Advertisement

Hydrogeology Journal

, Volume 24, Issue 3, pp 625–644 | Cite as

Natural and human-induced sinkhole hazards in Saudi Arabia: distribution, investigation, causes and impacts

  • Ahmed M. YoussefEmail author
  • Hasan M. Al-Harbi
  • Francisco Gutiérrez
  • Yasser A. Zabramwi
  • Ali B. Bulkhi
  • Saeed A. Zahrani
  • Alaa M. Bahamil
  • Ahmed J. Zahrani
  • Zaam A. Otaibi
  • Bosy A. El-Haddad
Paper

Abstract

Approximately 60 % of the 2,150,000 km2 area of Saudi Arabia is underlain by soluble sediments (carbonate and evaporite rock formations, salt diapirs, sabkha deposits). Despite its hyper-arid climate, a wide variety of recent sinkholes have been reported in numerous areas, involving significant property losses. Human activities, most notably groundwater extraction, have induced unstable conditions on pre-existing cavities. This work provides an overview of the sinkhole hazard in Saudi Arabia, a scarcely explored topic. It identifies the main karst formations and the distribution of the most problematic sinkhole areas, illustrated through several case studies covering the wide spectrum of subsidence mechanisms. Some of the main investigation methods are presented through selected examples, including remote sensing, trenching and geophysics. Based on the available data, the main causal factors are identified and further actions that should be undertaken to better assess and manage the risk are discussed.

Keywords

Karst Geohazards Subsidence Carbonate rocks Saudi Arabia 

Aléas d’origine naturelle et humaine des dolines en Arabie Saoudite: distribution, investigation, causes et impacts

Résumé

Environ 60 % de la surface de 2,150,000 km2 de l’Arabie Saoudite repose sur des sédiments solubles (formations carbonatées et évaporites, diapirs salifères, dépôts de sebkha). Malgré le climat hyper-aride, une grande variété de dolines (effondrements de surface) récentes a été signalée dans de nombreuses zones, entraînant des dégradations foncières lourdes de conséquences. Les activités humaines, en particulier le prélèvement d’eau souterraine, ont créé les conditions d’instabilité de cavités pré-existantes. Ce travail fournit une vue d’ensemble des aléas liés aux dolines en Arabie Saoudite, un sujet rarement étudié. Il identifie les principales formations karstiques et la distribution des zones de dolines les plus problématiques, illustrées à l’aide de plusieurs études de cas couvrant un large spectre de mécanismes de subsidence. Quelques-unes des principales méthodes d’investigation sont présentées à travers des exemples sélectionnés, incluant la télédétection, les tranchées, et la géophysique. Sur la base des données disponibles, les principaux facteurs de risques sont identifiés et les nouvelles actions à entreprendre pour mieux les évaluer et les gérer sont discutées.

Riesgos naturales e inducidos por el hombre en sumideros de Arabia Saudita: distribución, investigación, causas e impactos

Resumen

Los sedimentos solubles (formaciones rocosas carbonáticas y evaporitas, diapiros salinos, depósitos de sabkha) subyacen en aproximadamente el 60 % del área de 2,150,000 km2 de Arabia Saudita. A pesar de su clima hiperárido, se han reportado una amplia variedad de sumideros recientes en numerosas zonas, lo que involucra importantes pérdidas en las propiedades. Las actividades humanas, sobre todo la extracción de agua subterránea, han inducido a condiciones de inestabilidad en cavidades preexistentes. Este trabajo brinda una visión general del riesgo de hundimientos en Arabia Saudita, un tema escasamente explorado. Identifica las principales formaciones kársticas y la distribución de las áreas de sumideros más problemáticos, ilustrados a través de varios casos de estudio que cubren un amplio espectro de mecanismos de subsidencia. Se presentan algunos de los principales métodos de investigación a través de ejemplos seleccionados, incluyendo la teledetección, excavación de zanjas y geofísica. Sobre la base de los datos disponibles, se identifican los principales factores causales y se discuten nuevas acciones que deben emprenderse para una mejor evaluación y gestión del riesgo.

