Skip to main content

Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

Dynamiques des écoulements d’eaux souterraines, des éléments nutritifs et des isotopes stables dans la zone parafluviale-hyporhéique du Colorado inférieur régulé (Texas, Etats-Unis d’Amérique) au cours d’une petite crue

Flujo de agua subterránea, de nutrientes y dinámica de isótopos estables en la zona hiporreica parafluvial regulada del Río Colorado Inferior (Texas, EE.UU.) durante el transcurso de una pequeña crecida

小的洪水过程中(美国德克萨斯州)受到管理的科罗拉多河下游准河流---伏流带地下水流、营养物和稳定同位素动力学

Dinâmicas de fluxo, nutrientes e isótopos estáveis nas águas subterrâneas em zona parafluvial hiporréica no Baixo Rio Colorado (Texas, EUA) regulado sobre curso de uma pequena cheia

Abstract

Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

Résumé

Des lâchers périodiques à partir d’un barrage situé en amont entraînent des fluctuations rapides de l’état hydraulique dans la partie inférieure du Colorado près d’Austin, Texas, Etats-Unis d’Amérique. Ces impulsions journalières modulent les échanges de flux et des temps de séjour dans la zone hyporhéique où les réactions biogéochimiques sont généralement prononcées. Les effets d’une petite impulsion de crue dans des conditions d’étiage sur les échanges entre eaux de surface/eaux souterraines et les processus biogéochimiques ont été étudiés à l’aide d’une surveillance et des échantillonnages au niveau de deux transects à forte densité de puits perpendiculaires à la rivière. Le premier transect a enregistré des niveaux d’eaux et le second transect a été utilisé pour la collecte d’échantillons selon trois profondeurs. Les échantillons ont été prélevés au niveau de 12 puits toutes les 2 heures sur une période de 24 heures, qui a été affectée par une impulsion de crue de 16 cm. Les analyses ont porté sur les éléments nutritifs, le carbone, les ions majeurs et les isotopes stables de l’eau. L’impulsion de crue relativement petite n’a pas causé de mélange significatif dans la zone parafluviale. Dans ces conditions, la rivière et les eaux souterraines sont découplées, ce qui est démontré par un mélange potentiel minimal à l’interface, et elles ne présentent pas une dénitrification discernable des nitrates issus de la rivière. Les modèles chimiques observés dans la zone parafluviale peuvent être expliqués par l’évaporation des eaux souterraines avec peu de mélange avec l’eau de rivière. Ainsi, de grandes impulsions peuvent être nécessaires pour qu’un mélange hyporhéique substantiel et un mélange se produisent. Le grand fleuve régulé en conditions d’étiage et sous un régime de petites impulsions de crue a fonctionné principalement comme une rivière avec un gain, caractérisée par une faible connectivité hydrologique au-delà d’une zone hyporhéique étroite.

Resumen

Los vertidos periódicos de una presa aguas arriba causan escenarios de fluctuaciones rápidas en el Río Colorado Inferior cerca de Austin, Texas, EE.UU. Estos pulsos diarios modulan el intercambio de fluidos y los tiempos de residencia en la zona hiporreica donde las reacciones biogeoquímicas son habitualmente pronunciadas. Se estudiaron los efectos de un pequeño pulso de inundación en condiciones de bajo caudal de intercambio agua de superficie / agua subterránea y los procesos biogeoquímicos mediante el monitoreo y muestreo de dos transectas de pozos perpendiculares al río. La primer transecta registró los niveles de agua y la segunda se utilizó para la extracción de muestras de agua a tres profundidades. Se recolectaron muestras de 12 pozos cada 2 horas durante un período de 24 horas que tenía un pulso de inundación de 16 cm. Los análisis incluyeron nutrientes, carbono, iones mayoritarios, y los isótopos estables de agua. El pulso de inundación relativamente pequeño no causó una mezcla significativa en la zona parafluvial. En estas condiciones, el río y el agua subterránea se desacoplan, mostraron posiblemente una mezcla mínima en la interfaz, y no mostraron ninguna desnitrificación apreciable en la transmisión de nitrato al río. Los patrones químicos observados en la zona parafluvial pueden explicarse por la evaporación del agua subterránea con poca mezcla con el agua del río. Por lo tanto, grandes impulsos pueden ser necesarios para una considerable mezcla hiporreica y para que pueda ocurrir el intercambio. Un gran río regulado bajo un flujo bajo y un régimen de pulsos de inundación pequeño funcionó principalmente como un río ganador con poca conectividad hidrológica más allá de una angosta zona hiporreica.

