Advertisement

Hydrogeology Journal

, Volume 24, Issue 5, pp 1273–1286 | Cite as

An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

  • Vijay BhusariEmail author
  • Y. B. Katpatal
  • Pradeep Kundal
Paper

Abstract

The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8–2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

Keywords

Groundwater recharge/water budget Geographic information systems Recharge shaft Reverse gradient structure India 

Un système de recharge artificielle innovant pour augmenter le stockage d’eau souterraine dans un terrain basaltique: exemple de Maharashtra, Inde

Résumé

La gestion des eaux souterraines pose des défis en terrain basaltique car sa disponibilité n’est pas uniforme du fait de l’absence de porosité primaire. Les prélèvements excessifs depuis les aquifères superficiels ou profonds sans distinction pour satisfaire une demande accrue peuvent être supérieurs à la recharge naturelle, causant un déséquilibre entre demande et ressource renouvelable et menant à une situation de pénurie. Un système de recharge artificielle innovant a été conçu et mis en application pour augmenter les ressources en eau souterraine aux villages de Saoli et de Sastabad dans le district de Wardha au Maharashtra (Inde). Le principe comporte l’aménagement d’un lit de rivière pour en inverser le gradient, construisant un barrage de subsurface pour bloquer l’écoulement de subsurface, et l’installation de puits de recharge pour recharger les aquifères plus profonds. L’article se concentre sur l’analyse des paramètres hydrogéologiques comme la porosité, le rendement et la transmissivité, et sur l’évolution temporelle de l’état des eaux souterraines. Les résultats indiquent qu’après la construction du système de recharge artificielle, une élévation de 0.8–2.8 m a été enregistrée dans les niveaux piézométriques antérieurs et postérieurs à la mousson dans 12 puits du secteur d’étude ; une augmentation du rendement a également été notée, ce qui a résolu le problème d’eau potable et d’irrigation. L’analyse spatiale a été réalisée en utilisant un système d’information géographique pour délimiter la zone d’influence du système de recharge due à l’augmentation des rendements des puits. L’étude démontre l’efficacité, la viabilité technique et l’applicabilité d’un système de recharge artificielle innovant construit dans un contexte de terrain basaltique enclin à la pénurie d’eau.

Un sistema de recarga artificial innovador para mejorar el almacenamiento de agua subterránea en un terreno basáltico: ejemplo de Maharashtra, India

Resumen

La gestión del agua subterránea plantea desafíos en los terrenos basálticos ya que su disponibilidad no es uniforme debido a la ausencia de porosidad primaria. La extracción indiscriminada excesiva tanto el acuíferos someros como profundos para satisfacer la mayor demanda puede ser mayor que la recarga natural, causando un desequilibrio entre la demanda y la oferta y conduciendo a una condición de escasez. Se ha concebido y aplicado un sistema de recarga artificial innovador para aumentar las fuentes de agua subterránea en las ciudades de Saoli y Sastabad en el distrito de Wardha de Maharashtra, India. El esquema involucra el re-seccionamiento de un lecho de una corriente para lograr un gradiente inverso, construyendo una presa subsuperficial para detener el flujo subsuperficial, y la instalación de pozos de recarga para recargar los acuíferos más profundos. El trabajo se enfoca en el análisis de los parámetros hidrogeológicos como la porosidad, rendimiento específico y transmisividad, y en el estado temporal de las aguas subterráneas. Los resultados indican que después de la construcción del sistema de recarga artificial, se registró un aumento de 0.8–2.8 m en los niveles de agua subterránea pre y post monzón en 12 pozos perforados en el área de estudio; además se observó un incremento en el rendimiento que resolvió los problemas de agua potable y de riego. Se realizó un análisis espacial utilizando un sistema de información geográfica para demarcar el área de influencia del sistema de recarga debido al aumento en los rendimientos de los pozos. El estudio demuestra la eficacia, la viabilidad técnica y la aplicabilidad de un sistema de recarga artificial innovador construido en un área de terreno basáltico propensa a la escasez de agua.

