Abstract
The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age.
Résumé
Le bureau de géologie et des ressources minérales du Nouveau Mexique (Etats-Unis d’Amérique) a mené une étude régionale du temps de résidence des eaux souterraines dans les systèmes aquifères du sud des montagnes de Sacramento en utilisant des traceurs environnementaux multiples. Les résultats des investigations des traceurs indiquent que les eaux souterraines dans le sud des chaines de montagnes du Sacramento, ont des âges compris entre moins d’une année à plus de 50 ans, bien que les âges calculés contiennent des incertitudes et varient de manière significative en fonction des traceurs utilisés. Un trait distinctif des résultats est la discordance entre les méthodes utilisées pour déterminer l’âge des eaux souterraines dans la zone d’étude. Cette ambiguïté apparente résulte de l’impact d’une zone non saturée épaisse, qui produit un comportement non conservatif au sein des traceurs de type gaz dissous, et du caractère hétérogène et de la nature semi-karstique du système aquifère, qui peut fournir de l’eau à partir de la porosité de matrice, des fractures, des conduits élargis par dissolution, ou de la combinaison des trois. Les données indiquent également l’existence d’un mélange d’eaux souterraines à partir de deux ou plusieurs sources, y compris la recharge récente provenant des précipitations en altitudes élevées, d’anciennes eaux souterraines stockées dans la matrice, et des remontées d’eaux souterraines pré-modernes le long de zones de failles. Les données des traceurs ont aussi été influencées par les échanges entre eaux de surface et eaux souterraines via des pertes de cours d’eau et des sources situées à des altitudes plus basses (recyclage des eaux souterraines). Cette étude souligne l’importance de l’utilisation de traceurs multiples lors de la réalisation d’investigations à grande échelle d’un système aquifère hétérogène, et met en lumière les caractéristiques des systèmes d’écoulement des eaux souterraines qui peuvent produire des contradictions dans les calculs de l’âge des eaux souterraines.
Resumen
El New Mexico Bureau of Geology and Mineral Resources (EEUU) ha llevado a cabo una investigación regional del tiempo de residencia del agua subterránea en el sistema acuífero del sur de las Sacramento Mountains utilizando trazadores ambientales múltiples. Los resultados de los relevamientos con los trazadores indican que el agua subterránea en el sur de las Sacramento Mountains oscila la edad desde menos de un año hasta más de 50 años, aunque las edades calculadas contienen incertidumbres y varían significativamente dependiendo del trazador que se utiliza. Una característica distintiva de los resultados es la discordancia entre los métodos utilizados para datar el agua subterránea en la zona de estudio. Esta aparente ambigüedad resulta de los efectos de una zona de espesor no saturado, que produce un comportamiento no conservativo entre los trazadores de gases disueltos, y el carácter heterogéneo y la naturaleza semi-kárstica del sistema acuífero, que pueden producir agua de porosidad de la matriz, fracturas, solución ampliada en conductos, o una combinación de los tres. Los datos también indican una mezcla del agua subterránea a partir de dos o más fuentes, incluyendo la recarga reciente procedente de las precipitaciones en las altas elevaciones, el agua subterránea antigua almacenada en la matriz, y la surgencia de agua subterránea premoderna a lo largo de las zonas de falla. Los datos de los trazadores también han sido influenciados por el intercambio de agua superficial / agua subterránea a través de las corrientes perdedoras y de los manantiales de elevación más baja (reciclado de agua subterránea). Este estudio pone de relieve la importancia de utilizar trazadores múltiples al realizar investigaciones a gran escala de un sistema acuífero heterogéneo, y arroja luz sobre las características de los sistemas de flujo que pueden producir discrepancias en los cálculos de la edad del agua subterránea.
