Skip to main content
Log in

Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China

Utilisation de traceurs isotopiques, hydrogéochimiques et de données de température pour caractériser la recharge et l’organisation des écoulements dans un système complexe karstique d’écoulements d’eau souterraine dans le nord de la Chine

El uso de datos de isótopos, trazadores hidrogeoquímicos y temperatura para caracterizar la recarga y las trayectorias de flujo en un sistema complejo de flujo de agua subterránea kárstico en el norte de China

利用同位素水文地球化学示踪剂描述中国北方复杂岩溶地下水流系统中的补给和水流通道

Utilizando isótopos, traçador hidrogeoquímico e dados de temperatura para caracterizar a recarga e os caminhos de fluxo em um sistema cárstico de fluxo de águas subterrâneas complexo no norte da China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China. The previous division of karst subsystems in Taiyuan, i.e. the Xishan (XMK), Dongshan (DMK) and Beishan (BMK) mountain systems, were also examined. The measured δD, δ 18O and 3He/4He in water indicate that both thermal and cold groundwaters have a meteoric origin rather than deep crustal origin. Age dating using 3H and 14C shows that groundwater samples from discharge zones along faults located at the margin of mountains in the XMK and DMK are a mixture of paleometeoric thermal waters and younger cold waters from local flow systems. 14C data suggest that the average age was about 10,000 years and 4,000 years for thermal and cold groundwater in discharge zones, respectively. Based on the data of temperature, water solute chemical properties, 14C, δ 34SSO4, 87Sr/86Sr and δ 18O, different flow paths in the XMK and DMK were distinguished. Shallow groundwater passes through the upper Ordovician formations, producing younger waters at the discharge zone (low temperature and ionic concentration and enriched D and 18O). Deep groundwater flows through the lower Ordovician and Cambrian formations, producing older waters at the discharge zone (high ionic concentration and temperature and depleted D and 18O). At the margin of mountains, groundwater in deep systems flows vertically up along faults and mixes with groundwater from shallow flow systems. By contrast, only a single flow system through the entire Cambrian to Ordovician formations occurs in the BMK.

Résumé

L’analyse isotopique et hydrogéochimique, combinée avec examen des données de température, a été effectuée pour caractériser le système d’écoulement dans l’aquifère carbonaté de Taiyuan, dans le nord de la Chine. La subdivision précédente des sous-systèmes karstiques du Taiyuan, à savoir les systèmes montagneux du Xishan (XMK), du Dongshan (DMK) et du Beishan (BMK), ont également été examinées. Les analyses de δD, δ 18O et du rapport 3He/4He dans l’eau indiquent que les eaux souterraines thermales et froides ont toutes les deux une origine météorique plutôt qu’une origine de croûte profonde. La détermination de l’âge de l’eau utilisant 3H et 14C montre que les échantillons d’eau souterraine des zones de décharge le long des failles localisées sur la bordure des montagnes dans les systèmes XMK et DMK résultent d’un mélange entre des eaux thermales paléométéoriques et des eaux froides plus jeunes des systèmes d’écoulement locaux. Les données de 14C suggèrent que l’âge moyen était de 10,000 ans et de 4,000 ans pour les eaux souterraines thermales et froides dans les zones de décharge, respectivement. A partir des données de température, des propriétés chimiques du soluté, de 14C, δ 34SSO4, 87Sr/86Sr et δ 18O, différents chemins d’écoulements dans les systèmes XMK et DMK ont été identifiés. Les eaux souterraines peu profondes traversent les formations de l’Ordovicien supérieur, fournissant les eaux les plus jeunes au niveau de la zone de décharge (basse température et concentration ionique et D enrichi et 18O). En bordure des montagnes, les eaux souterraines des systèmes profonds s’écoulent verticalement le long de failles et se mélangent avec les eaux souterraines des systèmes d’écoulement peu profonds. En revanche, seul un système d’écoulement unique à travers l’ensemble des formations du Cambrien à l’Ordovicien existe au sein BMK.

