Advertisement

Hydrogeology Journal

, Volume 24, Issue 2, pp 287–302 | Cite as

The role of groundwater governance in emergencies during different phases of natural disasters

  • Jaroslav VrbaEmail author
Paper

Abstract

The establishment of water governance in emergency situations supports timely and effective reaction with regard to the risk and impact of natural disasters on drinking-water supplies and populations. Under such governance, emergency activities of governmental authorities, rescue and aid teams, water stakeholders, local communities and individuals are coordinated with the objective to prevent and/or mitigate disaster impact on water supplies, to reduce human suffering due to drinking-water failure during and in the post-disaster period, and to manage drinking-water services in emergency situations in an equitable manner. The availability of low-vulnerability groundwater resources that have been proven safe and protected by geological features, and with long residence time, can make water-related relief and rehabilitation activities during and after an emergency more rapid and effective. Such groundwater resources have to be included in water governance and their exploration must be coordinated with overall management of drinking-water services in emergencies. This paper discusses institutional and technical capacities needed for building effective groundwater governance policy and drinking-water risk and demand management in emergencies. Disaster-risk mitigation plans are described, along with relief measures and post-disaster rehabilitation and reconstruction activities, which support gradual renewal of drinking-water services on the level prior to the disaster. The role of groundwater governance in emergencies differs in individual phases of disaster (preparedness, warning, impact/relief, rehabilitation). Suggested activities and actions associated with these phases are summarized and analysed, and a mode of their implementation is proposed.

Keywords

Groundwater governance Emergency groundwater resources Disaster Groundwater monitoring Groundwater vulnerability mapping Water supply 

Le rôle de la gouvernance des eaux souterraines dans les situations d’urgence au cours des différentes phases de catastrophes naturelles

Résumé

La mise en place d’une gouvernance de l’eau dans les situations d’urgence soutient la réaction rapide et efficace en ce qui concerne le risque et l’impact des catastrophes naturelles sur l’approvisionnement en eau et sur les populations. Sous une telle gouvernance, les activités d’urgence des autorités gouvernementales, les équipes de secours et d’aide, les acteurs de l’eau, les collectivités locales et les particuliers sont coordonnés avec l’objectif de prévenir et/ou atténuer l’impact de la catastrophe sur les approvisionnements en eau, afin de réduire la souffrance humaine due à une défaillance de l’eau potable au cours et dans la période post-catastrophe, et de gérer les services d’eau potable dans les situations d’urgence, de manière équitable. La disponibilité des ressources en eaux souterraines à faible vulnérabilité qui ont été révélés sûrs et protégés par les caractéristiques géologiques, et avec de longs temps de séjour, peut rendre les activités de secours et de réhabilitation liés à l’eau pendant et après une urgence plus rapides et efficaces. De telles ressources en eaux souterraines doivent être incluses dans la gouvernance de l’eau et leur exploration doit être coordonnée avec la gestion globale des services d’eau potable en cas d’urgence. Cet article présente les capacités institutionnelles et techniques nécessaires à la construction d’une politique de gouvernance efficace de l’eau souterraine, du risque visà- vis de l’eau potable et de la gestion de la demande en cas d’urgence. Des plans d’atténuation des risques de catastrophes naturelles sont décrits, ainsi que les mesures de secours et de réhabilitation post-catastrophe, qui soutiennent le renouvellement progressif des services d’eau potable au niveau d’avant la catastrophe. Le rôle de la gouvernance des eaux souterraines dans les situations d’urgence diffère dans les différentes phases de la catastrophe (préparation, alerte, impact/secours, réhabilitation). Les activités et actions associées à ces phases, suggérées sont résumées et analysées, et les modalités de leur mise en oeuvre sont proposées.

