Advertisement

Hydrogeology Journal

, Volume 24, Issue 4, pp 987–1000 | Cite as

Radiocarbon dating and the 36Cl/Cl evolution of three Great Artesian Basin wells at Dalhousie, South Australia

  • Usama A. Abu RishaEmail author
Paper
  • 287 Downloads

Abstract

The use of 14C (half-life = 5,730 years) in modeling the evolution of the 36Cl/Cl ratios in groundwater is reported for the first time. The complexity of the Cl–36Cl system due to the occurrence of different Cl and 36Cl sources and the difficulty of the determination of the initial groundwater 36Cl/Cl ratios have raised concerns about the reliability of using 36Cl (half-life = 301 thousand years, a) as a groundwater-dating tool. This work uses groundwater 14C age as a calibrating parameter of the Cl–36Cl/Cl decay-mixing models of three wells from the southwestern Great Artesian Basin (GAB), Australia. It aims to allow for the different sources of Cl and 36Cl in the southwestern GAB aquifer. The results show that the initial Cl concentrations range from 245 to 320 mg/l and stable Cl is added to groundwater along flowpaths at rates ranging from 1.4 to 3.5 mg/l/ka. The 36Cl content of the groundwater is assumed to be completely of atmospheric origin. The samples have different Cl–36Cl/Cl mixing-decay models reflecting recharge under different conditions as well as the heterogeneity of the aquifer.

Keywords

Australia Groundwater age Hydrochemical modeling Carbon-14 Chlorine-36 

La datation au radiocarbone et l’évolution du rapport 36Cl/Cl de trois puits du Grand Bassin Artésien en Dalhousie, Australie du Sud

Résumé

L’utilisation du 14C (demi-vie = 5,730 ans) dans la modélisation de l’évolution des rapports du 36Cl/Cl dans les eaux souterraines est présentée pour la première fois. La complexité du système Cl–36Cl en raison de l’occurrence de différentes sources du Cl et du 36Cl et de la difficulté de la détermination de des rapports 36Cl /Cl initiaux de l’eau souterraine ont soulevé des préoccupations au sujet de la fiabilité de l’utilisation du 36Cl (demi-vie = 301 milles ans (ka)) comme un outil de datation des eaux souterraines. Ce travail utilise l’âge de l’eau souterraine déterminé à l’aide du 14C en tant que paramètre de calibration des modèles de désintégration-mélange du Cl–36Cl/Cl appliqués sur trois puits du sud-ouest du Grand Bassin Artésien (GAB), en Australie. Il a pour but de tenir compte des différentes sources de Cl et 36Cl dans le Sud-Ouest de l’aquifère GAB. Les résultats montrent que les concentrations initiales de Cl sont comprises entre 245 à 320 mg/l et que le Cl stable est ajouté aux eaux souterraines le long des voies d’écoulement à des taux variant entre 1.4 et 3.5 mg/ l/ka. La teneur en 36Cl de l’eau souterraine est supposée être entièrement d’origine atmosphérique. Les échantillons permettent l’élaboration de différents modèles de mélange-désintégration Cl–36Cl/Cl, reflétant la recharge pour des conditions différentes, ainsi que l’hétérogénéité de l’aquifère.

La datación por radiocarbono y evolución 36Cl/Cl de tres pozos en la gran cuenca artesiana de Dalhousie, Australia del Sur

Resumen

Se reporta por primera vez el uso de 14C (vida media = 5,730 years) en el modelado de la evolución de la relación 36Cl/Cl en agua subterránea. La complejidad del sistema Cl–36Cl debido a la ocurrencia de diferentes fuentes de Cl y 36Cl y la dificultad de la determinación inicial en el agua subterránea de las relaciones 36Cl/Cl han generado preocupación acerca de la fiabilidad de la utilización de 36Cl (vida media = 301 mil años (ka)) como una herramienta de la datación del agua subterránea. Este trabajo utiliza la edad 14C del agua subterránea como un parámetro de calibración de los modelos de desintegración de la mezcla Cl–36Cl/Cl de tres pozos en la gran cuenca artesiana (GAB) del sudoeste de Australia. Su objetivo es tener en cuenta las diferentes fuentes de Cl y 36Cl en el acuífero GAB del sudoeste. Los resultados muestran que las concentraciones iniciales de Cl van de 245 a 320 mg/l y el Cl estable se adiciona al agua subterránea a lo largo de trayectorias de flujo a tasas que van desde 1.4 a 3.5 mg/l/ka. El contenido de 36Cl del agua subterránea se supone que es completamente de origen atmosférico. Las muestras tienen diferentes modelos de mezcla de desintegración- Cl–36Cl/Cl reflejando la recarga bajo distintas condiciones así como la heterogeneidad del acuífero.