摘要

从上游大坝定期放水可引起美国德克萨斯州奥斯丁附近科罗拉多河下游快速的阶段性波动。这些日常的波动调节着生物地球化学反应非常突出的伏流带内液体交换和滞留时间。通过垂直于河流的井的两个密集断面的监测和采样,研究了在流量低的条件下小的洪水波动对地表水/地下水交换和生物地球化学过程的影响。第一个断面记录了水位,第二个断面用来在三个不同的深度采集水样。在24小时的时段内,有10 cm 的水位波动,每两个小时从12口井中采集水样。分析包括水中的营养物、碳、主要离子和稳定同位素。相对小的洪水波动不能引起准河流带大的混合。在这些条件下,河流和地下水去耦,显示在界面有很小的混合,没有显示出河流随带的硝酸盐任何可辨别的除氮作用。在准河流带观测到的化学模式是由与河水混合极少的地下水蒸发造成的。因此,在流量低和小的洪水波动情况下,大的受到管理的河流主要充当盈水河,其在窄的伏流带之外水力连通性很差。

Resumo

Liberações periódicas de uma barragem a montante causam rápidas flutuações no nível do Baixo Rio Colorado próximo a Austin, Texas, EUA. Esses pulsos diários modulam a troca de fluidos e o tempo de residência na zona hiporreica onde reações biogeoquímicas são tipicamente evidentes. Os efeitos do pulso de uma pequena cheia sob condições de baixo fluxo na interação entre águas subterrâneas/águas superficiais e nos processos biogeoquímicos foram estudados pelo monitoramento e amostragem de poços em dois densos transeptos perpendiculares ao rio. O primeiro transepto registrou níveis d’água e o segundo foi utilizado para coletar as amostras de água em três profundidades. As amostras foram coletadas de 12 poços a cada 2 horas em um período de 24 horas que teve um pulso de 16 cm. As análises incluíram nutrientes, carbono, íons maiores e isótopos estáveis da água. O pulso de pequena cheia relativa não causou mistura significante na zona parafluvial. Sob essas condições, o rio e a águas subterrâneas foram desacoplados, mostrando mínima mistura potencial na interface, e não exibindo desnitrificação discernível do nitrato presente no rio. Os padrões químicos observados na zona parafluvial podem ser explicados pela evaporação das águas subterrâneas com pequena mistura com a água do rio. Assim, pulsos mais longos são necessários para que ocorra uma substancial mistura e troca hiporréica. O extenso rio regulado sob um regime de baixo fluxo e pequeno pulso de cheia funciona principalmente como um rio de ganho, com baixa conectividade hidrológica, além de uma zona hiporréica limitada.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Alexander RB, Bohlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM (2009) Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93:91–116. doi:10.1007/s10533-008-9274-8

    Article  Google Scholar 

  • Arntzen EV, Geist DR, Dresel PE (2006) Effects of fluctuating river flow on groundwater/surface water mixing in the hyporheic zone of a regulated, large cobble bed river. River Res Appl. doi:10.1002/rra.947

    Google Scholar 

  • Boano F, Camporeale C, Revelli R, Ridolfi L (2006) Sinuosity-driven hyporheic exchange in meandering rivers. Geophys Res Lett. doi:10.1029/2006gl027630

