Skip to main content
Log in

Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin

Quantité et emplacement de la recharge des eaux souterraines dans les montagnes de Sacramento, centre sud du Nouveau Mexique (Etats-Unis d’Amérique), et leur relation avec le bassin adjacent artésien de Roswell

Cantidad y ubicación de LA recarga de agua subterránea en las Sacramento Mountains, centro-sur de Nuevo México (EE.UU.), y su relación con la adyacente cuenca artesiana de Roswell

(美国)新墨西哥州中南部沙加缅度山脉地下水补给的量和位置

Quantidade e localização de recarga das águas subterrâneas nas Montanhas de Sacramento, centro-sul de Novo México (EUA), e sua relação com a adjacente Bacia Artesiana de Roswell

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.

Résumé

Les montagnes de Sacramento et le bassin artésien adjacent de Roswell, dans le centre sud du Nouveau Mexique (Etats-Unis d’Amérique) comprennent un système hydrologique régional, dans lequel la recharge dans les montagnes fournit in fine l’eau dans l’aquifère captif du bassin. Les données géologiques, hydrologiques, géochimiques, et climatiques ont été utilisées pour délimiter la zone de recharge dans le sud des montagnes de Sacramento. Les méthodes d’interprétation des fluctuations du niveau piézométrique et des bilans de masse des chlorures ont été utilisées pour quantifier la recharge sur une gamme d’échelles spatiales et temporelles. L’extrapolation des estimations de la recharge quantitative pour l’ensemble de la région des montagnes de Sacramento a permis une comparaison avec les estimations antérieures de la recharge pour le nord des montagnes de Sacramento et du bassin artésien de Roswell. La recharge dans les montagnes de Sacramento a une valeur comprise entre 159.86 × 106 et 209.42 × 106 m3/an. La localisation de la recharge ainsi que la gamme des estimations est compatible avec les travaux antérieurs qui suggéraient qu’environ 75 % de la recharge de l’aquifère captif du bassin artésien de Roswell s’étaient déplacés vers l’aval au travers de la formation de Yeso par rapport aux zones distales de recharge dans les montagnes de Sacramento. Une plus petite composante de la recharge a pour origine l’infiltration de l’écoulement fluvial sous les principaux drainages qui traversent le Pecos Slope, mais dans le sud des montagnes de Sacramento la plupart de l’eau provient finalement du débit des sources. La recharge directe au travers de Pecos Slope entre les montagnes et l’aquifère captif du bassin est beaucoup plus petite que l’un des deux autres composants.

Resumen

Las Sacramento Mountains y la adyacente cuenca artesiana de Roswell, en el centro-sur de Nuevo México (EE.UU.), comprenden un sistema hidrológico regional, donde en última instancia la recarga en las montañas, abastece de agua a la cuenca del acuífero confinado. Se utilizaron datos geológicos, hidrológicos, geoquímicos y climatológicos para delimitar la zona de recarga en el sur de las Sacramento Mountains. Se utilizaron la fluctuación de la capa freática y métodos de balance de masa de cloruro para cuantificar la recarga en un rango de escalas espaciales y temporales. La extrapolación de las estimaciones cuantitativas de la recarga a toda la región de las Sacramento Mountains permitió la comparación con las estimaciones previas de la recarga del norte de las Sacramento Mountains y la cuenca artesiana de Roswell. La recarga en las Sacramento Mountains se estima en un rango de 159.86 × 106 a 209.42 × 106 m3/año. Tanto la ubicación de la recarga como el rango de los cálculos es coherente con trabajos anteriores que indican que el ~75 % de la recarga al acuífero confinado en la cuenca artesiana de Roswell se ha desplazado gradiente abajo a través de áreas de recarga distales de la formación Yeso en las Sacramento Mountains. Un componente de la recarga más pequeño se deriva de la infiltración de los caudales por debajo de los principales drenajes que cruzan el Pecos Slope, pero en el sur las Sacramento Mountains gran parte de esta agua se deriva en última instancia en la descarga de manantiales. La recarga directa a través del Pecos Slope entre las montañas y el acuífero confinado de la cuenca es mucho más pequeño que cualquiera de los otros dos componentes.