Resumen

Se llevó a cabo el análisis isotópico e hidrogeoquímico, combinado con la investigación de la temperatura, para caracterizar el sistema de flujo en el acuífero carbonático en Taiyuan, el norte de China. Se examinó la división previa de los subsistemas de karst en Taiyuan, es decir, los de Xishan (XMK) Dongshan (DMK) y los sistemas de montaña Beishan (BMK). Las medidas de δD, δ 18O y 3He/4He en agua indican que tanto el agua subterránea termal como la fría tienen un origen meteórico en vez de un origen de la corteza profunda. La datación de las edades utilizando δD, δ 18O y 3He/4He muestra que las muestras de agua subterránea de las zonas de descarga a lo largo de las fallas ubicadas en el margen de las montañas en el XML y DMK son una mezcla de aguas termales paleo meteóricas y aguas frías más jóvenes procedentes de los sistemas de flujo local. Los datos de 14C sugieren que la edad promedio fue de alrededor de 10,000 años y 4,000 años en el caso del agua subterránea termal y fría en las zonas de descarga, respectivamente. Basándose en los datos de la temperatura, de las propiedades químicas del soluto agua y de 14C, δ 34SSO4, 87Sr/86Sr y δ 18O, se distinguieron diferentes trayectorias de flujo en el XML y DMK. El agua subterráneas poco profunda pasa a través de las formaciones del Ordovícico superior, produciendo aguas más jóvenes en la zona de descarga (baja temperatura y concentración iónica y D y 18O enriquecidos). El agua subterránea profunda fluye a través del Ordovícico inferior y formaciones del Cámbrico, generando aguas más viejas en la zona de descarga (alta concentración iónica y temperatura y D y 18O empobrecidos). En el margen de las montañas, el agua subterránea en los sistemas profundos fluye verticalmente hacia arriba a lo largo de las fallas y se mezcla con el agua subterránea con el flujo de los sistemas de poca profundidad. Por el contrario, sólo un sistema de flujo único se produce a través de todas las formaciones del Cámbrico al Ordovícico en el BMK.

摘要

进行了同位素和水文地球化学分析以及温度调查,以描述中国北方太原碳酸盐含水层中的水流系统。同时也对太原先前的岩溶亚系统的划分,如西山、东山和北山山系进行了调查。测量的水中的δD, δ 18O 和 3He/4He结果表明,热地下水和冷地下水是大气来源的,而非深部的地壳来源。使用3H和 14C测年显示,从沿位于西山和东山山脉边缘断层排泄带获取的地下水样是本地水流系统中古大气热水和年轻冷水的混合水。14C资料表明,排泄带热地下水和冷地下水的年龄分别平均为大约10000年和4000年。根据温度、水溶质化学特性、14C、 δ 34SSO487Sr/86Sr 和 δ 18O等资料,对西山和东山不同的水流通道进行了区分。浅层地下水流经晚奥陶系地层,在排泄带产生较年轻的水(低温和低离子浓度及D和 18O富集)。深层地下水流经早奥陶系和寒武系地层,在排泄带产生较老的水(高离子浓度和高温及D 和 18O耗尽)。在山脉边缘,深层系统的地下水流沿断层垂直向上流动与浅层水流系统的地下水混合。相比之下,在北山整个寒武系到奥陶系地层只有一个单一的水流系统。

Resumo

A análise isotópica e hidrogeoquímica, combinada com a investigação de temperatura, foi conduzida para caracterizar o sistema de fluxo no aquífero carbonático de Taiyuan, norte da China. A divisão anterior dos subsistemas cársticos em Taiyuan, ou seja, o Xishan (XMK), Dongshan (DMK) e o sistema de montanhas Beishan (BMK), também foram examinados. A medida de δD, δ 18O e 3He/4He na água indica que ambas as águas subterrâneas, termal e fria, possuem origem meteórica ao invés de origem crustal profunda. A idade datada usando 3H e 14C demonstra que as amostras de água subterrânea vindas das zonas de descarga ao longo das falhas localizadas na margem de montanhas em XML e DMK são uma mistura de águas termais paleometeóricas e águas frias mais jovens de sistemas de fluxo local. Dados de 14C sugerem que a idade média foi de cerca de 10.000 anos e 4.000 anos para as águas subterrâneas termais e frias nas zonas de descarga, respectivamente. Com base nos dados de temperatura, as propriedades químicas do soluto água, 14C, δ 34SSO4, 87Sr/86Sr e δ 18O, foram distinguidos caminhos de fluxo diferentes no XML e DMK. Águas subterrâneas rasas passam através das formações do Ordoviciano superior, produzindo águas mais jovens na zona de descarga (baixa temperatura e concentração iônica e enriquecimento de D e 18O). Águas subterrâneas profundas fluem através do Ordoviciano inferior e das formações Cambrianas, produzindo águas mais velhos na zona de descarga (alta concentração iônica e temperatura e empobrecimento de D e 18O). Na margem das montanhas, sistemas profundos de água subterrânea fluem verticalmente para cima ao longo de falhas e se misturam com as águas subterrâneas com sistemas de fluxo rasos. Entretanto, no BMK ocorre apenas um sistema de fluxo único através de todo o Cambriano até às formações do Ordoviciano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • An Z, Porter SC, Kutzbach JE, Wu X, Wang S, Liu X, Li X, Zhou W (2000) Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev 19:743–762. doi:10.1016/S0277-3791(99)00031-1