沙特阿拉伯天然和人为因素引起的落水洞灾害:分布、原因和影响

摘要

沙特阿拉伯面积为2,150,000 km2,大约60%分布着可溶沉积物(碳酸盐和蒸发岩地层、盐底辟及盐沼沉积层)。尽管那里的气候超干旱,但在众多地区发现有各种各样的落水洞,造成重大的财产损失。人类活动,最主要的就是地下水抽取,导致业已存在的洞穴处于不稳定状态。本研究工作论述了沙特阿拉伯的落水洞灾害,这方面的内容过去很少有人涉及。研究工作确定了主要岩溶地层及最容易出问题的落水洞区域分布,通过几个实例描述了沉降机理。通过所选择的例子展示了主要调查方法,包括遥感、槽探和地球物理方法。在现有资料的基础上,确定了主要因素,讨论了更好评价和管理风险应当采取的进一步行动。

Riscos de sumidouros naturais e induzidos pelo homem na Arábia Saudita: distribuição, investigação, causas e impactos

Resumo

Aproximadamente 60 % dos 2,150,000 km2 da região da Arábia Saudita está sustentada por sedimentos solúveis (formações rochosas carbonáticas e evaporíticas, diápiro/domos de sal, depósitos sabkha). Apesar de seu clima hiperárido, uma ampla variedade de sumidouros recentes tem sido relatada em várias áreas, envolvendo perdas significantes de propriedades. Atividade humana, principalmente a extração das águas subterrâneas, tem induzido condições de instabilidade em cavidades preexistentes. Este trabalho fornece uma visão geral do perigo dos sumidouros na Arábia Saudita, assunto raramente explorado. Identificando as principais formações cársticas e áreas com distribuição mais problemática de sumidouros, ilustrada através de vários estudos de casos que cobrem amplo espectro de mecanismos de subsidência. Alguns dos importantes métodos são apresentado através de exemplos selecionado, incluindo sensoriamento remoto, abertura de trincheiras e geofísicos. Com base nos dados disponíveis, os principais fatores causais são identificados e ações adicionais que devemos assumir para melhor avaliar e gerir o risco são discutidos.

Notes

Acknowledgements

The work conducted by FG has been supported by the Spanish national project CGL2013-40867 (Ministerio deEconomía y Competitividad). Also, the authors would like to thank the Saudi Geological Survey for providing scientific, financial, and logistical support for this project.