摘要

(美国)新墨西哥州中南部沙加缅度山脉及相邻的罗斯维尔自流盆地构成了一个区域水文系统,在这个水文系统内,山脉内的地下水补给最终流入承压盆地含水层。利用地质、水文、地区化学和气候资料描述了沙加缅度山脉的补给区。采用水位波动法和氯化物质量平衡法对一系列的空间和时间尺度上的补给进行了量化。对整个沙加缅度山脉地区定量补给估算的外推可以和沙加缅度山脉北部和罗斯维尔自流盆地先前的补给估算进行对比。估算的沙加缅度山脉补给量为159.86 × 106 到 209.42 × 106 m3/year。估算中的补给位置和范围与沙加缅度山脉北部和罗斯维尔自流盆地先前的补给估算数一致,表明,大约75%补给到罗斯维尔自流盆地承压含水层的水从沙加缅度山脉远端的补给区顺梯度流经Yeso地层。较小部分的补给来自主要排水区之下河流的入渗,这些排水区横贯佩克斯坡地,但在沙加缅度山脉南部,大部分这样的水基本来自泉的排泄。穿过山脉和承压盆地含水层之间佩克斯坡地的直接补给大大少于其它两部分的补给。

Resumo

As Montanhas de Sacramento e a adjacente Bacia Artesiana de Roswell, no centro-sul do Novo México (EUA), compreendem um sistema hidrológico regional, em que a recarga nas montanhas fornecem, em última instância, água para a bacia do aquífero confinado. Dados geológicos, hidrológicos, geoquímicos e climatológicos foram usados para delinear a área de recarga ao sul das Montanhas de Sacramento. Os métodos da variação da superfície livre e balanço de massa de cloreto foram usados para quantificar a recarga sobre uma gama de escalas espaciais e temporais. A extrapolação de estimativas quantitativas de recarga para toda a região das Montanhas de Sacramento permitiu a comparação com estimativas de recarga anteriores para o norte das Montanhas de Sacramento e a Bacia Artesiana de Roswell. Estima-se que a recarga nas Montanhas de Sacramento varie de 159.86 × 106 a 209.42 × 106 m3/ano. Tanto a localização quanto o intervalo dos valores estimados são consistentes com trabalhos anteriores que sugerem que ~75 % da recarga para o aquífero confinado na Bacia Artesiana de Roswell se deslocou no sentido do menor gradiente através da Formação Yeso a partir de áreas de recarga distante das Montanhas de Sacramento. Uma menor componente da recarga é derivada da infiltração da vazão que escoa abaixo das principais drenagens que atravessam a Encosta de Pecos, mas no sul das Montanhas de Sacramento muito dessa água é, em última instância, derivada da vazão das nascentes. A recarga direta na Encosta de Pecos entre as montainhas e a bacia do aquífero confinado é muito menor do que as outras duas componentes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alcala FJ, Custodio E (2008) Using the Cl/BR ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207

    Article  Google Scholar 

  • Allen MS, McLemore VT (1991) The geology and petrogenesis of the Capitan Pluton, New Mexico. In: Barker JM, Kues BS, Austin GS, Lucas SG (eds) Geology of the Sierra Blanca, Sacramento, and Capitan ranges, vol 42. NM Geol Soc Guidebook, NMBGMR, Socorro, NM, pp 115–127

  • Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 18:12–16

    Article  Google Scholar 

  • Anderholm SK (1994) Ground-water recharge near Santa Fe, north-central New Mexico. US Geol Surv Water Resour Invest Rep 94-4078

  • Balleau WP (2013) The policy of “pumping the recharge” is out of control. Eos 94:4–5

    Article  Google Scholar 

  • Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Rubin M (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol Soc Am Bull 94:1415–1429

    Article  Google Scholar 

  • Bean RT (1949) Geology of the Roswell Artesian Basin, New Mexico, and its relation to the Hondo reservoir. Tech Rep 9, NM State Engineer Office, Santa FE, NM, 31 pp

  • Bidaux P, Drogue C (1993) Calculation of low-range flow velocities in fractured carbonate media from borehole hydrochemical logging data: comparison with thermometric results. Ground Water 31:19–26

    Article  Google Scholar 

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345

    Article  Google Scholar 

  • Bredehoeft JD, Papadopulos SS, Cooper HH (1982) Groundwater: the water budget myth. In: Scientific basis of water resource management. Studies in Geophysics, National Academy Press, Washington, DC, pp 51–57