澳大利亚南部达尔毫西地区大自流盆地三口井中的放射性碳测年和36Cl/Cl演化

摘要

首次论述了在模拟地下水36Cl/Cl比值演化中14C(半衰期5730年)的应用。Cl 和 36Cl不同来源造成的Cl–36Cl系统的复杂性及确定初始地下水36Cl/Cl比值的困难性引起了人们对采用36Cl(半衰期 = 301千年)作为地下水测年工具的可靠性的关注。本项工作利用地下水14C年龄作为澳大利亚西南大自流盆地三口井Cl–36Cl/Cl衰变--混合模型的校正参数。目的就是考虑到西南大自流盆地含水层中的Cl 和 36Cl来于不同。结果显示,Cl出示含量为245 至320 毫升/升,稳定Cl沿水流通道加入地下水,速度为1.4至3.5 毫克/升/千年。假定地下水中的36Cl含量完全来自大气。样品有不同的Cl–36Cl/Cl混合-衰减模型,反映不同条件下的补给以及含水层的异质性。

Datação por radiocarbono e a evolução de 36Cl/Cl de três poços na Grande Bacia Artesiana em Dalhousie, Sul da Austrália

Resumo

O uso de 14C (meia-vida = 5,730 anos) na modelagem da evolução de razões 36Cl/Cl nas águas subterrâneas é relatado pela primeira vez. A complexidade do sistema Cl–36Cl à diferentes fontes de Cl e 36Cl e a dificuldade na determinação das razões 36Cl/Cl nas águas subterrâneas têm levantado dúvidas quanto a validade em utilizar-se 36Cl (meia-vida = 301 mil anos, ka) como uma ferramenta de datação de águas subterrâneas. Esse trabalho usa a idade 14C das águas subterrâneas como um parâmetro de calibração dos modelos de decaimento-mistura Cl–36Cl/Cl de três poços da porção sudoeste da Grande Bacia Artesiana (GBA), Austrália. Isso objetiva levar em conta as diferentes fontes de Cl e 36Cl na porção sudoeste do aquífero GBA. Os resultados mostram que a concentração inicial de Cl varia de 245 a 320 mg/l a Cl estável é adicionado às águas subterrâneas por fluxos direcionais com taxas variando de 1.4 a 3.5 mg/l/ka. Assume-se que o conteúdo de 36Cl nas águas subterrâneas é de origem completamente atmosférica. As amostras têm modelos de decaimento-mistura Cl–36Cl/Cl diferentes, refletindo a recarga sob diferentes condições, assim como a heterogeneidade do aquífero.

Notes

Acknowledgements

The author is deeply thankful to Dr. Ian Clark (University of South Australia; UniSA) for his unlimited support, guidance, and kindness, as it would have been really difficult to get this work done without his encouragement. Thanks also goes to Professor Simon Beecham (UniSA) for his help and guidance; additionally, I would like to thank Monica Berherd and Judy Ford (UniSA) for their help. Many thanks are due to Mr. Robert Aebi and Dr. Roger Clay (UniSA) for helping me in the second field trip. I am deeply grateful to the support of the Department of Water, Land, and Biodiversity Conservation (DWLBC) for arranging the first field expedition sampling and analyses. Thanks to the (DWLBC) individuals who helped during this expedition. Lastly, I am deeply grateful to the Egyptian Government for sponsoring my PhD scholarship.