El papel de la gobernanza del agua subterránea en situaciones de emergencia durante las diferentes fases de los desastres naturales

Resumen

El establecimiento de la gobernanza del agua en situaciones de emergencia apoya la reacción oportuna y efictiva en relación con el riesgo y el impacto de los desastres naturales en el suministro de agua potable y las poblaciones. Bajo tal gobernanza, las actividades de emergencia de las autoridades gubernamentales, los equipos de rescate y de ayuda, los beneficiarios del agua, las comunidades locales y los individuos se coordinan con el objetivo de prevenir y/o mitigar el impacto de los desastres en los suministros de agua, para reducir el sufrimiento humano debido a la falta de agua potable durante el desastre y durante el período posterior, y para administrar los servicios de agua potable en situaciones de emergencia de una manera equitativa. La disponibilidad de recursos de agua subterránea de baja vulnerabilidad que han demostrado ser seguros y estar protegidos por las características geológicas, y con el largo tiempo de residencia, puede hacer que las actividades de ayuda y rehabilitación relacionadas con el agua durante y después de una emergencia sean más rápidas y efectivas. Tales recursos de agua subterránea tienen que ser incluidos en la gobernanza del agua y su exploración debe estar coordinada con la gestión general de los servicios de agua potable en emergencias. Este trabajo discute las capacidades institucionales y técnicas necesarias para construir una política efectiva de gobernanza del agua subterránea y del riesgo del agua potable y de la demanda de gestión en situaciones de emergencia. Se describen los planes de mitigación del riesgo de desastres, conjuntamente con medidas de ayuda y de las actividades de rehabilitación después de los desastres, los cuales apoyan una renovación gradual de los servicios de agua potable en el nivel previo al desastre. El papel de la gobernanza del agua subterránea en situaciones de emergencia difiere en cada fase individual del desastre (preparación, alerta, impacto / ayuda, rehabilitación). Se resumen y analizan las actividades y acciones sugeridas asociadas a estas fases, y se propone un modo para su aplicación.

自然灾害不同阶段紧急情况下地下水管理的作用

摘要

针对自然灾害的风险及其对饮用水供应和人口的影响, 紧急情况下地下水管理的建立可以 提供及时有效的支撑。在这样的管理下, 政府机关的紧急行动、救援队、水利益相关者, 当地社区及个人应该协调起来, 预防灾害及/或者减轻灾害对水供应的影响, 减少由于灾 后期间饮用水停水给人们造成的苦难, 以公平的方式管理紧急情况下的饮用水供水装置。 已经证明安全及受到地质特性保护的, 具有长滞留时间的, 低脆弱性地下水资源的可利用 性可以使紧急情况期间及以后与水相关的救灾和恢复行动更加迅速和有效。 这样的水资源 必须包括在水管理中, 水资源的勘查必须与紧急情况下饮用水供水的总体管理相协调。 文 章论述了紧急情况下制定有效地下水管理政策及饮用水风险和需求管理制度上和技术上的 能力。 描述了灾害风险消减计划以及救济措施和灾后恢复行动, 这些措施和行动支撑灾前 水平的饮用水装备逐步更新。 紧急情况下地下水管理的作用在不灾害的每个阶段 (做好准 备, 预警、影响/救援和恢复) 各不相同。 总结和分析了与这些阶段相关的所建议的行 动, 并提出了实施模式。

O papel da governança das águas subterrâneas em situações de emergência durante as diferentes fases de desastres naturais

