Abstract
Methodologies have been developed to establish realistic water-table maps using geostatistical methods: ordinary kriging (OK), cokriging (CoK), collocated cokriging (CoCoK), and kriging with external drift (KED). In fact, in a hilly terrain, when piezometric data are sparsely distributed over large areas, the water-table maps obtained by these methods provide exact water levels at monitoring wells but fail to represent the groundwater flow system, manifested through an interpolated water table above the topography. A methodology is developed in order to rebuild water-table maps for urban areas at the city scale. The interpolation methodology is presented and applied in a case study where water levels are monitored at a set of 47 points for a part urban domain covering 25.6 km2 close to Bordeaux city, France. To select the best method, a geographic information system was used to visualize surfaces reconstructed with each method. A cross-validation was carried out to evaluate the predictive performances of each kriging method. KED proves to be the most accurate and yields a better description of the local fluctuations induced by the topography (natural occurrence of ridges and valleys).
Résumé
Des méthodologies ont été développées pour établir des cartes piézométriques réalistes en utilisant des méthodes géostatistiques : krigeage ordinaire (OK), cokrigeage (CoK), cokrigeage collocalisé (CoCoK) et krigeage avec dérive externe (KED). En fait, sur un terrain avec relief, lorsque les données piézométriques sont clairsemées sur de grandes surfaces, les piézométries obtenues par ces méthodes respectent les valeurs exactes aux piézomètres mais ne parviennent pas à représenter le système des écoulements souterrains, avec des interpolations de la nappe qui passent au-dessus de la surface topographique. Une méthode est développée de manière à bâtir les cartes piézométriques pour les zones urbaines, à l’échelle de la ville. La méthodologie d’interpolation est présentée et appliquée à un cas d’étude où les niveaux piézométriques sont suivis sur 47 points dans une zone urbaine de 26.5 km2, à proximité de Bordeaux, en France. Pour sélectionner la meilleure méthode, un système d’information géographique a été utilisé afin de visualiser les surfaces construites avec chaque méthode. Une validation croisée a été réalisée pour évaluer les performances prédictives de chaque méthode de krigeage. La méthode KED est apparue la plus précise et apporte une meilleure description des fluctuations locales induites par la topographie (occurrence naturelle de crêtes et vallées).
Resumen
Se han desarrollado metodologías para establecer mapeos realistas del nivel freático utilizando métodos geoestadísticos: kriging ordinario (OK), cokriging (CoK), cokriging superpuestos (CoCoK) y kriging con deriva externa (KED). De hecho, en un terreno de colinas, cuando los datos piezométricos están esparcidamente distribuidos sobre grandes áreas, los mapas obtenidos del nivel freático por estos métodos proporcionan niveles de agua exactos en los pozos de monitoreo, fallan al representar el sistema de flujo de agua subterránea, que se manifiesta a través de un nivel freático interpolado por encima de la topografía. Se desarrolló una metodología para reconstruir mapas del nivel freático para las zonas urbanas a escala de la ciudad. Se presenta y aplica la metodología de interpolación en un caso de estudio en el que los niveles de agua son monitoreados en un conjunto de 47 puntos para una parte del dominio urbano cubriendo 25.6 km2 cerca de la ciudad de Burdeos, Francia. Para seleccionar el mejor método, se utilizó un sistema de información geográfica para visualizar superficies reconstruidas con cada método. Se llevó a cabo una validación cruzada para evaluar la capacidad predictiva de cada método kriging. KED demuestra ser el más exacta y brinda una mejor descripción de las fluctuaciones locales inducidas por la topografía (ocurrencia natural de cordonoes y valles).