  • Canaris N, Kludt T, Newton BT (2011) Canopy interception loss for a mixed coniferous forest in southern New Mexico prior to tree-thinning treatment. In: NM Geol Soc 2011 Proc. Vol., NMBGMR, Socorro, NM, 14 pp

  • CoCoRHAS (2016) Community collaborative rain, hail and snow network. http://www.cocorahs.org/. Accessed 29 January 2016

  • Coes AL, Spruill TB, Thomasson MJ (2007) Multiple-method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain USA. Hydrogeol J 15:773–788

    Article  Google Scholar 

  • Darr MJ, Rattray GW, McCoy KJ, Durall RA (2014) Hydrogeology, water resources, and water budget of the Upper Rio Hondo Basin, Lincoln County, New Mexico, 2010. US Geol Surv Sci Invest Rep 2014-5153

  • Davis P, Wilcox R, Gross GW (1980) Spring characteristics of the western Roswell Artesian Basin. NM Water Resour Res Inst Tech Rep 116, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350

    Article  Google Scholar 

  • Delin GN, Healy RW, Lorenz DL, Nimmo JR (2007) Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota USA. J Hydrol 334:231–249

    Article  Google Scholar 

  • Donohoe LC (2004) Selected hydrologic data for the upper Rio Hondo basin, Lincoln County, New Mexico, 1945–2003. US Geol Surv Sci Invest Rep 2004-5275

  • Duffy CJ, Gelhar LW, Gross GW (1978) Recharge and groundwater conditions in the western region of the Roswell Basin. NM Water Resour Res Inst Tech Rep 100, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Dunmire WW (2012) New Mexico’s living landscapes. Museum of New Mexico Press, Albuquerque, NM

  • Eastoe CJ, Rodney R (2014) Isotopes as tracers of water origin in and near a regional carbonate aquifer: the southern Sacramento Mountains New Mexico. Water 6:301–323

    Article  Google Scholar 

  • Farnsworth RK, Thompson ES, Peck EL (1982) Evaporation atlas for the contiguous 48 United States. NOAA Tech Rep NWS 33, NOAA, Washington, DC, 27 pp, 4 pls

  • Fiedler AG, Nye SS (1933) Geology and ground-water resources of the Roswell artesian basin, New Mexico. US Geol Surv Water Suppl Pap 639

  • Freeman JT (2007) The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin. Hydrol J 15:1377–1385

    Google Scholar 

  • Gburek WJ, Folmar GJ, Urban JB (1999) Field data and ground water modeling in a layered fractured aquifer. Ground Water 37:175–184

    Article  Google Scholar 

  • Gibson JH (1984) Evaluation of wet chemical deposition in North America. In: Teasley JI (ed) Deposition both wet and dry, acid precipitation Series 4. Butterworth, London, pp 1–14

  • Goodrich DC, Faurès J-M, Woolhiser DA, Lane LJ, Sorooshian S (1995) Measurement and analysis of small-scale convective storm rainfall variability. J Hydrol 173:283–308

    Article  Google Scholar 

  • Gross GW (1982) Recharge in semi-arid mountain environments. NM Water Resour Res Inst Tech Rep 153, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Gross GW, Hoy RN, Duffy CJ (1976) Application of environmental tritium in the measurement of recharge and aquifer parameters in a semi-arid limestone terrain. NM Water Resour Res Inst Tech Rep 80, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Gross GW, Davis P, Rehfeldt KR (1979) Paul Spring: an investigation of recharge in the Roswell (NM) Artesian Basin. NM Water Resour Res Inst Tech Rep 113, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Gross GW, Hoy RN (1980) A geochemical and hydrological investigation of groundwater recharge in the Roswell Basin of New Mexico: summary of results and updated listing of tritium determinations. NM Water Resour Res Inst Tech Rep 122, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Hantush MS (1957) Preliminary quantitative study of the Roswell ground-water reservoir, New Mexico. NM Inst Mining and Tech Res and Dev Div Rep, New Mexico Institute of Mining and Technology, Socorro, NM