在玄武岩地域提高地下水储存量的创新人工补给系统:以印度马哈拉施特拉邦为例

摘要

地下水管理在玄武岩地区遇到挑战,因为缺乏原生孔隙,其可用性并不一致。为满足日益增加的需求,从浅层和深层含水层任意过度抽取的水可能超过天然补给量,引起供需失衡,造成水资源短缺。提出并实施了创新的人工补给系统以增加印度马哈拉施特拉邦Wardha 地区Saoli和 Sastabad 村的地下水源。方案涉及一个河流的重新分割以实现梯度反转、建设一个地下大坝捕获地下水流及打补给井补给深层含水层。本文重点分析了水文地质参数,如孔隙度、单位出水量和导水系数以及重点论述了当时的地下水状态。结果显示,建设人工补给系统后,研究区12口挖的井季风前后地下水位上升了0.8–2.8 米;出水量也有所增加,解决了饮水和灌溉问题。利用地理信息系统进行了空间分析,划分了由于井出水量增加造成的补给系统的影响区域。研究结果展示了在具有缺水倾向的玄武岩地区建设创新人工补给系统的功效、技术可行性和可应用性。

Um sistema inovador de recarga artificial para intensificar o armazenamento de águas subterrâneas em terreno basáltico: o exemplo de Maharashtra, Índia

Resumo

O gerenciamento de águas subterrâneas apresenta desafios em terreno basáltico já que sua disponibilidade não é uniforme devido à ausência de porosidade primária. A retirada excessiva e indiscriminada de água, tanto de aquíferos raros como de profundos, para atender o aumento da demanda pode ser maior do que a recarga natural, causando desequilíbrio na demanda e oferta e gerando uma condição de escassez. Um sistema inovador de recarga artificial tem sido concebido e implementado para aumentar as fontes de águas subterrâneas nas aldeias de Saoli e Sastabad no distrito de Wardha em Maharashtra, Índia. O esquema envolve a ressecção de um leito de rio para alcançar um gradiente reverso, construindo uma barragem subsuperficial para deter o escoamento subterrâneo, e a instalação de poços de recarga para recarregar aquíferos profundos. O artigo objetiva a análise de parâmetros hidrogeológicos como porosidade, rendimento especifico e transmissividade, e a situação temporal das águas subterrâneas. Os resultados indicam que após a construção do sistema de recarga artificial, foi registrada uma elevação de 0.8–2.8 m nos níveis de águas subterrâneas na pré e pós monção em 12 poços escavados na área de estudo; um aumento do rendimento também foi observado, o qual resolveu os problemas de água potável e irrigação. A análise espacial foi feita usando um sistema de informações geográficas para demarcar a área de influência do sistema recarga devido ao aumento do rendimento dos poços. O estudo demonstrou a eficácia, viabilidade técnica e aplicabilidade de um sistema de recarga artificial construído em uma área de terreno basáltico, susceptível a escassez hídrica.

Notes

Acknowledgements

The authors are very thankful to the National Rural Drinking Water Program sponsored by Government of India, the Ground Water Survey and Development Agency (GSDA) of Maharashtra state (India) for their valuable support during implementation of the project; and Mr. Rajendra Deshkar, Ms. Isha Ghodeswar of GSDA and Mr. Deepak Dhote from Rural Water Supply Department of Maharashtra state (India) for helping in the field work and technical supervision.