    Google Scholar 

  • Boano F, Revelli R, Ridolfi L (2008) Reduction of the hyporheic zone volume due to the stream–aquifer interaction. Geophys Res Lett. doi:10.1029/2008GL033554

    Google Scholar 

  • Boano F, Camporeale C, Revelli R (2010a) A linear model for the coupled surface–subsurface flow in a meandering stream. Water Resour Res. doi:10.1029/2009wr008317

    Google Scholar 

  • Boano F, Demaria A, Revelli R, Ridolfi L (2010b) Biogeochemical zonation due to intrameander hyporheic flow. Water Resour Res. doi:10.1029/2008wr007583

    Google Scholar 

  • Boutt DF, Fleming BJ (2009) Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer. Water Resour Res. doi:10.1029/2007wr006526

    Google Scholar 

  • Briggs MA, Lautz LK, Hare DK, Gonzalez-Pinzon R (2013) Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams. Freshw Sci 32:622–641. doi:10.1899/12-110.1

    Article  Google Scholar 

  • Briggs MA, Lautz LK, Hare DK (2014) Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone. Hydrol Process 28:3741–3751. doi:10.1002/hyp.9921

    Article  Google Scholar 

  • Briody AC (2014) Flow, nutrient, and stable isotope dynamics of groundwater in the parafluvial/ hyporheic zone of a regulated river during a small pulse. MS Thesis, The University of Texas at Austin, Austin, TX, 81 pp

  • Calles O, Nyberg L, Greenberg L (2007) Temporal and spatial variation in quality of hyporheic water in one unregulated and two regulated boreal rivers. River Res Appl. doi:10.1002/rra.1015

    Google Scholar 

  • Cardenas MB (2009a) A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resour Res. doi:10.1029/2008WR007442

    Google Scholar 

  • Cardenas MB (2009b) Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour Res. doi:10.1029/2008WR007651

    Google Scholar 

  • Cardenas MB, Markowski MS (2011) Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river. Environ Sci Technol. doi:10.1021/es103438a

    Google Scholar 

  • Coplen TB, Kendall C (2000) Stable hydrogen and oxygen isotope ratios for selected sites of the U.S. geological survey’s NASQAN and benchmark surface-water networks. US Geological Survey, Reston, VA, 409 pp

  • Doble R, Brunner P, McCallum J, Cook PG (2012) An analysis of river bank slope and unsaturated flow effects on bank storage. Ground Water 50:77–86. doi:10.1111/j.1745-6584.2011.00821.x

    Article  Google Scholar 

  • Dubrovsky NM, Burow KR, Clark GM, Gronberg JM, Hamilton PA, Hitt KJ, Mueller DK, Munn MD, Nolan BT, Puckett LJ, Rupert MG, Short TM, Spahr NE, Sprague LA, Wilber WG (2010) The quality of our nation’s waters: nutrients in the nation’s streams and groundwater, 1992–2004. US Geol Surv Circ 1350, 174 pp

  • Fischer H, Kloep F, Wilzcek S, Pusch MT (2005) A river’s liver: microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry 76:349–371

    Article  Google Scholar 

  • Francis BA, Francis LK, Cardenas MB (2010) Water table dynamics and groundwater–surface water interaction during filling and draining of a large fluvial island due to dam-induced river stage fluctuations. Water Resour Res. doi:10.1029/2009WR008694

    Google Scholar 

  • Fritz BG, Arntzen EV (2007) Effect of rapidly changing river stage on uranium flux through the hyporheic zone. Ground Water. doi:10.1111/j.1745-6584.2007.00365.x

    Google Scholar 

  • Garner LE, Young KP (1976) Environmental geology of the Austin area: an aid to urban planning. The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No.86