摘要
发展了方法论并采用地质统计方法建立了逼真的水位图:普通的克里格法,协同克里格法,并列协同克里格法及具有外部漂移的克里格法。事实上,在丘陵地带,当测压资料在很大的区域内分布很少时,用这些资料获取的水位图提供了监测井确切的水位,但代表不了地下水水流系统,这已经通过地形之上的内插水位所证明.发展了方法论就是要重建城区城市尺度的水位图.在法国波尔多市附近面积为25.6 km2的一片城区具有47个监测点位的研究案例中展示和应用了插值方法。为了选择最好的方法,采用地理信息系统对每个方法建立的水面形象化.进行了交叉确认,以评估每个克里格法的预测性能.具有外部漂移的克里格法证明最精确,能够更好地描述地形(天然出现的山脊和河谷)引起的局部波动。
Resumo
Metodologias têm sido desenvolvidas para definir mapas realistas do nível do lençol freático usando métodos geoestísticos: krigagem ordinária (KO), cokrigagem (CoK), cokrigagem coalocalizada (CoCoK), e krigagem com deriva externa (KDE). De fato, em um terreno acidentado, onde dados piezométricos são insuficientemente distribuídos através de grandes áreas, os mapas de nível do lençol freático obtidos por estes métodos proporcionam níveis exatos da água em poços de monitoramento, mas fracassam em representar o sistema de fluxo das águas subterrâneas, manifestado por um lençol freático interpolado sobre o terreno. A metodologia foi desenvolvida para reconstruir mapas de nível do lençol freático para áreas urbanas em escala municipal. A metodologia de interpolação foi apresentada e aplicada em um estudo de caso onde o nível da água foi monitorado no conjunto de 47 pontos para uma parte do domínio urbano, cobrindo 25.6 km2 próximo da cidade de Bordéus, França. Para selecionar o melhor método, um sistema de informação geográfica foi usado para visualizar superfícies reconstruídas com cada método. Uma validação cruzada foi realizada para avaliar a performance preditiva de cada método de krigagem. KDE provou ser o mais preciso e produziu a melhor descrição da flutuação local induzida pela topografia (ocorrência natural de cordilheiras e vales).
















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abedini MJ, Nasseri M, Ansari A (2008) Cluster-based ordinary kriging of piezometric head in West Texas/New Mexico: testing of hypothesis. J Hydrol 351:360–367
Aboufirassi M, Mariño MA (1983) Kriging of water levels in the Souss aquifer, Morocco. J Int Assoc Math Geol 15(4):537–551
Ahmadi SH, Sedghamiz A (2008) Application and evaluation of kriging and cokriging methods on groundwater depth mapping. Environ Monit Assess 138:357–368
Alvinerie J, Dubreuilh J, Gayet J, Pratviel L (1977) Notice explicative de la carte géologique de France (1/50 000), feuille de Pessac (827) [Explanatory notes to the geological map of France (1 :50 000), Pessac sheet (827)]. Technical report, BRGM, Orléans
Anon (1990a) Review of geostatistics in geohydrology I basic concepts. J Hydraul Eng 116(5):612–632
Anon (1990b) Review of geostatistics in geohydrology II applications. J Hydraul Eng 116(5):633–658
Barlow PM, Harbaugh AW (2006) USGS directions in MODFLOW development. Ground Water 44(6):771–774
Boezio MNM, Costa JFCL, Koppe JC (2006a) Accounting for extensive secondary information to improve watertable mapping. Nat Resour Res 15(1):33–48
Boezio MNM, Costa JFCL, Koppe JC (2006b) Kriging with an external drift versus collocated cokriging for water table mapping. Appl Earth Sci 115(3):103–112
Bourennane H, King D (2003) Using multiple external drifts to estimate a soil variable. Geoderma 114:1–18
Brochu Y, Marcotte D (2003) A simple approach to account for radial flow and boundary conditions when kriging hydraulic head fields for confined aquifers. Math Geol 35(2):111–139
Brunner P, Simmons CT, Cook PG, Therrien R (2010) Modeling surface water–groundwater interaction with MODFLOW: some considerations. Ground Water 48(2):174–180
Buchanan S, Triantafilis J (2009) Mapping water table depth using geophysical and environmental variables. Ground Water 47(1):80–96
Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainties. Wiley Series in Probability and Statistics. Wiley, Chichester, UK
Chung JW, Rogers JD (2012) Interpolations of groundwater table elevation in dissected uplands. Ground Water 50(4):598–607
Davis BM (1987) Uses and abuses of cross-validation in geostatistics. Math Geol 19(3):241–248
Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Ressources 1(5):251–266
Desbarats AJ, Logan CE, Hinton MJ, Sharpe DR (2002) On the kriging of water table elevations using collateral information from a digital elevation model. J Hydrol 255:25–38
Dubreuilh J, Alvinerie J (1978) Notice explicative de la carte géologique de France (1/50 000), feuille de Langon (852) [Explanatory notes to the geological map of France (1 :50 000), Langon sheet (852)]. Technical report, BRGM, Orléans
Fasbender D, Peeters L, Bogaert P, Dassargues A (2008) Bayesian data fusion applied to water table spatial mapping. Water Resour Res 44(12), W12422