References

  1. Abdeltawab S (2013) Karst limestone foundation geotechnical problems, detection and treatment: case studies from Egypt and Saudi Arabia. Int J Sci Eng Res 4:376–387Google Scholar
  2. Al Katheri M, Barakati G (2005) Report on the subsidence that occurred at Fayy North, north of Al Isawiyah, Qurayyat Governate, north of Saudi Arabia (in Arabic). SGS internal report, Saudi Geological Survey, Jeddah, Saudi Arabia, 7 ppGoogle Scholar
  3. Al-Khattabi AF, Dini SM, Wallace CA, Banakhar AS, Al-Kaff MH, Al-Zahrani AM (2010) Geologic map of parts of the ‘Ar’Ar quadrangle, sheet 30E, scale 1:250,000, Kingdom of Saudi Arabia. Saudi Geological Survey, Jeddah, Saudi Arabia, 50 ppGoogle Scholar
  4. Al-Sulaimi JD, Pitty AF (1995) Origin and depositional model of Wadi Al-Batin and its associated alluvial fan, Saudi Arabia and Kuwait. Sediment Geol 97:203–229CrossRefGoogle Scholar
  5. Amin A, Bankher K (1997a) Karst hazard assessment of eastern Saudi Arabia. Nat Hazards 15:21–30CrossRefGoogle Scholar
  6. Amin A, Bankher K (1997b) Causes of land subsidence in the Kingdom of Saudi Arabia. Nat Hazards 16:57–63CrossRefGoogle Scholar
  7. Banakhar AS, Al Zahrani AM, Al-Juaid AJ, Dini SM, Wallace CA, Al-Kaff MH, Al-Tassan AA (2011) Geologic map of the Markaz Adhfa quadrangle, sheet 29E, scale 1:250,000, Kingdom of Saudi Arabia. SGS geoscience map GM-144C, Saudi Geological Survey, Jeddah, Saudi ArabiaGoogle Scholar
  8. Barakati G, Shehata, W (2004) Report on the subsidence that occurred north of Al Isawiyah, Qurayyat Governate, north of Saudi Arabia (in Arabic). SGS-DF-2004-4, Saudi Geological Survey, Jeddah, Saudi Arabia, 8 ppGoogle Scholar
  9. Beck BF (2005) Soil piping and sinkhole failures. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, New York, pp 523–528Google Scholar
  10. Bender F (1974) Geology of Jordan: contributions to the regional geology of the earth, vol 7. Borntraeger, Berlin, 196 ppGoogle Scholar
  11. Benson RC, La Fountain LJ (1984) Evaluation of subsidence or collapse potential due to subsurface cavities. Proc. 1st Multidisciplinary Conf. on Sinkholes, Balkema, Rotterdam, The Netherlands, pp 201–215Google Scholar
  12. Burns SJ, Fleitmann D, Matter A, Neff U, Mangini A (2001) Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geol Soc Am 29:623–626Google Scholar
  13. Carbonel D, Rosdríguez V, Gutiérrez F, McCalpin JP, Linares R, Roqué C, Zarroca M, Guerrero J (2014) Sinkhole characterisation combining trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Earth Surf Process Landf 39:214–227CrossRefGoogle Scholar
  14. Carbonel D, Rodríguez-Tribaldos V, Gutiérrez F, Galve JP, Guerrero J, Zaroca M, Roqué C, Linares R, McCalpin JP, Acosta E (2015) Investigating a damaging buried sinkhole cluster in an urban area integrating multiple techniques: geomorphological surveys, DInSAR, GPR, ERT, and trenching. Geomorphology 229:3–16CrossRefGoogle Scholar
  15. Clapp N (1998) The road to Ubar: finding the Atlantis of the sands. Houghton Mifflin, Boston, MAGoogle Scholar
  16. Closson D, Karaki NA, Milisavlievic N, Hallot F, Acheroy M (2010) Salt-dissolution-induced subsidence in the Dead Sea area detected by applying interferometric techniques to Alos Palsar Synthetic Aperture Radar images. Geodin Acta 23:65–78CrossRefGoogle Scholar
  17. Coleman RG, Gregory RT, Brown GF (1983) Cenozoic volcanic rocks of Saudi Arabia. Open File Report USGS-OF93, Saudi Arabian Deputy Minister of Mineral Resources, Jeddah, Saudi Arabia, 82 ppGoogle Scholar
  18. Cooper AH, Gutiérrez F (2013) Dealing with gypsum karst problems: hazards, environmental issues and planning. In: Frumkin A (ed) Treatise on geomorphology. Karst Geomorphol 6:451–461. doi: 10.1016/B978-0-12-374739-6.00106-8
  19. Cooper AH, Farrant AR, Price SJ (2011) The use of karst geomorphology for planning, hazard avoidance and development in Great Britain. Geomorphology 134:118–131CrossRefGoogle Scholar