    Article  Google Scholar 

  • Aquilina L, Ladouche B, Doerfliger N, Seidel JL, Bakalowicz M, Dupuy C, Le Strat P (2002) Origin, evolution and residence time of saline thermal fluids (Balaruc springs, southern France): implications for fluid transfer across the continental shelf. Chem Geol 192:1–21

    Article  Google Scholar 

  • Barbieri M, Morotti M (2003) Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano, Italy. Appl Geochem 18:117–125

    Article  Google Scholar 

  • Blum JD, Erel Y, Brown K (1993) Sr-87/Sr-86 ratios of Sierra-Nevada stream waters: implications for relative mineral weathering rates. Geochim Cosmochim Acta 57:5019–5025

    Article  Google Scholar 

  • Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. J Hydrol 352:267–287

    Article  Google Scholar 

  • Carreon-Diazconti C, Nelson ST, Mayo AL, Tingey DG, Smith M (2003) A mixed groundwater system at Midway, UT: discriminating superimposed local and regional discharge. J Hydrol 273:119–138

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Moss D (1996) Importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosi, Mexico. J Hydrol 185:23–44. doi:10.1016/S0022-1694(96)03014-4

    Article  Google Scholar 

  • Castro MC, Stute M, Schlosser P (2000) Comparison of He-4 ages and C-14 ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem 15:1137–1167. doi:10.1016/S0883-2927(99)00113-4

    Article  Google Scholar 

  • Chen Z, Qi J, Xu J, Xu J, Ye H, Nan Y (2003) Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China Plain. Appl Geochem 18:997–1009

    Article  Google Scholar 

  • Chen Z, Nie Z, Zhang G, Wan L, Shen J (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeol J 14:1635–1651

    Article  Google Scholar 

  • Chen Z, Wei W, Liu J, Wang Y, Chen J (2011) Identifying the recharge sources and age of groundwater in the Songnen Plain (northeast China) using environmental isotopes. Hydrogeol J 19:163–176

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC/Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Criss RE, Gregory RT, Taylor HP (1987) Kinetic-theory of oxygen isotopic exchange between minerals and water. Geochim Cosmochim Acta 51:1099–1108

    Article  Google Scholar 

  • Currell MJ, Cartwright I, Bradley DC, Han D (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol 385:216–229

    Article  Google Scholar 

  • Currell MJ, Han D, Chen Z, Cartwright I (2012) Sustainability of groundwater usage in northern China: dependence on palaeowaters and effects on water quality, quantity and ecosystem health. Hydrol Process 26:4050–4066

    Article  Google Scholar 

  • Demlie M, Wohnlich S, Ayenew T (2008) Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia. J Hydrol 353:175–188

    Article  Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21:2148–2170

    Article  Google Scholar 

  • Folch A, Mencio A, Puig R, Soler A, Mas-Pla J (2011) Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: the Selva basin (NE Spain). J Hydrol 403:83–102

    Article  Google Scholar 

  • Fontes JC, Pouchon P, Saliege JF, Zuppi GM (1978) Environmental isotope study of groundwater systems in the republic of Djibouti. In: Arid zone hydrology: investigations with isotope techniques, proceedings of an advisory group meeting on application of isotope techniques in arid zones hydrology, Vienna, Austria, 6–9 November 1978. IAEA, Vienna, Austria, pp 237–262

  • Geological Engineering Survey of Shanxi Province (2005) Investigation and evaluation of geothermal water resources in Taiyuan City (in Chinese). Geological Engineering Survey of Shanxi Province, Taiyuan, China

    Google Scholar 

  • Geyh MA (1972) Basic studies in hydrology and 14C and 3H measurements. 24th Proc Int Geol Congr 11:227–234