摘要
(美国)新墨西哥州地质和矿产局采用多种环境示踪剂对沙加缅度山脉南部含水层系统内的地下水停留时间进行了区域调查。示踪剂调查结果显示,尽管计算的年龄包含不确定性及使用何种示踪剂造成的变化很大,但沙加缅度山脉南部的地下水年龄范围从不到一年至五十多年。调查结果的一个明显特征就是在研究区使用的地下水测年方法不一致。这个明显的含糊性是由厚的非饱和带的影响及含水层系统的不均匀特征和半岩溶特性造成的,厚的非饱和带会在溶解气体示踪剂中产生非保守行为,含水层系统的不均匀特征和半岩溶特性可以使基质孔隙、断裂、溶解扩大的通道或者三者的综合中产生水。资料还显示,两个源或者更过源的地下水发生混合,包括高海拔地区降水产生的最近补给水、储存在基质中的古水、沿断层带上涌的前当代地下水。示踪剂资料也受到地表水\地下水交换的影响,地表水\地下水交换是通过渗失河和低海拔泉(地下水循环)进行的。本研究强调了在对不均匀含水层系统进行大规模调查时使用多种示踪剂的重要性,阐明了在计算地下水年龄时能够产生差异的地下水流系统的特征。
Resumo
O Bureau de Geologia e Recursos Minerais do Novo México (EUA) conduziu uma investigação regional de tempo de permanência das águas subterrâneas no sistema aquífero ao sul das Montanhas de Sacramento usando múltiplos traçadores ambientais. Resultados dos levantamentos por traçadores indicam que as águas subterrâneas na parte sul das Montanhas de Sacramento variam em idade entre menos de um ano a mais de 50 anos, apesar das idades calculadas apresentarem incertezas e variarem significativamente, dependendo de qual traçador é usado. Uma característica marcante dos resultados é a discordância entre os métodos usados para datar a água subterrânea na área de estudo. Esta ambiguidade aparente resulta dos efeitos de uma espessa zona insaturada, a qual produz um comportamento não conservativo entre os traçadores gasosos, e a característica heterogênea e a natureza semi cárstica do sistema aquífero, a partir do qual se pode obter água da matriz porosa, de fraturas, de condutos aumentados por solução ou uma combinação dos três. Os dados também indicam a mistura de águas subterrâneas de duas ou mais fontes, incluindo recarga recente originária de precipitação em grande elevação, águas subterrâneas mais antigas armazenadas na matriz e águas subterrâneas pré-modernas surgindo ao longo de zonas de falhas. Os dados de traçadores também foram influenciados pela troca entre água superficial e água subterrânea através de fluxos de perda e fontes de baixa elevação (reciclagem de água subterrânea). Este estudo destaca a importância do uso de múltiplos traçadores quando se conduz investigações de larga escala em sistemas aquíferos heterogêneos, e traz luz em características em sistemas de fluxo de água subterrânea que podem apresentar discrepâncias nos cálculos da idade das águas subterrâneas.














References
Bean RT (1949) Geology of the Roswell Artesian Basin, New Mexico, and its relation to the Hondo reservoir. N M State Eng Off Tech Rep 9:1–31
Bethke CM, Johnson TM (2002a) Paradox of groundwater age. Geology 30:107–110
Bethke CM, Johnson TM (2002b) Ground water age. Ground Water 40:337–339
Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 2008(36):121–152
Busenberg E, Plummer LN (2006) CFC-2005-2a: USGS spreadsheet program for preliminary evaluation of CFC data. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna
Castro MC, Goblet P (2005) Calculation of ground water ages: a comparative analysis. Ground Water 43(3):368–380
Cey BD, Hudson GB, Moran JE, Scanlon BR (2009) Evaluation of noble gas recharge temperatures in a shallow unconfined aquifer. Ground Water 47(5):646–659
Childers A, Gross GW (1985) The Yeso aquifer of the middle Pecos basin, analysis and interpretation. Geophysical Research Center Report H-16. New Mexico Institute of Mining and Technology, Socorro, NM
Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York
Cook PG, Plummer LN, Solomon DK, Busenberg E, Han LF (2006) Effects and processes that can modify apparent CFC age. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 31–58
Crossey LJ, Fischer TP, Patchett PJ, Karlstrom KE, Hilton DR, Newell DL, Huntoon P, Reynolds AC, de Leeuw GAM (2006) Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology 34:25–28
Davis P, Wilcox R, Gross GW (1980) Spring characteristics of the western Roswell Artesian Basin. New Mexico Water Resources Research Institute Report 116, NM WRRI, Las Cruces, NM
Duffy CJ, Gelhar LW, Gross GW (1978) Recharge and groundwater conditions in the western region of the Roswell Basin. New Mexico Water Resources Research Institute Report 100, NM WRRI, Las Cruces, NM
Eberts SM, Böhlke JK, Kauffman LJ, Jurgens BC (2012) Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol J 20:263–282
Ekwurzel B, Schlosser P, Smethie WM Jr, Plummer LN, Busenberg E, Michel RL, Weppernig R, Stute M (1994) Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30(6):1693–1708
Fiedler AG, Nye SS (1933) Geology and ground-water resources of the Roswell Basin. US Geol Surv Water Suppl Pap 639
Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(2):289–296
Gross GW (1982) Recharge in semiarid mountain environments. New Mexico Water Resources Research Institute Report 153, NM WRRI, Las Cruces, NM
Gross GW (1985) The Yeso aquifer of the middle Pecos basin, part II: hydrology of the Rio Felix drainage. Final report, New Mexico Interstate Stream Commission, Santa Fe, NM