  20. Crawford NC (1984) Sinkhole flooding associated with urban development upon karst terrain: Bowling Green, Kentucky. In: Beck BF (ed) Proceedings of the first multidisciplinary conference on sinkholes. Balkema, Rotterdam, The Netherlands, pp 283–292Google Scholar
  21. Davies GH (1984) Structural geology of rocks and regions. Wiley, New York, 492 ppGoogle Scholar
  22. Dini SM, Al-Khattabi AF, Wallace CA, Banakhar AS, Al-Kaff MH, Al-Garni SM (2007) Geologic map of parts of the Judayyidet ‘Ar’Ar quadrangle, sheet 31E, and Faydat al Adyan quadrangle, sheet 31F, scale 1:250,000, Kingdom of Saudi Arabia. Saudi Geological Survey, Jeddah, Saudi Arabia, 45 ppGoogle Scholar
  23. Dini SM, Wallace CA, Halawani MA, Al-Sobhi SA, Kashghari WA, Al-Ghamdi AS (2009) Geologic map of the As Sulayyil quadrangle, sheet 20H, scale 1:250,000, Kingdom of Saudi Arabia. Saudi Geological Survey, Jeddah, Saudi Arabia, 64 ppGoogle Scholar
  24. Edgell HS (1990a) Karst in northeastern Saudi Arabia. J KAU Earth Sci 3:81–94CrossRefGoogle Scholar
  25. Edgell HS (1990b) Evolution of the Rub’ al Khali Desert. J KAU Earth Sci 3:109–125Google Scholar
  26. Edgell HS (1997) Aquifers of Saudi Arabia and their geological framework. Arab J Sci Eng 22:5–31Google Scholar
  27. Edgell HS (2004) The myth of the “lost city of the Arabian Sands”. Proc Semin Arab Stud 34:105–120Google Scholar
  28. Edgell HS (2006) Arabian deserts: nature, origin and evolution. Springer, Dordrecht, The Netherlands, 592 ppCrossRefGoogle Scholar
  29. Erol AO (1989) Engineering geological considerations in a salt dome region surrounded by sabkha sediments, Saudi Arabia. Eng Geol 26:215–232CrossRefGoogle Scholar
  30. Fiennes R (1992) Atlantis of the sands: the search for the lost city of Ubar. Bloomsbury, LondonGoogle Scholar
  31. Fleitmann D, Matter A (2009) The speleothem record of climate variability in southern Arabia. Compt Rendus Geosci 341:633–642CrossRefGoogle Scholar
  32. Galve JP, Tonelli C, Gutiérrez F, Soldati M, Lugli S, Vescogni A (2015) Insights on the genesis of the Miocene collapse structures of the Island of Gozo (Malta). J Geol Soc. doi: 10.1144/jgs2014-074
  33. Gambetta M, Armadillo E, Carmisciano C, Stefanelli P, Cocchi L, Tontini FC (2011) Determining geophysical properties of a near surface cave through integrated microgravity vertical gradient and electrical resistivity tomography measurements. J Cave Karst Stud 73(1):11–15. doi: 10.4311/jcks2009ex0091 CrossRefGoogle Scholar
  34. Gao Y, Luo W, Jiang X, Lei M, Dai J (2013) Investigations of large scale sinkhole collapses, Laibin, Guangxi, China. In: Land L, Doctor DH, Stephenson JB (eds) Sinkholes and the engineering and environmental impacts of karst. National Cave and Karst Research Institute, Carlsbad, NM, pp 327–331Google Scholar
  35. Gertje H, Jeremias AE (1989) Building construction over an erosive sinkhole site: a case study in Lancaster County, Pennsylvania, USA. Proc. 3rd Multidisciplinary Conf. on Sinkholes and the Engineering and Environmental Impacts of Karst. Balkema, Rotterdam, The Netherlands, pp 311–318Google Scholar
  36. Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modeling in areas of complex geology. J Appl Geophys 29:211–226. doi: 10.1016/0926-9851(93)90005-J CrossRefGoogle Scholar
  37. Gutiérrez F (2010) Hazards associated with karst. In: Alcántara I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 161–175CrossRefGoogle Scholar
  38. Gutiérrez F, Cooper AH (2013) Surface morphology of gypsum karst. In: Frumkin A (ed) Treatise on geomorphology. Karst Geomorphol 6:425–437Google Scholar
  39. Gutiérrez F, Cooper AH, Johnson KS (2008a) Identification, prediction and mitigation of sinkhole hazards in evaporite karst areas. Environ Geol 53:1007–1022CrossRefGoogle Scholar