  • Giggenbach WF (1988) Geothermal solute equilibria: derivation of NaK–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765. doi:10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration. In: D’Amore F (ed) Application of in geothermal reservoir development. UNITAR/UNDP, Rome, pp 252–270

    Google Scholar 

  • Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal and volcanic water and gas discharges, 4th edn. Report no. CD 2401, Chemistry Division, Department of Scientific and Industrial Research, Petone, New Zealand

  • Grobe M, Machel HG, Heuser H (2000) Origin and evolution of saline groundwater in the Munsterland Cretaceous Basin, Germany: oxygen, hydrogen, and strontium isotope evidence. J Geochem Explor 69:5–9. doi:10.1016/S0375-6742(00)00009-1

    Article  Google Scholar 

  • Güleç N (1988) Helium-3 distribution in western Turkey. Miner Res Explor Bull 108:35–42

    Google Scholar 

  • Ha C, Tang B, Lu R (1989) Characteristics of fissure karst in the middle Ordovician limestone and groundwater natural resources in the west mountain of Taiyuan, Shanxi Province (in Chinese). Carsologica Sin 8:41–46

    Google Scholar 

  • Han D, Liang X, Currell MJ, Song X, Chen Z, Jin M, Liu C, Han Y (2010) Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields, Xinzhou Basin, Shanxi, China. Hydrol Process 24:3157–3176

    Article  Google Scholar 

  • He Y, Xu C (1993) Study on block-type hydrogeological structure of interstratified limestone in Taiyuan Region (in Chinese with English abstract). Carsologica Sin 12:55–66

    Google Scholar 

  • He Y, Wu Q, Xu C (1997) Study of the karstic water resources in Taiyuan Area (in Chinese with English abstract). Tongji University Press, Shanghai, 120 pp

    Google Scholar 

  • Heilweil VM, Solomon DK, Gingerich SB, Verstraeten IM (2009) Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa. Hydrogeol J 17:1157–1174

    Article  Google Scholar 

  • Hildenbrand A, Marlin C, Conroy A, Gillot PY, Filly A, Massault M (2005) Isotopic approach of rainfall and groundwater circulation in the volcanic structure of Tahiti-Nui (French Polynesia). J Hydrol 302:187–208

    Article  Google Scholar 

  • Hoke L, Poreda R, Reay A, Weaver SD (2000) The subcontinental mantle beneath southern New Zealand, characterised by helium isotopes in intraplate basalts and gas-rich springs. Geochim Cosmochim Acta 64:2489–2507

    Article  Google Scholar 

  • Huang C, Pang J, Zha X, Su H, Jia Y, Zhu Y (2007) Impact of monsoonal climatic change on Holocene overbank flooding along Sushui River, middle reach of the Yellow River, China. Quat Sci Rev 26:2247–2264. doi:10.1016/j.quascirev.2007.06.006

    Article  Google Scholar 

  • Imbach T (1997) Deep groundwater circulation in the tectonically active area of Bursa, northwest Anatolia, Turkey. Geothermics 26:251–278

    Article  Google Scholar 

  • Johnson TM, DePaolo DJ (1997) Rapid exchange effects on isotope ratios in groundwater systems: 2, flow investigation using Sr isotope ratios. Water Resour Res 33:197–209

    Article  Google Scholar 

  • Koh DC, Ha K, Lee KS, Yoon YY, Ko KS (2012) Flow paths and mixing properties of groundwater using hydrogeochemistry and environmental tracers in the southwestern area of Jeju volcanic island. J Hydrol 432:61–74

    Article  Google Scholar 

  • Kohfahl C, Sprenger C, Herrera JB, Meyer H, Chacon FF, Pekdeger A (2008) Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: a field study in the Granada Basin (southern Spain). Appl Geochem 23:846–862

    Article  Google Scholar 

  • Kreuzer AM, von Rohden C, Friedrich R, Chen Z, Shi J, Hajdas I, Kipfer R, Aeschbach-Hertig W (2009) A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem Geol 259:168–180. doi:10.1016/j.chemgeo.2008.11.001

    Article  Google Scholar 

  • Ma J, Pan F, Chen L, Edmunds WM, Ding Z, He J, Zhou K, Huang T (2010) Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Appl Geochem 25:996–1007

    Article  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26:884–897

    Article  Google Scholar 

  • Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and ground-water flow in the central Wasatch Range, Utah. J Hydrol 172:31–59