References

  1. Abu Risha UA (2010) Recharge and evolution of Great Artesian Basin groundwater at Dalhousie, South Australia. PhD Thesis, University of South Australia, Australia, 242 ppGoogle Scholar
  2. Abu Risha UA, Clark I, Beecham S (2009) Evaluation of groundwater flow and travel times using 14C. The thirteenth IWTC, Hurgada, Egypt, 12–15 March 2009, pp 1349–1362Google Scholar
  3. Alexander EM, Schmidt BJ (1995) Eringa Trough exploration opportunity. Report 95/36, South Australia Department of Mines and Energy, Adelaide, AustraliaGoogle Scholar
  4. Allen RJ (1990) Climate. In: Tyler MJ, Twidale CR, Davies M, Wells CB (eds) Natural history of the North East Deserts. Occasional publications 6, Royal Society of South Australia, pp 81–84Google Scholar
  5. Andrews JN, Fontes JC (1992) Importance of in situ production of 36C1, 36Ar and 14C in hydrology and hydrogeochemistry. In: Isotope Techniques in Water Resources Development 1991, IAEA, Vienna, pp 245–269Google Scholar
  6. Andrews JN, Fontes JC (1993) Comment on “Chlorine-36 dating of very old groundwater: 3, further results on the Great Artesian Basin, Australia”. Water Resour Res 29(6):1871–1874CrossRefGoogle Scholar
  7. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The Netherlands, 649 ppGoogle Scholar
  8. Bard E (1998) Geochemical and geophysical implications of the radiocarbon calibration. Geochim Cosmochim Acta 62(12):2025–2038CrossRefGoogle Scholar
  9. Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410CrossRefGoogle Scholar
  10. Bard E, Arnold M, Fairbanks RG, Hamelin B (1993) 230Th/234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35:191–199Google Scholar
  11. Barrows TT, Stone JO, Fifield LK, Cresswell RG (2002) The timing of the last glacial maximum in Australia. Quat Sci Rev 21(1–3):159–173CrossRefGoogle Scholar
  12. Bently HW, Phillips FM, Davis SN, Habermehl MA, Airey PL (1986) Chlorine36 dating of very old groundwater 1: the Great Artesian Basin, Australia. Water Resour Res 22:1991–2001CrossRefGoogle Scholar
  13. Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121–152CrossRefGoogle Scholar
  14. Bird JR, Davie RF, Chivas AR, Fifield LK, Ophel TR (1991) Chlorine-36 production and distribution in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 84(1–4):299–307CrossRefGoogle Scholar
  15. Bowman DMJS, Boggs GS, Prior LD, Krull ES (2007) Dynamics of Acacia aneura–Triodia boundaries using carbon (14C and 13C) and nitrogen (15N) signatures in soil organic matter in Central Australia. The Holocene 17(3):311–318CrossRefGoogle Scholar
  16. Clark I, Fritz P (1997) Environmental isotopes in hydrology. Lewis, Boca Raton, FL, 328 ppGoogle Scholar
  17. Colhoun EA, Fitzsimmons SJ (1990) Late Cainozoic glaciation in western Tasmania. Quat Sci Rev 9:199–216CrossRefGoogle Scholar
  18. Commonwealth Bureau of Meteorology, Australia (2009) World Wide Web address: http://www.bom.gov.au/. Accessed 20 February 2009
  19. Cresswell RG, Jacobson G, Wischusen J, Fifield LK (1999a) Ancient groundwaters in the Amadeus basin, central Australia: evidence from the radio-isotope 36Cl. J Hydrol 223(3–4):212–220CrossRefGoogle Scholar
  20. Cresswell RG, Wischusen J, Jacobson G, Fifield LK (1999b) Assessment of recharge to groundwater systems in the arid southwestern part of northern territory, Australia, using chlorine-36. Hydrogeol J 7:393–404CrossRefGoogle Scholar
  21. Cresswell RG, Bauld J, Jacobson G, Khadka MS, Jha MG, Shrestha MP, Regmi S (2001) A first estimate of ground water ages for the deep aquifer of the Kathmandu basin, Nepal, using the radioisotope chlorine-36. Ground Water 39(3):449–457CrossRefGoogle Scholar
  22. Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW (1991) Climate change and the evolution of C4 photosynthesis. Trends Ecol Evol 6:95–99CrossRefGoogle Scholar
  23. Eichinger L (1983) A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon 25(2):347–356Google Scholar