References

  1. Bear J (1972) Dynamics of fluids in porous media. Dover, NewYorkGoogle Scholar
  2. Bhalerao A, Kelkar T S (2013) Artificial recharge of groundwater: a novel technique for replenishment of an aquifer with water from land surface. Int J Earth Sci Eng 3(1):165–183Google Scholar
  3. Bhattacharya AK (2010) Artificial groundwater recharge with a special reference to India. IJRRAS 4(2):214–221Google Scholar
  4. Bhuiyan C (2015) Hydrological characterization of geological lineaments: a case study from the Aravalli terrain, India. Hydrogeol J 23(4):673–686CrossRefGoogle Scholar
  5. BISIS 15792 (2008) Artificial recharge to groundwater: guidelines. Bureau of Indian Standards, New DelhiGoogle Scholar
  6. Bouwer H, Rice RC (1976) A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428CrossRefGoogle Scholar
  7. CGWB (1982) Manual of evaluation of aquifer parameters. CGWB, Ministry of Irrigation, GoI, New Delhi, pp 40–122Google Scholar
  8. CGWB (1986) Manual on analysis of pumping test data of large diameter wells. Technical Series M, CGWB, Ministry of Water Resources, GoI, New Delhi, 28 ppGoogle Scholar
  9. CGWB (2000) Master plan for artificial recharge to groundwater in Maharashtra. CGWB, Ministry of Water Resources, GoI, New Delhi, 76 ppGoogle Scholar
  10. CGWB and GSDA (2005) Report on dynamic groundwater resources of Maharashtra as on March 2005. CGWB, New Delhi, and Groundwater Surveys and Development Agency, Nagpur, India, 230 ppGoogle Scholar
  11. CWC (2006) Evaporation control in reservoirs. Basin Planning and Management Organisation, Report, Central Water Commission, GoI, New Delhi. http://cwc.gov.in/. Accessed November 2015
  12. Dillon PJ (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316CrossRefGoogle Scholar
  13. Dillon P, Toze S, Page D, Vanderzalm J, Bekele E, Sidhu J, Rinck-Pfeiffer S (2010) Managed aquifer recharge: rediscovering nature as a leading edge technology. Water Sci Technol 62(10):2338–2345Google Scholar
  14. Gale I (2005) Strategies for managed aquifer recharge (MAR) in semi-arid areas. UNESCO, ParisGoogle Scholar
  15. Goodrich DC, Williams DG, Unkrich CL, Hogan JF, Scott RL, Hultine KR, Pool D, Coes AL, Miller S (2004) Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch, San Pedro River Basin, Arizona. In: Groundwater recharge in a desert environment, Water Science and Applications Series, vol 9. AGU, Washington, DC, pp 77–99Google Scholar
  16. GSDA and CGWB (2014) Report on dynamic groundwater resources of Maharashtra as on March 2008. Groundwater Survey and Development Agency, Nagpur, India and CGWB, New Dehli, 228 ppGoogle Scholar
  17. GSDA and CGWB (2007) Dynamic groundwater resources of Maharashtra as on March 2007. Groundwater Survey and Development Agency, Nagpur, India and CGWB, New Delhi, 332 ppGoogle Scholar
  18. Henry FH, Buxton T, Haglin N (1992) Effect of urban storm runoff control on groundwater recharge in Nassau, NY. Groundwater 30(4):507CrossRefGoogle Scholar
  19. Hollander HM, Mull R, Panda SN (2007) A concept for managed aquifer recharge using ASR-wells for sustainable use of groundwater resources in an alluvial coastal aquifer in eastern India. In: Proceedings of the 6th International Symposium on Managed Artificial Recharge of Groundwater (ISMAR6), Phoenix, AZ, November 2007, Arizona Hydrological Society, Phoenix, pp 15–29Google Scholar
  20. Ishida S, Tsuchihara T, Yoshimoto S, Imaizumi M (2011) Sustainable use of groundwater with underground dam. JARQ 45(1):51–61CrossRefGoogle Scholar
  21. Jagdale SD, Nimbalkar PT (2012) Infiltration studies of different soils under different soil conditions and comparison of infiltration models with field data. Int J Adv Eng Tech 3(2)154–157Google Scholar
  22. Karanth KR (1999) Groundwater assessment, development and management. Mc-Graw Hill, New YorkGoogle Scholar