  40. Gutiérrez F, Guerrero J, Lucha P (2008b) A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ Geol 53:993–1006CrossRefGoogle Scholar
  41. Gutiérrez F, Galve JP, Lucha P, Bonachea J, Jordá L, Jordá R (2009) Investigation of a large collapse sinkhole affecting a multi-storey building by means of geophysics and the trenching technique (Zaragoza city, NE Spain). Environ Geol 58:1107–1122CrossRefGoogle Scholar
  42. Gutiérrez F, Lucha P, Galve JP (2010) Reconstructing the geochronological evolution of large landslides by means of the trenching technique in the Yesa Reservoir (Spanish Pyrenees). Geomorphology 124:124–136CrossRefGoogle Scholar
  43. Gutiérrez F, Galve JP, Lucha P, Castañeda C, Bonachea J, Guerrero J (2011) Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology 134:144–156CrossRefGoogle Scholar
  44. Gutiérrez F, Carbonel D, Guerrero J, McCalpin JP, Linares R, Roque C, Zarroca C (2012) Late Holocene episodic displacement on fault scarps related to interstratal dissolution of evaporites (Teruel Neogene Graben, NE Spain). J Struct Geol 34:2–19CrossRefGoogle Scholar
  45. Gutiérrez F, Mozafari M, Carbonel D, Gómez R, Raeisi E (2014a) Leakage problems in dams built on evaporites: the case of La Loteta Dam (NE Spain), a reservoir in a large karstic depression generated by interstratal salt dissolution. Eng Geol 185:139–154CrossRefGoogle Scholar
  46. Gutiérrez F, Parise M, De Waele J, Jourde H (2014b) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88CrossRefGoogle Scholar
  47. Hilbert YH, White TS, Parton A, Clark-Balzan L, Crassard R, Groucutt HS, Jennings RP, Breese P, Parker A, Shipton R, Al-Omari A, Alsharekh AM, Petraglia MD (2014) Epipaleolithic occupation and paleoenvironments of the southern Nefud Desert, Saudi Arabia, during the Terminal Pleistocene and Early Holocene. J Archeol Sci 50:460–474CrossRefGoogle Scholar
  48. Iqbal MA (1995) Engineering experience with limestone. Proc. 5th Multidisciplinary Conf. on Sinkholes and the Engineering and Environmental Impacts of Karst. Balkema, Rotterdam, The Netherlands, pp 463–468Google Scholar
  49. Kamal H, Abdullah W (2013) Sinkhole’s detection in a residential area in the state of Kuwait. Arab J Sci Eng 38:549–561CrossRefGoogle Scholar
  50. Kempe S, Dirks H (2008) Layla lakes, Saudi Arabia: the world-wide largest lacustrine gypsum tufas. Acta Carsolog 37(1):1–14CrossRefGoogle Scholar
  51. Klimchouk AB (2009a) Morphogenesis of hypogenic caves. Geomorphology 106:100–117CrossRefGoogle Scholar
  52. Klimchouk AB (2009b) Principal features of hypogene speleogenesis. In: Klimchouk A, Ford D (eds) Hypogene speleogenesis and karst hydrogeology of artesian basins. Ukranian Institute of Speleology and Karstology Spec Pap 1:7–15Google Scholar
  53. Lambert DW (1997) Dipole-dipole D.C. resistivity surveying for exploration of karst features: the engineering geology and hydrogeology of karst terranes. Proceedings of the Sixth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Springfield, MI, April 6–9, 1997, pp 413–418Google Scholar
  54. Li J, Zhou W (1999) Subsidence in karst mining areas in China and some methods of prevention. Eng Geol 52:45–50CrossRefGoogle Scholar
  55. Manivit J, Vaslet D, Berthiaux A, Le Strat P, Fourniguet J (1986) Geological map of the Buraydah quadrangle, sheet 26G, Kingdom of Saudi Arabia (with text). Saudi Arabia Deputy Ministry for Mineral Resources Geoscience Map GM-114C, scale 1: 250,000Google Scholar
  56. McCalpin J (ed) (2009) Paleoseismology, 2nd edn. Academic, San Diego, 613 ppGoogle Scholar
  57. Memesh AM, Dini SM, Gutiérrez F, Wallace CA (2008) Evidence of large-scale subsidence caused by interstratal karstification of evaporites in the interior homocline of central Saudi Arabia. European Geosciences Union General Assembly Geophysical Research Abstracts 10:A-02276Google Scholar
