y-J (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, Waterloo, ON, 453 ppGoogle Scholar
  73. Utting N, Clark I, Lauriol B, Wieser M, Aeschbach-Hertig W (2012) Origin and flow dynamics of perennial groundwater in continuous permafrost terrain using isotopes and noble gases: case study of the Fishing Branch River, northern Yukon, Canada. Permafr Periglac 23(2):91–106. doi: 10.1002/ppp.1732 CrossRefGoogle Scholar
  74. van Everdingen RO (1990) Ground water hydrology. In: Prowse TD, Ommanney CSG (eds) Northern hydrology: Canadian perspectives. NHRI science report no. 1, National Hydrology Research Institute, Saskatoon, SK, pp 77–101Google Scholar
  75. Vincent LA, Wang XL, Milewska EJ, Wan H, Yang F, Swail V (2012) A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J Geophys Res 117, D18110. doi: 10.1029/2012JD017859 Google Scholar
  76. Walvoord MA, Voss CI, Wellman TP (2012) Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, USA. Water Resour Res 48(7). doi  10.1029/2011WR011595
  77. Wellman TP, Voss CI, Walvoord MA (2013) Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake–talik evolution, Yukon Flats, Alaska, USA. Hydrogeol J 21(1):281–298. doi: 10.1007/s10040-012-0941-4 CrossRefGoogle Scholar
  78. Williams JR (1970) Ground water in permafrost Regions of Alaska. US Geol Surv Prof Pap 696, 83 ppGoogle Scholar
  79. Woo M-K (2012) Permafrost hydrology. Springer, Heidelberg, Germany, 564 ppCrossRefGoogle Scholar
  80. Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45, W05414. doi: 10.1029/2008WR006880 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jean-Michel Lemieux
    • 1
    • 2
    Email author
  • Richard Fortier
    • 1
    • 2
  • Marie-Catherine Talbot-Poulin
    • 1
    • 2
  • John Molson
    • 1
    • 2
  • René Therrien
    • 1
    • 2
  • Michel Ouellet
    • 3
  • David Banville
    • 1
    • 2
  • Marion Cochand
    • 1
    • 2
  • Renaud Murray
    • 1
    • 2
  1. 1.Département de géologie et de génie géologiqueUniversité LavalQuébecCanada
  2. 2.Center for Northern StudiesUniversité LavalQuébecCanada
  3. 3.Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiquesQuébecCanada

Personalised recommendations