  23. Katpatal YB, Dube YA (2010) Comparative overlay analysis through analytical hierarchical process to delineate groundwater potential zones using satellite data. Int J Earth Sci Eng 3(5):638–653Google Scholar
  24. Katpatal YB, Pophare AM, Lamsoge BR (2014) A groundwater flow model for overexploited basaltic aquifer and Bazada formation in India. Environ Earth Sci 72(11):4413–4425CrossRefGoogle Scholar
  25. Khairy Ahmed,Abdulla S, Al-Ghamdi, Gutub Saud A (2010) Analysis and design of a subsurface dam. Int J Civil Environ Eng 10(3):27–33.Google Scholar
  26. Kumar B, Kumar U (2011) Ground water recharges zonation mapping and modeling using geomatics. Int J Environ Sci 1(7):16–71Google Scholar
  27. Levick LR, Goodrich DC, Hernandez M (2008) The ecological and hydrological significance of ephemeral and intermittent streams in the arid and semi-arid American Southwest. EPA/600/R-08/134 ARS/233046, US EPA, Washington, DC. www.epa.gov. Accessed February 2016
  28. Liu Cheng, Evett Jack B (2008) Soils and foundations. The University of North Carolina, Charlotte, NC, USAGoogle Scholar
  29. Mutiso S (2002) The significance of subsurface water storage in Kenya. Seminar Proceedings, Wageningen, The Netherlands, 18–19 December 2002, Netherlands National Committee for the IAH and Netherlands Hydrological Society, Amsterdam, 29 ppGoogle Scholar
  30. Obi Reddy GP, Chandra Mouli K, Srivastav SK, Srinivas CV, Maji AK (2000) Evaluation of groundwater potential zones using remote sensing data: a case study of Gaimukh watershed, Bhandara district, Maharashtra. J Indian Soc Remote Sens 28(1):19–32CrossRefGoogle Scholar
  31. Tuinhof A, Olsthoorn, De Vries T N, Recharge J J (2002) Enhancement and suburface storage. Seminar Proceedings, Wageningen, The Netherlands, 18–19 December 2002, Netherlands National Committee for the IAH and Netherlands Hydrological Society, Amsterdam, 78 ppGoogle Scholar
  32. Papadopulos IS, Cooper HH (1967) Drawdown in a well of large diameter. Water Resour Res 3:241–244CrossRefGoogle Scholar
  33. Patki N, Ghodke VR, Sathe NJ (2012) Delineation of recharging zones for groundwater in Bhima River Basin, Pandharpur, Maharashtra. Proceedings of International Conference SWRDM-2012, Kolhapur, December 2012, pp 63–67Google Scholar
  34. Raghunath HM (2006) Groundwater, aquifer properties and groundwater flow, 3rd edn. New Age Int., New Delhi, 7 ppGoogle Scholar
  35. Rajurkar ST, Bhate V D, Harma S B (1990) Lineament fabric of Madhya Pradesh and Maharashtra and its tectonic significance. In: Precambrian of Central India. Spec. Publ. no. 28, Geol. Survey of India, Calcutta, pp 241–259Google Scholar
  36. Sahastrabudhe SR (2009) Irrigation and power hand book, 16th edn., chap 14. Kalson, University of Wisconsin, Madison, WI, 653 ppGoogle Scholar
  37. Sammel EA (1974) Aquifer test in large diameter wells in India. Groundwater 12(5):265–271CrossRefGoogle Scholar
  38. Stanislaw Zak (2011) Correlations between hydraulic conductivity and selected hydrogeological properties of rocks. In: Developments in hydraulic conductivity research. InTech, Rijeka, Croatia, pp 113–132.Google Scholar
  39. Van Ginkel M (2015) Aquifer design for freshwater storage and recovery in artificial islands and coastal expansions. Hydrogeol J 23:615–618CrossRefGoogle Scholar
  40. VIIDP (2012) Operational guidelines. Vidarbha Intensive Irrigation Development Programme, Ministry of Agriculture, GoI, New Delhi, 7 ppGoogle Scholar
  41. Yadav A, Sonje A, Mathur P, Jain DA (2012) A review of artificial ground water recharge. Int J Pharma Bio Sci 3(3):304–311Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vijay Bhusari
    • 1
    Email author
  • Y. B. Katpatal
    • 2
  • Pradeep Kundal
    • 3
  1. 1.Groundwater Surveys and Development Agency, Department of Water Supply and SanitationGovt. of MaharashtraNagpurIndia
  2. 2.Department of Civil EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia
  3. 3.Department of GeologyRTM Nagpur UniversityNagpurIndia

Personalised recommendations