  24. Epstein S, Mayeda T (1953) Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  25. Fabryka-Martin J (1988) Production of radionuclides in the Earth and their hydrogeologic significance with emphasis on chlorine-36 and iodine-129. PhD Thesis, University of Arizona, USAGoogle Scholar
  26. Fontes JC (1992) Chemical and isotopic constraints on 14C dating of groundwater. In: Taylor RE, Long A, Kra RS (eds) Radiocarbon dating after four decades: an interdisciplinary perspective. Springer, New York, pp 242–261CrossRefGoogle Scholar
  27. Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413CrossRefGoogle Scholar
  28. Geyh MA (1972) Basic studies in hydrology and 14C and 3H measurements. Proceedings 24th International Geology Congress, Montreal, 1972, section 11, pp 227–234Google Scholar
  29. Geyh MA (2000) An overview of 14C analysis in the study of groundwater. Radiocarbon 42:99–114Google Scholar
  30. Habermehl MA (1980) The Great Artesian Basin Australia. BMR J Aust Geol Geophys 5:9–38Google Scholar
  31. Harrington GA (1999) Recharge mechanisms and chemical evolution in an arid groundwater system, Central Australia. PhD Thesis, Flinders University of South Australia, AustraliaGoogle Scholar
  32. Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126(3–4):225–245CrossRefGoogle Scholar
  33. Hopf FVL, Colhoun EA, Barton CE (2000) Late-glacial and Holocene record of vegetation and climate from Cynthia Bay, Lake St Clair, Tasmania. J Quat Sci 15(7):725–732CrossRefGoogle Scholar
  34. Ingerson E, Pearson FJ (1964) Estimation of age and rate of motion of groundwater by the 14C method. In: Miyake Y, Koyama T (eds) Recent researches in the field of hydrosphere, atmosphere and nuclear geochemistry. Maruzen, Tokyo, pp 263–283Google Scholar
  35. Keywood MD (1995) Origins and sources of atmospheric precipitation from Australia: chloride-36 and major-element chemistry, PhD Thesis, Australian National University, AustraliaGoogle Scholar
  36. Krieg GW (1985) DALHOUSIE, South Australia, 1:250 000 geological series explanatory notes. Sheet SG/53-11, Geological Survey of South Australia, Adelaide, Australia, 64 ppGoogle Scholar
  37. Kulongoski JT, Hilton DR, Cresswell RG, Hostetler S, Jacobson G (2008) Helium-4 characteristics of groundwaters from central Australia: comparative chronology with chlorine-36 and carbon-14 dating techniques. J Hydrol 348(1–2):176–194CrossRefGoogle Scholar
  38. Lal D, Peters B (1967) Cosmic ray produced radioactivity on the earth. Handbuch Der Physik 46:551–612CrossRefGoogle Scholar
  39. Lehmann BE, Love AJ, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg AL, Moran J, Tolstikhin IN, Groning M (2003) A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211(3–4):237–50CrossRefGoogle Scholar
  40. Love AJ, Herczeg AL, Sampson L, Cresswell RG, Fifield LK (2000) Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin, Australia. Water Resour Res 36(6):1561–1574CrossRefGoogle Scholar
  41. Macphail MK, Colhoun EA (1985) Late last glacial vegetation, climates and fire activity in southwest Tasmania. Search 6:127–130Google Scholar
  42. Mazor E (1992) Reinterpretation of 36Cl data; physical processes, hydraulic interconnections and age estimates in groundwater systems. Appl Geochem 7:351–360CrossRefGoogle Scholar
  43. Mazor E (1993a) Chlorine-36 data and basic concepts of hydrology: comment on F. M. Phillips’ comment, with special reference to the Great Artesian Basin. Appl Geochem 8:649–651CrossRefGoogle Scholar
  44. Mazor E (1993b) Some basic principles of 36Cl hydrology: a reply to the discussion by Kellett, Evans, Allan and Fifield. Appl Geochem 8:659–662CrossRefGoogle Scholar
  45. Mazor E, Nativ R (1994) Stagnant groundwaters stored in isolated aquifers: implications related to hydraulic calculations and isotopic dating—reply. J Hydrol 154:409–418CrossRefGoogle Scholar
  46. Mook WG (1972) On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. The 8th International Conference on Radiocarbon Dating, Wellington, New ZealandGoogle Scholar
  47. Mook WG (1976) The dissolution-exchange model for dating groundwater with 14C. In: Interpretation of environmental isotope and hydrochemical data in groundwater hydrology, IAEA, Vienna, pp 213–225Google Scholar