  • Gerecht KE, Cardenas MB, Guswa AJ, Sawyer AH, Nowinski JD, Swanson TE (2011) Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river. Water Resour Res. doi:10.1029/2010wr009794

    Google Scholar 

  • Gomez JD, Wilson JL, Cardenas MB (2012) Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects. Water Resour Res. doi:10.1029/2012wr012180

    Google Scholar 

  • Gu CH, Hornberger GM, Mills AL, Herman JS, Flewelling SA (2007) Nitrate reduction in streambed sediments: effects of flow and biogeochemical kinetics. Water Resour Res. doi:10.1029/2007wr006027

    Google Scholar 

  • Gu CH, Hornberger GM, Herman JS, Mills AL (2008) Influence of stream-groundwater interactions in the streambed sediments on NO3- flux to a low-relief coastal stream. Water Resour Res. doi:10.1029/2007wr006739

    Google Scholar 

  • Gu CH, Anderson W, Maggi F (2012) Riparian biogeochemical hot moments induced by stream fluctuations. Water Resour Res 48. doi:10.1029/2011wr011720

  • Hancock PJ (2002) Human impacts on the stream–groundwater exchange zone. Environ Manage 29:763–781. doi:10.1007/s00267-001-0064-5

    Article  Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of streambed topography on surface–subsurface water exchange in mountain catchments. Water Resour Res. doi:10.1029/92wr01960

    Google Scholar 

  • Harvey JW, Boehlke JK, Voytek MA, Scott DT, Tobias CR (2013) Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole-stream mass balance. Water Resour Res. doi:10.1002/wrcr.20492

    Google Scholar 

  • Holmes RM, Fisher SG, Grimm NB (1994) Parafluvial nitrogen dynamics in a desert stream ecosystem. J N Am Benthol Soc 13:468–478. doi:10.2307/1467844

    Article  Google Scholar 

  • Johnson TC, Slater LD, Ntarlagiannis D, Day-Lewis FD, Elwaseif M (2012) Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes. Water Resour Res 48. doi:10.1029/2012wr011893

  • Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Kessler AJ, Glud RN, Cardenas MB, Larsen M, Bourke MF, Cook PLM (2012) Quantifying denitrification in rippled permeable sands through combined flume experiments and modeling. Limnol Oceanogr. doi:10.4319/lo.2012.57.4.1217

    Google Scholar 

  • Kiel BA, Cardenas MB (2014) Lateral hyporheic exchange throughout the Mississippi River network. Nat Geosci. doi:10.1038/ngeo2157

    Google Scholar 

  • Larkin RG, Sharp JM (1992) On the relationship between river-basin geomorphology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers. Geol Soc Am Bull 104:1608–1620

    Article  Google Scholar 

  • Lower Colorado River Authority (2014) Basin highlights report: a summary of water quality in the Colorado River basin during 2013. Lower Colorado River Authority, Austin, TX

  • McAllister DE (2001) Biodiversity Impacts of large dams. International Union for Conservation of Nature. p 1–68

  • McCallum JL, Cook PG, Brunner P, Berhane D (2010) Solute dynamics during bank storage flows and implications for chemical base flow separation. Water Resour Res. doi:10.1029/2009wr008539

    Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312. doi:10.1007/s10021-003-0161-9

    Article  Google Scholar 

  • Nilsson C, Berggren K (2000) Alterations of riparian ecosystems caused by river regulation. Bioscience 50:783–792

    Article  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s largest river systems. Science 308:405–408. doi:10.1126/science.1107887

    Article  Google Scholar 

  • Nyberg L, Calles O, Greenberg L (2008) Impact of short-term regulation on hyporheic water quality in a boreal river. River Res Appl 24:407–419. doi:10.1002/rra.1075

    Article  Google Scholar 

  • Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Marti E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DD (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90. doi:10.1126/science.1056874