Resumo

O estabelecimento da governança da água em situações de emergência suporta reação atempada e eficaz no que diz respeito ao risco e impacto dos desastres naturais sobre abastecimento de água potável e populações. Sob tal governança, as atividades de emergência das autoridades governamentais, as equipes de resgate e auxílio, as partes interessadas em assuntos hídricos, comunidades locais e indivíduos são coordenadas com o objetivo de evitar e/ou mitigar os impactos de desastres no abastecimento de água, para reduzir o sofrimento humano devido a uma falha no suprimento de água potável durante e no período pós-desastre, e para gerir os serviços de água potável em situações de emergência de forma equitativa. A disponibilidade de recursos hídricos subterrâneos de baixa vulnerabilidade que seja comprovadamente seguro e protegido por características geológicas, e com longo tempo de residência, pode fazer atividades relacionadas ao socorro e reabilitação com a água durante e depois de uma emergência mais rápidas e eficazes. Tais recursos de águas subterrâneas têm de ser incluídos na governança da água e sua exploração deve ser coordenada com a gestão global dos serviços de água potável em caso de emergência. O artigo discute as capacidades institucionais e técnicas necessárias para a construção efetiva de políticas de governança das águas subterrâneas e risco de água potável e demanda gestão em casos de emergência. Planos de mitigação de desastres de risco são descritos, juntamente com medidas de socorro e atividades de reabilitação pós-desastre, que suportam renovação gradual dos serviços de abastecimento de água potável no nível antes do desastre. O papel da governança das águas subterrâneas em situações de emergência difere em fases individuais de desastre (preparação, os alertas, impacto/alívio, reabilitação). Ações e atividades associadas com estas fases sugeridas são resumidas e analisadas, e proposto o modo da sua implementação.

Notes

Acknowledgements

This paper follows the outcomes of the project “Identification and management of strategic groundwater bodies to be used for emergency situations as a result of extreme events and in cases of conflicts” (also known as GWES – Groundwater for Emergency Situations) implemented under the UNESCO International Hydrological Programme. The author would like to thank Dr Alice Aureli, Chief of the Groundwater Systems and Settlements Section, UNESCO – Division of Water Sciences, for technical and administrative support of the GWES project. Gratitude is expressed also to the colleagues of UNESCO International Working Group, who cooperated jointly with the author of this paper on implementation of GWES project activities. The author is grateful to anonymous reviewers and the Hydrogeology Journal editors for their constructive remarks and valuable suggestions.