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Heppner CS, Nimmo JR, Folmar GJ, Gburek WJ, Risser DW (2007) Multiple-methods investigation of recharge at a humid-region fractured rock site Pennsylvania, USA. Hydrogeol J 15:915–927

    Article  Google Scholar 

  • Hoy RN, Gross GW (1982) A baseline study of oxygen 18 and deuterium in the Roswell, New Mexico, groundwater basin. NM Water Resour Res Inst Tech Rep 144, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Huntley D (1979) Groundwater recharge to the aquifers of the northern San Luis Valley Colorado. Geol Soc Am Bull 90:1196–1281

    Article  Google Scholar 

  • Jacob CE (1944) Correlation of ground-water levels and precipitation on Long Island New York. Trans AGU 25:564–573

    Article  Google Scholar 

  • Johnson PS, Land LA, Price LG, Titus F (2003) Water resources of the Lower Pecos region, New Mexico. New Mexico Bureau of Geology and Mineral Resources Decision-Makers Field Conf Guidebook, NMBGMR, Socorro, NM

  • Kelley VC (1971) Geology of the Pecos Country, southeastern New Mexico. NM Bur Geol Min Res Memoir 24, NMBGMR, Socorro, NM

  • Koning DK, Rawling GC, Kelley SA, Goff F (2014) Structure and tectonic evolution of the Sierra Blanca basin. In: Rawling GC, McLemore VT, Dunbar N, Timmons S (eds) Geology of the Sacramento Mountains Region. NM Geol Soc Guidebook 42, NMBGMR, Socorro, NM, pp 209–226

  • Land LA, Newton BT (2008) Seasonal and long-term variations in hydraulic head in a karstic aquifer: Roswell Artesian Basin New Mexico. J Am Water Resour Assoc 44:175–191

    Article  Google Scholar 

  • Land L, Timmons S (2016) Evaluation of groundwater residence time in a high mountain aquifer system (Sacramento Mountains, USA): insights gained from use of multiple environmental tracers, Hydrogeol J. doi:10.1007/s10040-016-1400-4

  • Land LA, Timmons SS, Rawling GC, Felix B (2012) Water table map of the southern Sacramento Mountains, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report 542, scale 1:150,000, NMBGMR, Socorro, NM

  • MacDonald LH, Stednick, JD (2003) Forests and water: a state of the art review for Colorado. CO Water Resour Res Inst Comp Rep 196, Colorado Water Institute, Fort Collins, CO

  • Malm NR (2003) Climate guide Las Cruces, 1982–2000. NM Ag Ex Stat Res Rep 749, New Mexico State University Agricultural Experiment Station, Las Cruces, NM

  • Matherne AM, Myers NC, McCoy KJ (2010) Hydrology of the Eagle Creek basin and effects of groundwater pumping on streamflow, 1969–2009. US Geol Surv Sci Invest Rep 2010-5205

  • Mayer JR, Sharp JM (1998) Fracture control of regional ground-water flow in a carbonate aquifer in a semi-arid region. Geol Soc Am Bull 110:269–283

    Article  Google Scholar 

  • McAda DP, Morrison TD (1993) Sources of information and data pertaining to geohydrology in the vicinity of the Roswell Basin in parts of Chaves, Eddy, De Baca, Guadalupe, Lincoln, and Otero counties, New Mexico. US Geol Surv Open-File Rep 93-144

  • Motts WS, Cushman RL (1964) An appraisal of the possibilities of artificial recharge to ground-water supplies in part of the Roswell Basin, New Mexico. US Geol Surv Water-Suppl Pap 1785

  • Morse JT (2010) The hydrogeology of the Sacramento Mountains using environmental tracers. MS Thesis, New Mexico Inst of Mining and Technology, Socorro, NM

  • Mourant, WA (1963) Water resources and geology of the Rio Hondo drainage basin, Chaves, Lincoln, and Otero counties, New Mexico. NM State Eng Tech Rep 28, NM State Engineer Office, Santa Fe, NM

  • National Resource Conservation Service (2015) Sierra Blanca SNOTEL Site. http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=1034. Accessed 15 Feb 2015

  • National Weather Service (2004) The North American Monsoon. Reports to the Nation, NWS, Washington, DC

  • National Weather Service (2006) Southwest Weather Bulletin Autumn–Winter 2006–2007 edn. NWS, Washington, DC