Gross GW, Hoy RN (1980) A geochemical and hydrological investigation of groundwater recharge in the Roswell Basin of New Mexico: summary of results and updated listing of tritium determinations. New Mexico Water Resources Research Institute Report 122, NM WRRI, Las Cruces, NM
Gross GW, Hoy RN, Duffy CJ (1976) Application of environmental tritium in the measurement of recharge and aquifer parameters in a semi-arid limestone terrain. New Mexico Water Resources Research Institute Report 080, NM WRRI, Las Cruces, NM
Gross GW, Davis P, Rehfeldt KR (1979) Paul Spring: an investigation of recharge in the Roswell (NM) Artesian Basin. New Mexico Water Resources Research Institute Report 113, NM WRRI, Las Cruces, NM
Gross GW, Hoy RN, Duffy CJ, Rehfeldt KR (1982) Isotope studies of recharge in the Roswell basin. In: Perry EC Jr, Montgomery CW (eds) Isotope studies of hydrologic processes. Northern Illinois University Press, DeKalb, IL, pp 25–33
Han LF, Pang Z, Groening M (2001) Study of groundwater mixing using CFC data. Sci China 44:21–28
Hantush MS (1957) Preliminary quantitative study of the Roswell ground-water reservoir, New Mexico. New Mexico Institute of Mining and Technology, Socorro, NM
Happell JD, Opsahl S, Top Z, Chanton JP (2006) Apparent CFC and 3H/3He age differences in water from Floridan Aquifer springs. J Hydrol 319:410–426
Havenor KC (1968) Structure, stratigraphy, and hydrogeology of the northern Roswell Artesian Basin, Chaves County.NM Bureau Mines Mineral Resour Circ 93, New Mexico Bureau of Mines and Mineral Resources, Socorro, NM
Hoy RN, Gross GW (1982) A baseline study of oxygen 18 and deuterium in the Roswell, New Mexico, groundwater basin. New Mexico Water Resources Research Institute report, NM WRRI, Las Cruces, NM, 144 pp
International Atomic Energy Agency (2006) Use of chlorofluorcarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna
Jurgens BC, Böhlke JK, Eberts SM (2012) TracerLPM (version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data. US Geol Surv Techniques Methods Rep 4-F3
Katz BG (2004) Sources of nitrate contamination and age of water in large karstic springs of Florida. Environ Geol 46:689–706
Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken, NJ
Kelley VC (1971) Geology of the Pecos country, southeastern New Mexico. New Mexico Bureau of Mines and Mineral Resources Memoir, Socorro, NM, 24 pp
Land L, Huff GF (2010) Multi-tracer investigation of groundwater residence time in a karstic aquifer: Bitter Lake National Wildlife Refuge, New Mexico, USA. Hydrogeol J 18:455–472
Land L, Newton BT (2008) Seasonal and long-term variations in hydraulic head in a karstic aquifer: Roswell Artesian Basin, New Mexico. J Am Water Resour Assoc 44:175–191
Land L, Rawling G, Timmons, S (2012) Regional water table map of the southern Sacramento Mountains. NM Bureau Geology Mineral Resour Open-File Rep 542, 1:100,000, New Mexico Bureau of Geology and Mineral Resources, Socorro, NM. Available from: http://geoinfo.nmt.edu/publications/openfile/downloads/500-599/542/OFR-542_watertable_150k_LR.pdf. Accessed February 2016
Long A, Sawyer J, Putnam L (2008) Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA. Hydrogeol J 16:263–280
Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from gases dissolved in groundwater, Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36:1321–1336
Mazor E, Nativ R (1992) Hydraulic calculation of groundwater flow velocity and age: examination of the basic premises. J Hydrol 138:211–222
McCallum JL, Cook PG, Simmons CT, Werner AD (2014) Bias of apparent tracer ages in heterogeneous environments. Groundwater 52(2):239–250
Motts WS, Cushman RL (eds) (1964) An appraisal of the possibilities of artificial recharge to ground-water supplies in part of the Roswell Basin, New Mexico. US Geol Surv Water Suppl Pap 1785
Newell DL, Crossey LJ, Karlstrom KE, Fischer TP (2005) Continental-scale links between the mantle and groundwater systems of the western United States: evidence from travertine springs and regional He isotope data. GSA Today 15:4–10
Newman BD, Land L, Phillips FM, Rawling GC (2016) The hydrogeology of the Sacramento Mountains and the Roswell and Salt basins of New Mexico, USA: overview of investigations on dryland groundwater systems using environmental tracers and geochemical approaches. Hydrogeol J. doi:10.1007/s10040-016-1404-0
Newton BT, Rawling GC, Timmons SS, Land L, Johnson PS, Kludt TJ, Timmons JM (2012) Sacramento Mountains hydrogeology study. NM Bureau Geol Mineral Resour Open-File Rep 543. http://geoinfo.nmt.edu/publications/openfile/details.cfml?Volume=543. Accessed March 2016
Phillips FM, Castro MC (2003) Groundwater dating and residence time measurements. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 5: surface and groundwater, weathering and soils. Oxford University Press, Oxford, UK