  48. Mook WG (1980) Carbon-14 in hydrogeological studies. In: Fritz AP, Fontes JC (eds) Handbook of environmental isotope geochemistry 1: the terrestrial environment. Elsevier, New York, pp 49–74Google Scholar
  49. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  50. Moran JE, Rose TP (2003) A chlorine-36 study of regional groundwater flow and vertical transport in southern Nevada. Environ Geol 43(5):592–605Google Scholar
  51. Notle E, Krauthan P, Korschinek G (1991) Measurements and interpretations of 36Cl in groundwater, Milk River aquifer, Alberta, Canada. Appl Geochem 6:435–445CrossRefGoogle Scholar
  52. NRETA (2009) Natural Resources, Environment and The Arts - NRETA Maps. http://www.ntlis.nt.gov.au/imfPublic/imf.jsp?session=124232. Accessed 17 February 2009
  53. Parkhurst DL, Appelo CAJ, (1999) User’s Guide to PHREEQC (version 2): a computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99/4259, 312 ppGoogle Scholar
  54. Phillips FM (1993) Reinterpretation of 36Cl data: physical processes, hydraulic interconnections and age estimates in groundwater systems—discussion. Appl Geochem 8:643–647CrossRefGoogle Scholar
  55. Plummer LN, Sprinkle CL (2001) Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeol J 9(2):127–150CrossRefGoogle Scholar
  56. Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26:1981–2014CrossRefGoogle Scholar
  57. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modelling NET geochemical reactions along a flow PATH, version 2.0. US Geol Surv Water Resour Invest Rep 94-4169, 130 ppGoogle Scholar
  58. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004) Hydrochemical tracers in the middle Rio Grande basin, USA: 1. conceptualization of groundwater flow. Hydrogeol J 12:359–388CrossRefGoogle Scholar
  59. Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray Aquifer, Great Artesian Basin, Australia. Bureau of Rural Sciences, Canberra, Australia, 229 ppGoogle Scholar
  60. Stuiver M, Kromer B, Becker B, Ferguson CW (1986) Radiocarbon age calibration back to 13,300 years BP and the 14C age matching of the German oak and US bristlecone pine chronologies. Radiocarbon 28:980–021Google Scholar
  61. Tamers MA (1967) Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In: Stout GE (ed) Isotope techniques in the hydrological cycle. American Geophysical Union, Washington, DC, pp 143–152Google Scholar
  62. Tamers MA (1975) Validity of radiocarbon dates on groundwater. Geophys Surv 2(2):217–239Google Scholar
  63. Torgersen T, Phillips FM (1993) Reply to “Comment on ‘chlorine 36 dating of very old groundwater: 3, further results on the Great Artesian Basin, Australia’ by T. Torgerson et al.” by J. N. Andrews and J.-C. Fontes. Water Resour Res 29:1875–1877CrossRefGoogle Scholar
  64. Torgersen T, Habermehl MA, Phillips FM, Elmore D, Kubik P, Jones BG, Hemmick T, Gove HE (1991) Chlorine 36 dating of very old groundwater: 3, further studies in the Great Artesian Basin, Australia. Water Resour Res 27(12):3201–3213CrossRefGoogle Scholar
  65. Vogel JC (1967) Investigations of groundwater flow with radiocarbon. In: Isotope hydrology, IAEA, Vienna, pp 355–368Google Scholar
  66. Vogel JC, Ehhalt D (1963) The use of carbon isotopes in groundwater studies. IAEA, Vienna, pp 383–395Google Scholar
  67. Weninger B, Joris O (2008) A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in western Eurasia. J Hum Evol 55:772–781CrossRefGoogle Scholar
  68. Wischusen JDH, Fifield LK, Cresswell RG (2004) Hydrogeology of Palm Valley, central Australia: a Pleistocene flora refuge? J Hydrol 293:20–46CrossRefGoogle Scholar
  69. Zhang M, Frape SK, Love AJ, Herczeg AL, Lehmann BE, Beyerle U, Purtschert R (2007) Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia. Appl Geochem 22(3):557–574CrossRefGoogle Scholar
  70. Zhu C, Murphy WM (2000) On radiocarbon dating of ground water. Ground Water 38:802–804CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Desert Research Center (DRC)El MataryaEgypt

Personalised recommendations