  • Newcomer RW, Shomaker JW (1991) Water resources of the Ruidoso-Carrizozo-Tularosa areas, Lincoln and Otero counties, New Mexico. In: Barker JM, Kues BS, Austin GS, Lucas SG (eds) Geology of the Sierra Blanca, Sacramento, and Capitan ranges, New Mexico: NM Geol Soc Guidebook 42, NMBGMR, Socorro, NM, pp 339–341

  • Newman BD, Land L, Phillips FM, Rawling GC (2016) The hydrogeology of the Sacramento Mountains and the Roswell and Salt basins of New Mexico, USA: overview of investigations on dryland groundwater systems using environmental tracers and geochemical approaches. Hydrogeol J. doi:10.1007/s10040-016-1404-0

  • Newton BT, Rawling GC, Timmons SS, Land LA, Johnson PS, Kludt TJ, Timmons JM (2012) Sacramento Mountains hydrogeology study. NM Bur Geol Min Resour Open-File Rep 543, NMBGMR, Socorro, NM

  • Nimmo JR, Horowitz C, Mitchell L (2014) Discrete-storm water-table fluctuation method to estimate episodic recharge. Groundwater. doi:10.1111/gwat.121777

  • NOAA (2016) Cloudcroft Station detail. National Oceanic and Atmospheric Administration, National Climatic Data Center, Washington, DC. http://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00291931/detail. Accessed 28 January 2016

  • Phillips FM, Hogan JF, Scanlon BR (2004) Introduction and overview. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment. AGU, Washington, DC, pp 1–14

  • Popp CJ, Ohline RW, Brandvold DK, Brandvold LA (1984) Nature of precipitation and atmospheric particulates in central and northern New Mexico. In: Teasley JI (ed) Deposition both wet and dry, acid precipitation series 4. Butterworth, London, pp 79–95

  • PRISM Climate Group (2013) 30-years average precipitation data for New Mexico. http://www.prism.oregonstate.edu/. Accessed 15 Feb 2015

  • Rabinowitz DD, Gross GW (1972) Environmental tritium as a hydrometeorologic tool in the Roswell Basin, New Mexico. NM Water Resour Res Inst Tech Rep 16, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Raines MA, Dewers TA (1997) Dedolomitization as a driving mechanism for karst generation in Permian Blaine formation, southwestern Oklahoma USA. Carbon Evapor 12:24–31

  • Rawling GC (2012a) Generalized geologic map of the southern Sacramento Mountains, Otero and Chavez counties, New Mexico. NM Bur Geol Min Resour Open-File Rep 543, scale 1:100,000, NMBGMR, Socorro, NM

  • Rawling GC (2012b) Geology of the Ruidoso area, Lincoln and Otero Counties, New Mexico: NM Bur Geol Min Resour Open-File Rep 507, scale 1:24,000, NMBGMR, Socorro, NM

  • Rehfeldt KR, Gross GW (1982) The carbonate aquifer of the central Roswell Basin: recharge estimation by numerical modeling. NM Water Resour Res Inst Tech Rep 142, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Risser DW, Gburek WJ, Folmar GJ (2009) Comparison of recharge estimates at a small watershed in east-central Pennsylvania USA. Hydrogeol J 17:287–298

    Article  Google Scholar 

  • Robins NS (ed) (1998) Groundwater pollution, aquifer recharge and vulnerability. Geol Soc London Spec Pub 130

  • Saha D, Agrawal AK (2005) Determination of specific yield using a water balance approach: case study of Torla Odha watershed in the Deccan Trap province Maharastra State, India. Hydrogeol J 14:625–635

    Article  Google Scholar 

  • Sanford W (2002) Recharge and groundwater models. Hydrogeol J 10:110–120

    Article  Google Scholar 

  • Sanford W, Selnick D (2013) Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data. J Am Water Resour Assoc 49:217–230

    Article  Google Scholar 

  • Saleem ZA, Jacob CE (1971) Dynamic programming model and quantitative analysis, Roswell Basin, New Mexico. NM Water Resour Res Inst Misc Rep 10, New Mexico Water Resources Research Institute, Las Cruces, NM