References

  1. Affeltranger B (2001) Public participation in the design of local strategies for flood mitigation and control. Technical Documents in Hydrology no. 48, UNESCO, ParisGoogle Scholar
  2. Armienta A, De La Cruz-Reynas S, Carjavalam A, Ramoss S, Varley N, Ceniceros N, Cruz O and Aguayo A (2003) Relation between hydrochemical anomalies and eruptive activities at Mexican volcanoes: effective and inexpensive detection methods. IUGG 2003 Abstract, JSH02-poster, Groundwater and volcanos. IUGG 2003, Sapporo, Japan, 3–4 July 2003Google Scholar
  3. Berger JF, Olafsdottir S (2005) South Asia earthquake: tragedy and destruction in Kashmir. Mag Int Red Cross Red Crescent Movement 1(3):4–9Google Scholar
  4. Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk: natural hazards, people’s vulnerability and disasters. Routledge, LondonGoogle Scholar
  5. Chadha RK, Sinha AK, Jain RC (2006) Ground water risk management during Bhuj earthquake (26th January 2001). In: Vrba J, Verhagen B (2006) Groundwater for emergency situations: a framework document. UNESCO IHP Series on groundwater 12, UNESCO, Paris, pp 75–80Google Scholar
  6. Choudhury A, Sirsikar DY, Das PK (2009) A brief overview of coastal aquifers in Orissa. Central Ground Water Board, Bhubaneswar, IndiaGoogle Scholar
  7. Cruden JC (1991) A simple definition of a landslide. Bull Eng Geol Environ 43(1):27–29Google Scholar
  8. Davison A, Howard G, Stevens M, Callan P, Fewtrell L, Deere D, Barttram J (2005) Water safety plans: managing drinking-water quality from catchment to consumer. WHO report, WHO, GenevaGoogle Scholar
  9. Dooge J (2004) Ethics of water related disasters. Series on Water and Ethics, Essay 9, UNESCO, ParisGoogle Scholar
  10. FAO (2015a) Global diagnostic on groundwater governance (Special edition for the World Water Forum 7). Groundwater Governance: A Global Framework for Action. www.groundwatergovernance.org. Accessed December 2015
  11. FAO (2015b) Groundwater governance, a call for action: a shared global vision for 2030 (Special edn. for the World Water Forum 7). Groundwater Governance: A Global Framework for Action. http://www.groundwatergovernance.org. Accessed December 2015
  12. FAO (2015c) Global framework for action, to achieve the vision on groundwater governance (Special edn. for the World Water Forum 7). Groundwater Governance: A Global Framework for Action. www.groundwatergovernance.org. Accessed December 2015
  13. GFDRR (Global Facility for Disaster Reduction and Recovery) (2011) Proceedings of the World Reconstruction Conference: recovering and reducing risks after natural disasters, Geneva, 10–13 May 2011Google Scholar
  14. Gordon J, Dooge JCI, Rodda JC (1994) Global water resources issues. Cambridge University Press, CambridgeGoogle Scholar
  15. GWP (Global Water Partnership) (2000) Integrated water resources management. TAC background paper no. 4, GWP TAC, StockholmGoogle Scholar
  16. House S, Reed B (2004) Emergency water sources: guidelines for selection and treatment. WEDC Loughborough University, Loughborough, UKGoogle Scholar
  17. Huq S, Reid H, Konate M, Rahman A, Sokona R, Drick F (2004) Mainstreaming adaptation to climate change in least developed countries. Climate Policy 4(1):25–43CrossRefGoogle Scholar
  18. IHP/OHP (1994) Early warning methodology for surface and groundwater quality monitoring. Berichte, Sonderheft 6, German National Committee for IHP/OHP, Koblenz, GermanyGoogle Scholar
  19. Kikawada Y, Takao O, Ossaka J (2003) Change in water chemistry of hot water springs related with volcanic activities in Kusatsu-Shirane volcano region Gunma, Japan. IUGG 2003 Abstract, JSH02-poster, Groundwater and volcanos. IUGG 2003, Sapporo, Japan, 3–4 July 2003Google Scholar
  20. Lee DB (1998) Effects of the eruptions of Mount St. Helens on physical, chemical, and biological characteristics of surface water, ground water, and precipitation in the Western United States. US Geol Surv Water Suppl Pap 2438Google Scholar
  21. McDaniels TL, Gregory RS, Fields D (1999) Democratizing risk management: successful public involvement in local water management decisions. Risk Anal 19(3):497–510Google Scholar
  22. Meijerink AMJ (2007) Remote sensing applications to groundwater. IHP-VI, Series on Groundwater no. 16, UNESCO, ParisGoogle Scholar