    Article  Google Scholar 

  • Rodda PU, Garner LE, Dawe GL (1969) Geologic map of the Austin West Quadrangle, Travis County, Texas, Geologic Quadrangle Map no. 38. University of Texas at Austin, Bureau of Economic Geology, Austin, TX

  • Sawyer AH, Cardenas MB, Bomar A, Mackey M (2009) Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river. Hydrol Process. doi:10.1002/hyp.7324

    Google Scholar 

  • Scanlon BR, Reedy RC, Tachovsky JA (2007) Semiarid unsaturated zone chloride profiles: archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resour Res 43. doi:10.1029/2006wr005769

  • Sheibley RW, Jackman AP, Duff JH, Triska FJ (2003) Numerical modeling of coupled nitrification–denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN. Adv Water Resour 26:977–987. doi:10.1016/s0309-1708(03)00088-5

    Article  Google Scholar 

  • Siergieiev D, Widerlund A, Ingri J, Lundberg A, Ohlander B (2014a) Flow regulation effects on the hydrogeochemistry of the hyporheic zone in boreal rivers. Sci Total Environ 499:424–436. doi:10.1016/j.scitotenv.2014.06.112

    Article  Google Scholar 

  • Siergieiev D, Widerlund A, Lundberg A, Almqvist L, Collomp M, Ingri J, Ohlander B (2014b) Impact of hydropower regulation on river water composition in northern Sweden. Aquat Geochem 20:59–80. doi:10.1007/s10498-013-9215-6

    Article  Google Scholar 

  • Siergieiev D, Ehlert L, Reimann T, Lundberg A, Liedl R (2015) Modelling hyporheic processes for regulated rivers under transient hydrological and hydrogeological conditions. Hydrol Earth Syst Sci 19:329–340. doi:10.5194/hess-19-329-2015

  • Sjodin AL, Lewis WM, Saunders JF (1997) Denitrification as a component of the nitrogen budget for a large plains river. Biogeochemistry 39:327–342. doi:10.1023/a:1005884117467

    Article  Google Scholar 

  • Stewart RJ, Wollheim WM, Gooseff MN, Briggs MA, Jacobs JM, Peterson BJ, Hopkinson CS (2011) Separation of river network-scale nitrogen removal among the main channel and two transient storage compartments. Water Resour Res. doi:10.1029/2010wr009896

    Google Scholar 

  • Triska FJ, Duff JH, Avanzino RJ (1993) The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial aquatic interface. Hydrobiologia 251:167–184. doi:10.1007/bf00007177

    Article  Google Scholar 

  • Wollheim WM, Voosmarty CJ, Peterson BJ, Seitzinger SP, Hopkinson CS (2006) Relationship between river size and nutrient removal. Geophys Res Lett 33:4. doi:10.1029/2006gl025845

    Article  Google Scholar 

  • Zarnetske JP, Haggerty R, Wondzell SM, Baker MA (2011) Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J Geophys Res Biogeosci. doi:10.1029/2010jg001356

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (EAR- 1344547) and the Geology Foundation at the University of Texas at Austin. The authors thank Lizhi Zheng, Lichun Wang, Peter Zamora, Kevin Befus, Raquel Flinker, Matt Kaufman, Eric Guiltinan, Mike Kanarek, Michael O’ Connor and Christina Barrera for assistance with field work. Brad Wolaver and Terry Gentry partly supported the well installation. Kim Myers, Jay Santillan and Jeff Senison assisted with laboratory work. Alexander van Plantinga performed the water isotope analyses. Kevin Anderson of Austin Water Utilities and Elisabeth Welsh of Austin Youth River Watch provided access and resources at the site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bayani Cardenas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Briody, A.C., Cardenas, M.B., Shuai, P. et al. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood. Hydrogeol J 24, 923–935 (2016). https://doi.org/10.1007/s10040-016-1365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1365-3

Keywords

  • Hyporheic zone
  • USA
  • Groundwater/surface-water relations
  • Regulated river
  • Stable isotopes