Geovariances (2011) Isatis v11 software manual. Geovariances, Avon, France
Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York
Guekie Simo A T (2012) Effets de la variation spatiale et temporelle des propriétés des terrains sur les défaillances des réseaux enterrés [Effects of spatial and temporal variability of soils properties on the failures of buried pipe networks]. PhD Thesis, Université de Bordeaux, France
Guekie Simo AT, Marache A, Lastennet R, Breysse D (2013) Reconstructing hydraulic conductivity field for hydrogeological modeling in an urban environment. Eng Geol 158:119–134
Gundogdu KS, Guney I (2007) Spatial analyses of groundwater levels using universal kriging. J Earth Syst Sci 116(1):49–55
Haitjema HM, Mitchell-Bruker S (2005) Are water tables a subdued replica of the topography? Ground Water 43(6):781–786
Hoeksema RJ, Clapp RB, Thomas AL, Hunley AE, Farrow ND, Dearstone KC (1989) Cokriging model for estimation of water table elevation. Water Resour Res 25(3):429–438
Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, New York
Kambhammettu BVNP, Allena P, King JP (2011) Application and evaluation of universal kriging for optimal contouring of groundwater levels. J Earth Syst Sci 120(3):413–422
Kashyap D, Vakkalagadda R (2009) New model of variogram of groundwater hydraulic heads. J Hydrol Eng 14(8):872–875
Kuhlman LK, Igúzquiza PE (2010) Universal cokriging of hydraulic heads accounting for boundary conditions. J Hydrol 384:14–25
Laroussi T (1969) Etude géologique et hydrogéologique de la région Sud et Sud-Ouest de Bordeaux [Geological and hydrogeological study of the South and South West of Bordeaux]. PhD Thesis, Université de Bordeaux, France
Marache A, Breysse D, Piette C, Thierry P (2009) Geotechnical modeling at the city scale using statistical and geostatistical tools: the Pessac case (France). Eng Geol 107:67–76
Nikroo L, Kompani-Zare M, Sepaskhah AR, Shamsi SRF (2010) Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environ Monit Assess 166:387–407
Pardo-Igúzquiza E, Chica-Olmo M (2007) KRIGRADI: a cokriging program for estimating the gradient of spatial variables from sparse data. Comput Geosci 33(4):497–512
Peeters L, Fasbender D, Batelaan O, Dassargues A (2010) Bayesian data fusion for water table interpolation: incorporating a hydrogeological conceptual model in kriging. Water Resour Res 46(8):W08532
Platel JP, Schnebelen N, Le Nindre Y, Saplairoles M, Dufour P (2000). Gestion des eaux souterraines en Aquitaine [Groundwater management in Aquitaine]. Technical report, BRGM, Orléans
Pratviel L (1972) Essai de cartographie structurale et faciologique du bassin sédimentaire ouest aquitain pendant l’Oligocène [Facies and structural mapping of the western Aquitaine sedimentary basin during the Oligocene]. PhD Thesis, Université de Bordeaux, France
Rivest M, Marcotte D, Pasquier P (2008) Hydraulic head field estimation using kriging with an external drift: a way to consider conceptual model information. J Hydrol 361:349–361
Rivoirard J (2001) Which models for collocated cokriging. Math Geol 33(2):117–131
Sun Y, Kang S, Li F, Zhang L (2009) Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Environ Model Softw 24(10):1163–1170
Sun F, Shao H, Kalbacher T, Wang W, Yang Z, Huang Z, Kolditz O (2011) Groundwater drawdown at Nankou site of Beijing plain: model development and calibration. Environ Earth Sci 64(5):1323–1333
Wackernagel H (2002) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, Heidelberg, Germany
Webster R, Oliver M (2007) Geostatistics for Environmental Scientists, 2nd edn. Wiley, Chichester, UK, 317 pp
Acknowledgements
We would like to thank Aquitaine Regional Council which supported the research described in this report through the “Perturbations Climatiques et Casses de Canalisations” (PC3) project.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Nomenclature
- CoCoK:
-
collocated cokriging
- CoCoKip:
-
collocated cokriging with imposed point
- CoK:
-
cokriging
- CoKip:
-
cokriging with imposed point
- DEM:
-
digital elevation model
- KED:
-
kriging with external drift
- KEDip:
-
kriging with external drift with imposed point
- MAE:
-
mean absolute error
- ME:
-
mean error
- OK:
-
ordinary kriging
- OKip:
-
ordinary kriging with imposed point
- QF:
-
Quaternary formations
- MF:
-
Miocene formations
- SK:
-
simple kriging
- UK:
-
universal kriging
- VSE:
-
variance of standardized error
Appendix 2
The mathematical expressions of the variogram model involve:
-
1.