  23. Merabtene T, Yoshitani j (2005) Technical report on global trends of water-related disasters. PWRI technical memorandum no. 3985, PWRI, Tsukuba-shi, JapanGoogle Scholar
  24. Oki Y, Hiraga S (1998) Groundwater level monitoring for prediction of earthquakes. Pure Appl Geophys 126:211–240CrossRefGoogle Scholar
  25. Pierre J (ed) (2000) Debating governance. London, Oxford University PressGoogle Scholar
  26. Plate EJ (2003) Human security and natural disasters. Federal Ministry of Education and Research, Bonn, GermanyGoogle Scholar
  27. Pospišil Z (2005) Projevy slapových sil a zemětřesení ve zřídelní soustavě Slatinice u Olomouce [Manifestation of tidal forces and earthquakes in the mineral water system of Slatinice nearby Olomouc City]. Sborník referátů z národní hydrogeologické conference [Proceedings of a national hydrogeological conference]Google Scholar
  28. Silar J (2003) Ground-water resources for emergency cases in the lower reaches of the Labe (Elbe) River (Czech Republic): a contribution to the UNESCO IHP Programme. International symposium on isotope hydrology and integrated water resources management, IAEA-CN-104/P-10, Vienna, May 2003Google Scholar
  29. Sinha AK (2007) Paleochannels as groundwater storage: a promising option to cope up with emergency situations in Rajsthan, Western India. In: Vrba J, Salamat R (eds) (2011) Proceedings of the international workshop, Tehran, October 2006. IHP–VI Series on Groundwater no. 15, UNESCO, Paris, pp 102–114Google Scholar
  30. Sommer T, Ullrich K (2005) Influence of flood event 2002 on groundwater in urban areas (in German). Research report, Environmental Office, Dresden, GermanyGoogle Scholar
  31. Sommer T (2007) Groundwater management: a part of flood risk management. In: Vrba J, Salamat AR (eds) (2007) Proceedings of the international workshop, Tehran, October 2006, IHP-VI Series on Groundwater no. 15, UNESCO, Paris, pp 102–114Google Scholar
  32. Sukhija BS, Narsimha R (2011) Impact of the October 1999 super cyclone on the groundwater system and identification of groundwater resources for providing safe drinking water in coastal Orissa, India. In: Vrba J, Verhagen B(eds) (2011) Groundwater for emergency situations: a methodological guide. IHP-VIII Series on Groundwater no. 3, UNESCO, Paris, pp 258–272Google Scholar
  33. Tanaka T (2011) Groundwater use in an emergency: impact of and experience gained in the huge Hanshin-Awaji, Japan earthquake. In: Vrba J, Verhagen B (eds) (2011) Groundwater for emergency situations: a methodological guide. IHP-VIII Series on Groundwater no. 3, UNESCO, Paris, pp 309–316Google Scholar
  34. Tokunaga T (1999) Modelling of earthquake-induced hydrological changes and possible permeability enhancement due to the 17 January 1955 Kobe Earthquake, Japan. J Hydrol 223:221–229Google Scholar
  35. UN-DTCD/IBRD/UNDP (1991) Integrated water resources development and management. Background paper, International Conference on Water and the Environment 1992, Dublin, January 1992Google Scholar
  36. UNECE (1998) Convention on access to information, public participation in decision-making and access to justice in environmental matters (Aarhus Convention). www.unece.org/env/pp/welcome.html. Accessed 30 October 2001
  37. UNESCO (1999) Integrated drought management: lessons for Sub-Saharan Africa. IHP-UNESCO, ParisGoogle Scholar
  38. UNESCO (2010) Background document: overview of water resources in Caribbean SIDS with focus on groundwater resources. UNESCO-IHP document for international workshop on coastal aquifers of Caribbean SITS, October 2010, UNESCO, ParisGoogle Scholar
  39. UNESCO (2011) Capacity building and groundwater resources exploration for emergency situation to combat drought in the Horn of Africa. Flanders UNESCO Science Trust Fund (FUST) project, UNESCO, ParisGoogle Scholar
  40. UNESCO-IHP (2014) IHP VIII: Water security: responses to regional and global challenges (2014–2021). International Hydrological Programme (IHP), UNESCO, ParisGoogle Scholar
  41. UNESCO–WWAP (2003) Water for people, water for life. The United Nations World Water Development Report 1(WWDR 1). Part of the UN World Water Assessment Programme (WWAP). UNESCO, Paris and Berghahn, New YorkGoogle Scholar
  42. UNESCO–WWAP (2006) Water a shared responsibility. The United Nations World Water Development Report 2 (WWDR 2). Part of the UN World Water Assessment Programme (WWAP). Berghahn, New YorkGoogle Scholar