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Simcox A, Gross GW (1985) The Yeso aquifer of the middle Pecos Basin: NM Inst of Mining and Tech Hyd Res Prog Rep H-15, NM Institute of Mining and Technology, Socorro, NM

  • Sloan CE, Garber MS (1971) Ground-water hydrology of the Mescalero Apache Indian reservation, south-central New Mexico. US Geol Surv Hydrol Invest Atlas HA-349

  • Sonney R, Vuataz F-D (2010) Use of Cl/Br ratio to decipher the origin of dissolved mineral components in deep fluids from the Alps range and neighboring areas. World Geothermal Cong Proc, Bali, April 2010, pp 1–13

  • Summers WK (1972) Geology and regional hydrology of the Pecos River basin, New Mexico. NM Bur Geol Min Resour Open-File Rep 37, NMBGMR, Socorro, NM

  • Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civ Eng 10:277–280

    Google Scholar 

  • Thompson TB (1972) Sierra Blanca igneous complex, New Mexico. Geol Soc Am Bull 83:2341–2356

    Article  Google Scholar 

  • UMRSMAS (2016) Advice on tritium sampling. University of Miami Rosenstiel School of Marine and Atmospheric Science, Gables, FL. http://www.rsmas.miami.edu/groups/tritium/analytical-services/advice-on-sampling/tritium/. Accessed 28 Jan 2016

  • UUDNGL (2016) Sample collection how-to. University of Utah Dissolved and Noble Gas Lab, Salt Lake City, UT. http://www.noblegaslab.utah.edu/how-to.html. Accessed 28 Jan 2016

  • Walsh P (2008) A new method for analyzing the effects of joints and stratigraphy on spring locations: a case study from the Sacramento Mountains, south-central New Mexico USA. Hydrogeol J 16:1458–1467

    Google Scholar 

  • Wasiolek M (1991) The hydrogeology of the Permian Yeso Formation within the upper Rio Hondo Basin and the eastern Mescalero Apache Indian Reservation, Lincoln and Otero Counties, New Mexico. In: Barker JM, Kues BS, Austin GS, Lucas SG (eds) Geology of the Sierra Blanca, Sacramento, and Capitan ranges, New Mexico. NM Geol Soc Guidebook 42, NMBGMR, Socorro, NM, pp 343–351

  • Wasiolek M, Gross GW (1983) Hydrogeology of the upper Rio Peñasco drainage basin between James and Cox Canyons, Otero County, New Mexico. NM Inst of Mining and Tech Hyd Res Prog Rep H-13, NM Institute of Mining and Technology, Socorro, NM

  • Welder GE (1983) Geohydrologic framework of the Roswell ground-water Basin, Chaves and Eddy counties, New Mexico. NM State Eng Office Tech Rep 42, NM State Engineers Office, Santa Fe, NM

  • Western Regional Climate Center (2015) http://www.wrcc.dri.edu/. Accessed 15 Feb 2015

  • White WB (1969) Conceptual models for carbonate aquifers. Ground Water 7:180–186

    Article  Google Scholar 

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment. AGU, Washington, DC, pp 113–137

  • Wood WW (1999) Use and misuse of the chloride-mass balance method in estimating ground water recharge. Ground Water 37:2–3

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 33:458–468

    Article  Google Scholar 

  • Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47:326–336

    Article  Google Scholar 

  • Zhu C, Winterle JR, Love EI (2003) Late Pleistocene and Holocene groundwater recharge from the chloride mass balance method and chlorine-36 data. Water Resour Res. doi:10.1029/2003WR001987

    Google Scholar 

Download references

Acknowledgements

We thank Lewis Land, Stacy Timmons, and Dave Romero for helpful discussions regarding this work. Reviews by three anonymous reviewers greatly improved the manuscript. Funding was provided by the Otero Soil and Water Conservation District though legislative appropriation and the National Cooperative Geologic Mapping Program (STATEMAP). This study would not have been possible without the kind cooperation of many landowners throughout the Sacramento Mountains region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey C. Rawling.

Additional information

This article belongs to a series that characterizes the hydrogeology of the Sacramento Mountains and the Roswell and Salt basins in New Mexico, USA

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawling, G.C., Newton, B.T. Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin. Hydrogeol J 24, 757–786 (2016). https://doi.org/10.1007/s10040-016-1399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1399-6

Keywords

Navigation