  58. Memesh AM, Dini SM, Al-Amoudi SA, Wallace CA, Sobhi SA, Al-Juaid AJ (2010) Geologic map of the Hawtat Bani Tamim quadrangle, sheet 21I, scale 1:250,000, Kingdom of Saudi Arabia. Saudi Geological Survey, Jeddah, Saudi Arabia, 64 ppGoogle Scholar
  59. Milanovic PT (2000) Geological engineering in karst. Zebra, Belgrade, 347 ppGoogle Scholar
  60. Nof RN, Baer G, Ziv A, Raz E, Atzori S, Salvi S (2013) Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology 49:1019–1022CrossRefGoogle Scholar
  61. Parise M, Vennari C (2013) A chronological catalogue of sinkholes in Italy: the first step toward a real evaluation of the sinkhole hazard. In: Land L, Doctor DH, Stephenson B (eds) Proc. 13th Multidisciplinary Conf. on Sinkholes and the Engineering and Environmental Impacts of Karst. National Cave and Karst Research Institute, Carlsbad, NM, pp 383–392Google Scholar
  62. Pazuniak BL (1989) Subsurface investigation response to sinkhole activity at an eastern Pennsylvania site. Proc. 3rd Multidisciplinary Conf. on Sinkholes and the Engineering and Environmental Impacts of Karst. Balkema, Rotterdam, The Netherlands, pp 263–269Google Scholar
  63. Peters WD, Pint JJ, Kremla N (1990) Karst landforms in the Kingdom of Saudi Arabia. NSS Bull 52:21–32Google Scholar
  64. Pint JJ (2003) The desert caves of Saudi Arabia. Stacey, London, 120 ppGoogle Scholar
  65. Pint JJ (2009) The lava caves of Khaybar, Saudi Arabia. Proceedings of the 15th International Congress of Speleology, Kerrville, Texas, July 2009, pp 1873–1878Google Scholar
  66. Powers RW, Ramirez LF, Redmond CD, Elberg Jr, F L (1966) Geology of the Arabian Peninsula: sedimentary geology of Saudi Arabia. S Geol Surv Prof Pap 560-DGoogle Scholar
  67. Roth MJS, Nyquist JE (2003) Evaluation of multi-electrode earth resistivity testing in karst. Geotech Test J ASTM 26:167–178Google Scholar
  68. Sadiq AM, Nasir SJ (2002) Middle Pleistocene karst evolution in the state of Qatar, Arabian Gulf. J Cave Karst Stud 64(2):132–139Google Scholar
  69. Schleusener F, Kempe S, Dirks H, Rausch R, Göbel P (2013) Die Erdfalle von Layla und Al-Kharf: Einblicke in die Karst-Hydrogeologie des oberen Jura von Saudi-Arabien [The Erdfalle of Layla and Al-Kharf: insights into the karst hydrogeology of the Upper Jurassic of Saudi Arabia]. Grundwasser 18:271–276CrossRefGoogle Scholar
  70. Shaqour F (1994) Hydrogeologic role in sinkhole development in the desert of Kuwait. Environ Geol 23:201–208CrossRefGoogle Scholar
  71. Shehata W, Roobol JM, Stewart I, Khiyami H, Al Khammash A, Sayed S, Tarabolsi Y, Al Ahmadi K (2007) Evaluation of a subsidence hazard in the Al Khafji area. Confidential report, Saudi Geological Survey, Jeddah, Saudi ArabiaGoogle Scholar
  72. Song KI, Cho GC, Chang SB (2012) Identification, remediation and analysis of karst sinkholes in the longest railroad tunnel in South Korea. Eng Geol 135–136:92–105CrossRefGoogle Scholar
  73. Steineke M, Harriss TF, Parsons KR, Berg EL (1979) Geologic map of the Western Arabian Gulf Quadrangle, Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources Geologic Map GM-208A, scale 1:500,000Google Scholar
  74. Taheri K, Gutiérrez F, Mohseni H, Raeisi E, Taheri M (2015) Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude-frequency relationships: a case study in Hamadan province, Iran. Geomorphology 234:64–79CrossRefGoogle Scholar
  75. Tharp TM (1997) Mechanics of formation of cover-collapse sinkhole. In: Beck J, Stephenson J (eds) Proceedings of the 6th Multidisciplinary Conference on the Engineering and Environmental Impacts of Karst terrains. Balkema, Rotterdam, The Netherlands, pp 29–36Google Scholar
  76. Tharp TM (2003) Cover-collapse sinkhole formation and soil plasticity. Proc. 9th Multidisciplinary Conf. on Sinkholes and the Engineering and Environmental Impacts of Karst. Balkema, Rotterdam, The Netherlands, pp 110–123Google Scholar