  43. UNESCO–WWAP (2009) Water in a Changing World. The United Nations World Water Development Report 3 (WWDR 3). Part of the UN World Water Assessment Programme (WWAP). UNESCO, Paris and Earthscan, LondonGoogle Scholar
  44. UNESCO-WWAP (2012) Managing Water under Uncertainty and Risk. Volume 1. The United Nations World Water Development Report 4 (WWDR 4). Part of the UN World Water Assessment Programme (WWAP). UNESCO, Paris and Imprimerie Centrale, LuxembourgGoogle Scholar
  45. UNESCO-IHP (2010) Transboundary aquifers: challenges and new directions. ISARM International conference, Abstracts, UNESCO, ParisGoogle Scholar
  46. UNGA (United Nations General Assembly)(2009) The Law of Transboundary Aquifers 63/124 Resolution adopted by the General Assembly (on the report of the Sixth Committee A/63/439)18/1), Human Rights Council, Official Records of the UNGA, New YorkGoogle Scholar
  47. UNISDR (2005) Hyogo Declaration, World Conference on Disaster Reduction, Kobe, Hyogo, Japan, 18–22 January 2005 (A/CONF.206/6), UNISDR, GenevaGoogle Scholar
  48. Verhagen B, Butler MJ, van Wyk E (2007) A deep, highly productive aquifer is identifying using isotope, hydrochemical and geophysical techniques. IAEA-CN, IAEA, ViennaGoogle Scholar
  49. Verhagen B (2011) Isotope hydrology assist in revealing a regional emergency groundwater resources in South Africa. In: Vrba J, Verhagen B (eds) (2011) Groundwater for emergency situations: a methodological guide. IHP-VIII Series on Groundwater no. 3, UNESCO, Paris, pp 65–68Google Scholar
  50. Visscher J, Burry P, Gould T, Moriarty P (1999) Integrated water resources management in water and sanitation projects: lessons from projects in Africa, Asia and South America. Occasional Paper Series OP31E, International Water and Sanitation Centre, Delft, The NetherlandsGoogle Scholar
  51. Vrba J, Adams B (eds) (2008) Groundwater early warning monitoring strategy: a methodological guide. IHP-V Groundwater Series on Groundwater, UNESCO, ParisGoogle Scholar
  52. Vrba J, Verhagen B (eds) (2006) Groundwater for emergency situations: a framework document. IHP-VI Series on Groundwater no. 12, UNESCO, ParisGoogle Scholar
  53. Vrba J, Verhagen B (eds) (2011) Groundwater for emergency situations: a methodological guide. IHP-VIII Series on Groundwater no. 3, UNESCO, ParisGoogle Scholar
  54. Vrba J, Renaud GF (2015) Overview of groundwater for emergency use and human security. Hydrogeol J. doi: 10.1007/s10040-015-1355-x
  55. Vrba J, Richts A (2015) The global map of groundwater vulnerability to floods and droughts. Explanatory notes, UNESCO IHP and German Federal Institute for Geosciences and Natural Resources (BGR), Hanover, GermanyGoogle Scholar
  56. Wenpeng L, Aibing H, Chao Y and Yuejun Z (2007) Emergency plan for water supply in consecutive drought and sustainable water resources management in Beijing. IHP-VI Series on Groundwater no. 15, UNESCO, ParisGoogle Scholar
  57. WHO (2005) Technical notes for emergencies. WHO Regional Office for South-East Asia, prepared by WEDC, Loughborough University, Loughborough, UKGoogle Scholar
  58. WMO (World Meteorological Organization) (1999) Comprehensive risk assessment for natural hazards. WMO/TD no. 955, WMO, GenevaGoogle Scholar
  59. WMO (World Meteorological Organization) (1992) The Dublin statement on water and sustainable development. International Conference on Water and the Environment, Dublin, January 1992. http://www.wmo.int/pages/prog/hwrp/documents/english/icwedece.html. Accessed December 2015
  60. World Humanity Action Trust (2000) Governance for sustainable future, IV: working with water, World Humanity Action Trust, LondonGoogle Scholar
  61. Yoshioka R (2006) The earthquakes recently occurred in inland regions of Japan and lifelines focusing on groundwater. Presented paper at the WG meeting on GWES Project. UNESCO IHP VI, ParisGoogle Scholar
  62. Young GJ, Dooge JCI, Roods JC (1994) Global water resource issues. Cambridge University Press, CambridgeGoogle Scholar
  63. Zhou W (2011) Remote sensing. In: Vrba J, Verhagen B (eds) (2011) Groundwater for emergency situations: a methodological guide. IHP-VIII Series on Groundwater no. 3, UNESCO, Paris, pp 55–59Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Prague 4Czech Republic

Personalised recommendations