A coefficient which gives the order of magnitude of the variability along the vertical axis (homogenous to the variance). In the case of bounded functions (covariances), this value is simply the level of the plateau reached and is called the sill. The same concept has been kept even for the non-bounded functions and is called sill for convenience. The sill is equal to “C” in the following models.
-
2.
When the function is bounded, it reaches a constant level (sill) after a given distance: this distance value is the range (or correlation distance in statistical language).
-
3.
A third parameter required by some particular basic structures.
Five variogram models, in which h is the lag distance, were examined in this report.
Power model
The power variogram is given by:
where,
- C :
-
is the multiplicative coefficient (also called sill for convenience)
- a :
-
is the scale factor (also called range for convenience)
- α :
-
is the exponent (shape parameter) defined as the third argument which must lie within [0,2]
Gaussian model
The Gaussian variogram is given by:
where,
- C :
-
is the sill
- a :
-
is the (practical) range
Cubic model
The Cubic variogram is given by:
where,
- C :
-
is the sill
- a :
-
is the range
Cauchy model
The Cauchy variogram is given by:
where,
- C :
-
is the sill
- a :
-
is the range
- α :
-
is the (positive) exponent defined as the third parameter
Stable model
The Stable variogram is given by:
where,
- C :
-
is the sill
- a :
-
is the range
- α :
-
is the exponent defined as the third argument which must lie within [0;2]
Appendix 3
Ordinary kriging (OK)
OK estimates the expected value Z *OK (u 0) at location u 0 as the weighted sum of the known data Z(u α ) such that:
where W α are the weights chosen to minimize the prediction error variance by solving the following set of equations:
here, γ(u α − u β ) is the variogram between the data points u α and u β , γ(u β − u 0) is the variogram between the data point β and the target point u 0, and μ is a Lagrange multiplier introduced for the minimization of the error variance.
Cokriging (CoK) and collocated cokriging (CoCoK)
The cokriging is a natural extension of kriging in the case of multiple variables. In the case of two variables, the cokriging estimator equation can be written as
in which n and m are the number of sampling points for primary and secondary variables respectively, W αz and W αs are the weights to be calculated solving the following equations:
where μ 1 and μ 2 are the Lagrange parameters which ensure unbiased conditions.
When the secondary variable is known at all nodes of a given estimation grid and at the data location of the primary variable, collocated cokriging can be used. In its strict sense, collocated cokriging makes use of the secondary variable only at the current point where the primary variable is to be estimated. In the multi-collocated form, it also makes use of the secondary variable at all points where the primary variable is available. The reader interested by the different approaches to collocated cokriging can refer to Rivoirard (2001). In this report, multi-collocated cokriging is used because it gives the more reliable and stable results. The collocated ordinary cokriging estimator is given by:
S(u 0) is the secondary variable at the grid node u 0 and S(u α ) the secondary variable at the sample point of the primary variable.
Kriging with external drift (KED)
The KED involves performing standard kriging, based on the primary variable, considering that the external drift (overall shape of the regionalized phenomenon) is locally represented by the secondary variable. The KED estimator can be decomposed as a two-stage process: a generalized regression of the primary variable with the secondary variables followed by a simple kriging of the residuals (Rivest et al. 2008). The reader can refer to Desbarats et al. (2002); Wackernagel (2002); Bourennane and King (2003) for more details about KED. The basic hypothesis is that the expectation of the primary variable can be written as:
where a 0 and b 1 are unknown. The additional universality conditions relating to external drift variables measured exhaustively in the field are integrated in the kriging system:
where K(h) is the generalized covariance.
Rights and permissions
About this article
Cite this article
Guekie simo, A.T., Marache, A., Lastennet, R. et al. Geostatistical investigations for suitable mapping of the water table: the Bordeaux case (France). Hydrogeol J 24, 231–248 (2016). https://doi.org/10.1007/s10040-015-1316-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-015-1316-4