Plummer LN, Busenberg E (2000) Chlorofluorcarbons: tools for dating and tracing young groundwater. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands
Plummer LN, Busenberg E (2006) Chlorofluorcarbons in aquatic environments. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna
Plummer LN, Busenberg E, Cook PG (2006a) Principles of chlorofluorocarbon dating. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 17–29
Plummer LN, Busenberg E, Han L (2006b) CFCs in binary mixtures of young and old groundwater. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 59–72
Pray LC (1961) Geology of the Sacramento Mountains escarpment, Otero County. NM Bureau Mines Mineral Resour Bull 35
Rabinowitz D, Gross GW (1972) Environmental tritium as a hydrometeorologic tool in the Roswell Basin. New Mexico Water Resources Research Institute Report 016, New Mexico, NM WRRI, Socorro, NM
Rabinowitz D, Gross GW, Holmes C (1977) Environmental tritium as a hydrometeorological tool in the Roswell Basin, New Mexico, I, II, III. J Hydrol 32:3–46
Rehfeldt KR, Gross GW (1981) The carbonate aquifer of the central Roswell Basin: recharge estimation by numerical modeling. New Mexico Water Resources Research Institute Report 142, NM WRRI, Socorro, NM
Reiter M, Jordan DL (1996) Hydrogeothermal studies across the Pecos River Valley, southeastern New Mexico. Geol Soc Am Bull 108:747–756
Simcox AC, Gross GW (1985) The Yeso aquifer of the middle Pecos basin. Hydrology Research Program. NM Institute Mining Technol Rep H-15, New Mexico Institute of Mining and Technology, Socorro, NM, 152 pp
Solomon DK (2000) 4He in groundwater. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands, pp 425–439
Solomon DK, Cook PG (2000) 3H and 3He. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands, pp 397–424
Solomon DK, Sudicky EA (1991) Tritium and helium-3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309–2319
Solomon DK, Genereux DP, Plummer LN, Busenberg E (2010) Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers. Water Resour Res 46, WO4518. doi:10.1029/2009WR008341
Stute M, Schlosser P (2000) Atmospheric noble gases. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands, pp 349–377
Timmons S, Land L, Newton BT, Frey B (2013) Aquifer mapping program technical document: water sampling procedures, analysis, and systematics. NM Bureau Geol Mineral Resour Open-File Rep 558. http://geoinfo.nmt.edu/publications/openfile/details.cfml?Volume=558. Accessed March 2016
University of Utah Dissolved Gas Lab (2007) Dissolved gas sampling using copper tubing. University of Utah, Salt Lake City, UT. Available from http://www.noblegaslab.utah.edu/pdfs/cu_tube_sampling.pdf. Accessed February 2016
Wasiolek M (1991) The hydrogeology of the Permian Yeso Formation within the upper Rio Hondo Basin and the eastern Mescalero Apache Indian Reservation, Lincoln and Otero counties, New Mexico. In: Barker JM, Kues BS, Austin GS, Lucas SG (eds) Geology of the Sierra Blanca, Sacramento, and Capitan Ranges, New Mexico. New Mexico Geological Society guidebook 42. New Mexico Geological Society, Socorro, NM, pp 343–351
Wasiolek M, Gross GW (1983) Hydrogeology of the upper Rio Penasco drainage basin between James and Cox Canyons, Otero Co., New Mexico. Geophysical Research Center Report H-13, New Mexico Institute of Mining and Technology, Socorro, NM
Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735
Weissmann G, Zhang Y, Labolle E, Fogg G (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):16-1–16-13
Welder GE (1983) Geohydrologic framework of the Roswell Ground-Water Basin, Chaves and Eddy counties, New Mexico. NM State Eng Technical Rep 42, New Mexico State Engineer, Santa Fe, NM
Acknowledgements
Funding for this investigation was provided by the New Mexico State Legislature through the Otero Soil and Water Conservation District, the New Mexico Department of Agriculture, the New Mexico Bureau of Geology and Mineral Resources Aquifer Mapping Program, and the National Cave and Karst Research Institute. This paper was improved by suggestions from Drs. Ed Busenberg and Bryant Jurgens, US Geological Survey, and the comments of two anonymous reviewers.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article belongs to a series that characterizes the hydrogeology of the Sacramento Mountains and the Roswell and Salt basins in New Mexico, USA
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 338 kb)
Rights and permissions
About this article
Cite this article
Land, L., Timmons, S. Evaluation of groundwater residence time in a high mountain aquifer system (Sacramento Mountains, USA): insights gained from use of multiple environmental tracers. Hydrogeol J 24, 787–804 (2016). https://doi.org/10.1007/s10040-016-1400-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-016-1400-4