  77. Thomas B (1933) Ubar, the Atlantis of the sands of Rub’ al Khali. J Roy Cent Asian Soc 20:259–265CrossRefGoogle Scholar
  78. Van Schoor M (2002) Detection of sinkholes using 2D electrical resistivity imaging. J Appl Geophys 50:393–399CrossRefGoogle Scholar
  79. Vaslet D, Brosse JM, Breton JP, Manivit J, Le Strat P, Fourniguet J, Shorbaji H (1988) Geologic map of the Shaqra’ quadrangle, sheet 25H, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map GM-120C, 29 pp, scale 1:250,000Google Scholar
  80. Vaslet D, Al-Muallem MS, Maddah SS, Brosse JM, Fourniguet J, Breton JP, Le Nindre YM (1991) Geologic map of the Ar Riyadh quadrangle, sheet 24 I, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map GM-121, 54 pp, scale 1:250,000Google Scholar
  81. Vincent P (2008) Saudi Arabia: an environmental overview. Taylor and Francis, London, 309 ppCrossRefGoogle Scholar
  82. Wallace CA, Dini SM, Al-Farasani AA (2000a) Geological map of the Thaniyat Turayf quadrangle, sheet 29C, Kingdom of Saudi Arabia. Saudi Geological Survey Geoscience Map GM-129C, scale 1: 250,000Google Scholar
  83. Wallace CA, Dini SM, Al-Farasani AA (2000b) Geological map of the Wadi Sirhan quadrangle, sheet 30C, Kingdom of Saudi Arabia. Saudi Geological Survey Geoscience Map GM-127C, scale 1: 250,000Google Scholar
  84. Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence: karst and cavernous rock in engineering and construction. Springer, Berlin, 382 ppGoogle Scholar
  85. Youssef AM, Pradhan B, Sabtan AA, El-Harbi HM (2011) Coupling of remote sensing data aided with field investigations for geological hazards assessment in Jazan area, Kingdom of Saudi Arabia. Environ Earth Sci 65(1):119–130. doi: 10.1007/s12665-011-1071-3 CrossRefGoogle Scholar
  86. Youssef AM, Al-Qaluobi H, Zabramawi YA (2012a) Integration of remote sensing and electrical resistivity methods in sinkhole investigation in Saudi Arabia. J Appl Geophys 87:28–39. doi: 10.1016/j.jappgeo.2012.09.001 CrossRefGoogle Scholar
  87. Youssef AM, Al-Qaluobi H, Zabramawi YA (2012b) Sinkholes detection using electrical resistivity tomography (ERT) in Saudi Arabia. J Geophys Eng 9:655–663. doi: 10.1088/1742-2132/9/6/655 CrossRefGoogle Scholar
  88. Zabramawi YA, Khiyami H, Youssef AM, Sabtan AA, Al-Harthi SG, Memash A, Al-Sharef A, Al-Ahmadi KZ (2009) Karst investigation and analysis in An Nu’ayriyah area, Kingdom of Saudi Arabia. Saudi Geological Survey technical report SGS-TR-2009-6, Saudi Geological Survey, Jeddah, Saudi ArabiaGoogle Scholar
  89. Zhou WF, Beck BF, Stephenson BJ (1999) Defining the bedrock/overburden boundary in covered karst terranes using dipole–dipole electrical resistivity tomography. In: Powers MH, Ibrahim AB, Cramer L (eds) Proc Symp. on Application of Geophysics to Engineering and Environmental Problems, Oakland, CA, 14–18 March 1999. Environmental and Engineering Geophysical Society, Denver, CO, pp 331–339Google Scholar
  90. Zhou W, Beck BF, Adams AL (2002) Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ Geol 42:922–928. doi: 10.1007/s00254-002-0594-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ahmed M. Youssef
    • 1
    • 2
    Email author
  • Hasan M. Al-Harbi
    • 1
  • Francisco Gutiérrez
    • 3
  • Yasser A. Zabramwi
    • 1
  • Ali B. Bulkhi
    • 1
  • Saeed A. Zahrani
    • 1
  • Alaa M. Bahamil
    • 1
  • Ahmed J. Zahrani
    • 4
  • Zaam A. Otaibi
    • 4
  • Bosy A. El-Haddad
    • 2
  1. 1.Geological Hazards Department, Applied Geology Sector, Saudi Geological SurveyJeddahKingdom of Saudi Arabia
  2. 2.Geology Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Earth Sciences DepartmentUniversity of ZaragozaZaragozaSpain
  4. 4.Geophysical Survey Department, Saudi Geological SurveyJeddahKingdom of Saudi Arabia

Personalised recommendations