    Article  Google Scholar 

  • McClymont AF, Roy JW, Hayashi M, Bentley LR, Maurer H, Langston G (2011) Investigating groundwater flow paths within proglacial moraine using multiple geophysical methods. J Hydrol 399:57–69

    Article  Google Scholar 

  • Negrel P, Pauwels H, Dewandel B, Gandolfi JM, Mascre C, Ahmed S (2011) Understanding groundwater systems and their functioning through the study of stable water isotopes in a hard-rock aquifer (Maheshwaram watershed, India). J Hydrol 397:55–70

    Article  Google Scholar 

  • Neumann K, Dreiss S (1995) Strontium 87/strontium 86 ratios as tracers in groundwater and surface waters in Mono basin, California. Water Resour Res 31:3183–3193

    Article  Google Scholar 

  • Oraseanu I, Mather J (2000) Karst hydrogeology and origin of thermal waters in the Codru Moma Mountains, Romania. Hydrogeol J 8:379–389

    Article  Google Scholar 

  • Portugal E, Birkle P, Barragan RM, Arellano VM, Tello E, Tello M (2000) Hydrochemical-isotopic and hydrogeological conceptual model of the Las Tres Virgenes geothermal field, Baja California Sur, Mexico. J Volcanol Geotherm Res 101:223–244

    Article  Google Scholar 

  • Siebert C, Rosenthal E, Moller P, Rodiger T, Meiler M (2012) The hydrochemical identification of groundwater flowing to the Bet She’an-Harod multiaquifer system (Lower Jordan Valley) by rare earth elements, yttrium, stable isotopes (H, O) and Tritium. Appl Geochem 27:703–714

    Article  Google Scholar 

  • Tamers MA (1975) Validity of radiocarbon dates on groundwater. Surv Geophys 2:217–239

    Article  Google Scholar 

  • Varsanyi I, Matray JM, Kovacs LO (1999) Hydrogeochemistry in two adjacent areas in the Pannonian Basin (Southeast-Hungary). Chem Geol 156:25–39

    Article  Google Scholar 

  • Violette S, Ledoux E, Goblet P, Carbonnel JP (1997) Hydrologic and thermal modeling of an active volcano: the Piton de la Fournaise, Reunion. J Hydrol 191:37–63

    Article  Google Scholar 

  • Wang H (1991) Isotopic hydrogeology (in Chinese). Geological Press, Beijing, 191 pp

    Google Scholar 

  • Wang R, Wang H (1990) Recharge of karst groundwater in East Mountain, Taiyuan (in Chinese). Carsologica Sin 9:1–6

    Google Scholar 

  • Wang Y, Guo Q, Su C, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328:592–603

    Article  Google Scholar 

  • Woods TL, Fullagar PD, Spruill RK, Sutton LC (2000) Strontium isotopes and major elements as tracers of ground water evolution: example from the Upper Castle Hayne Aquifer of North Carolina. Ground Water 38:762–771

    Article  Google Scholar 

  • Wu T (1997) Stratigraphy (lithostratic) of Shanxi Province (in Chinese with English abstract). China University of Geosciences Press, Wuhan, China, 353 pp

    Google Scholar 

  • Xu G, Ha C, Wang H, Wang R (1987) Karst fissure groundwater system in the western mountain, Taiyuan, Shanxi (in Chinese). J Geomechan 10:85–125

    Google Scholar 

  • Zhang D (1993) Bedding karst and multilayered groundwater flows in karstic block mountains in the northeast of Mount Xishan, Taiyuan, China. Q J Eng Geol Hydrogeol 26:205–216

    Article  Google Scholar 

  • Zhao Y, Cai Z (1990) Researches on groundwater system in karst areas: a case study in Taiyuan Region, Shanxi Province, China (in Chinese with English abstract). Science Press, Beijing, 229 pp

    Google Scholar 

  • Zuber A, Weise SM, Motyka J, Osenbruck K, Rozanski K (2004) Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from combined isotope, noble gas and chemical data. J Hydrol 286:87–112

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grant Nos. 91325101 and 91125009) and the Grant for Innovative Research Groups of the National Natural Science Foundation of China (41521001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Ma, R., Wang, Y. et al. Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China. Hydrogeol J 24, 1393–1412 (2016). https://doi.org/10.1007/s10040-016-1390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1390-2

Keywords

Navigation